41 datasets found
  1. Daily website visitors (time series regression)

    • kaggle.com
    Updated Aug 20, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bob Nau (2020). Daily website visitors (time series regression) [Dataset]. https://www.kaggle.com/bobnau/daily-website-visitors/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 20, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Bob Nau
    Description

    Context

    This file contains 5 years of daily time series data for several measures of traffic on a statistical forecasting teaching notes website whose alias is statforecasting.com. The variables have complex seasonality that is keyed to the day of the week and to the academic calendar. The patterns you you see here are similar in principle to what you would see in other daily data with day-of-week and time-of-year effects. Some good exercises are to develop a 1-day-ahead forecasting model, a 7-day ahead forecasting model, and an entire-next-week forecasting model (i.e., next 7 days) for unique visitors.

    Content

    The variables are daily counts of page loads, unique visitors, first-time visitors, and returning visitors to an academic teaching notes website. There are 2167 rows of data spanning the date range from September 14, 2014, to August 19, 2020. A visit is defined as a stream of hits on one or more pages on the site on a given day by the same user, as identified by IP address. Multiple individuals with a shared IP address (e.g., in a computer lab) are considered as a single user, so real users may be undercounted to some extent. A visit is classified as "unique" if a hit from the same IP address has not come within the last 6 hours. Returning visitors are identified by cookies if those are accepted. All others are classified as first-time visitors, so the count of unique visitors is the sum of the counts of returning and first-time visitors by definition. The data was collected through a traffic monitoring service known as StatCounter.

    Inspiration

    This file and a number of other sample datasets can also be found on the website of RegressIt, a free Excel add-in for linear and logistic regression which I originally developed for use in the course whose website generated the traffic data given here. If you use Excel to some extent as well as Python or R, you might want to try it out on this dataset.

  2. Google Analytics Sample

    • kaggle.com
    zip
    Updated Sep 19, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Google BigQuery (2019). Google Analytics Sample [Dataset]. https://www.kaggle.com/bigquery/google-analytics-sample
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    Sep 19, 2019
    Dataset provided by
    BigQueryhttps://cloud.google.com/bigquery
    Googlehttp://google.com/
    Authors
    Google BigQuery
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    The Google Merchandise Store sells Google branded merchandise. The data is typical of what you would see for an ecommerce website.

    Content

    The sample dataset contains Google Analytics 360 data from the Google Merchandise Store, a real ecommerce store. The Google Merchandise Store sells Google branded merchandise. The data is typical of what you would see for an ecommerce website. It includes the following kinds of information:

    Traffic source data: information about where website visitors originate. This includes data about organic traffic, paid search traffic, display traffic, etc. Content data: information about the behavior of users on the site. This includes the URLs of pages that visitors look at, how they interact with content, etc. Transactional data: information about the transactions that occur on the Google Merchandise Store website.

    Fork this kernel to get started.

    Acknowledgements

    Data from: https://bigquery.cloud.google.com/table/bigquery-public-data:google_analytics_sample.ga_sessions_20170801

    Banner Photo by Edho Pratama from Unsplash.

    Inspiration

    What is the total number of transactions generated per device browser in July 2017?

    The real bounce rate is defined as the percentage of visits with a single pageview. What was the real bounce rate per traffic source?

    What was the average number of product pageviews for users who made a purchase in July 2017?

    What was the average number of product pageviews for users who did not make a purchase in July 2017?

    What was the average total transactions per user that made a purchase in July 2017?

    What is the average amount of money spent per session in July 2017?

    What is the sequence of pages viewed?

  3. d

    Website Analytics

    • catalog.data.gov
    • data.nola.gov
    • +4more
    Updated Jun 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.nola.gov (2025). Website Analytics [Dataset]. https://catalog.data.gov/dataset/website-analytics
    Explore at:
    Dataset updated
    Jun 28, 2025
    Dataset provided by
    data.nola.gov
    Description

    This data about nola.gov provides a window into how people are interacting with the the City of New Orleans online. The data comes from a unified Google Analytics account for New Orleans. We do not track individuals and we anonymize the IP addresses of all visitors.

  4. g

    Website Metrics

    • gimi9.com
    • datasets.ai
    • +1more
    Updated Apr 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Website Metrics [Dataset]. https://gimi9.com/dataset/data-gov_website-metrics/
    Explore at:
    Dataset updated
    Apr 1, 2025
    Description

    Per the Federal Digital Government Strategy, the Department of Homeland Security Metrics Plan, and the Open FEMA Initiative, FEMA is providing the following web performance metrics with regards to FEMA.gov.rnrnInformation in this dataset includes total visits, avg visit duration, pageviews, unique visitors, avg pages/visit, avg time/page, bounce ratevisits by source, visits by Social Media Platform, and metrics on new vs returning visitors.rnrnExternal Affairs strives to make all communications accessible. If you have any challenges accessing this information, please contact FEMAWebTeam@fema.dhs.gov.

  5. Visitor analytics in city of Helsinki websites

    • kaggle.com
    Updated Dec 31, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Olaf Laitinen (2024). Visitor analytics in city of Helsinki websites [Dataset]. http://doi.org/10.34740/kaggle/dsv/10342181
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 31, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Olaf Laitinen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Helsinki
    Description
    • Administrator: Helsingin kaupunginkanslia / Digitalisaatioyksikkö
    • Administrator's webpage: https://www.hel.fi/fi
    • Published: 10.03.2022
    • Updated: 02.09.2022
    • Update frequency: day
    • Categories: Local government
    • Tags: visitor counts
    • Geographical coverage: Helsinki
    • Time series starts: 2022-01-01
    • Time series accuracy: month
    • License: Creative Commons Attribution 4.0
    • How to reference: Source: Visitor analytics in city of Helsinki websites. The maintainer of the dataset is Helsingin kaupunginkanslia / Digitalisaatioyksikkö. The dataset has been downloaded from Helsinki Region Infoshare service on 31.12.2024 under the license Creative Commons Attribution 4.0.
  6. Google Analytics Sample

    • console.cloud.google.com
    Updated Jul 15, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    https://console.cloud.google.com/marketplace/browse?filter=partner:Obfuscated%20Google%20Analytics%20360%20data&hl=de&inv=1&invt=Ab2fng (2017). Google Analytics Sample [Dataset]. https://console.cloud.google.com/marketplace/product/obfuscated-ga360-data/obfuscated-ga360-data?hl=de
    Explore at:
    Dataset updated
    Jul 15, 2017
    Dataset provided by
    Googlehttp://google.com/
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    The dataset provides 12 months (August 2016 to August 2017) of obfuscated Google Analytics 360 data from the Google Merchandise Store , a real ecommerce store that sells Google-branded merchandise, in BigQuery. It’s a great way analyze business data and learn the benefits of using BigQuery to analyze Analytics 360 data Learn more about the data The data includes The data is typical of what an ecommerce website would see and includes the following information:Traffic source data: information about where website visitors originate, including data about organic traffic, paid search traffic, and display trafficContent data: information about the behavior of users on the site, such as URLs of pages that visitors look at, how they interact with content, etc. Transactional data: information about the transactions on the Google Merchandise Store website.Limitations: All users have view access to the dataset. This means you can query the dataset and generate reports but you cannot complete administrative tasks. Data for some fields is obfuscated such as fullVisitorId, or removed such as clientId, adWordsClickInfo and geoNetwork. “Not available in demo dataset” will be returned for STRING values and “null” will be returned for INTEGER values when querying the fields containing no data.This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery

  7. d

    Click Global Data | Web Traffic Data + Transaction Data | Consumer and B2B...

    • datarade.ai
    .csv
    Updated Mar 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Consumer Edge (2025). Click Global Data | Web Traffic Data + Transaction Data | Consumer and B2B Shopper Insights | 59 Countries, 3-Day Lag, Daily Delivery [Dataset]. https://datarade.ai/data-products/click-global-data-web-traffic-data-transaction-data-con-consumer-edge
    Explore at:
    .csvAvailable download formats
    Dataset updated
    Mar 13, 2025
    Dataset authored and provided by
    Consumer Edge
    Area covered
    Marshall Islands, Congo, South Africa, Bermuda, Finland, El Salvador, Bosnia and Herzegovina, Sri Lanka, Nauru, Montserrat
    Description

    Click Web Traffic Combined with Transaction Data: A New Dimension of Shopper Insights

    Consumer Edge is a leader in alternative consumer data for public and private investors and corporate clients. Click enhances the unparalleled accuracy of CE Transact by allowing investors to delve deeper and browse further into global online web traffic for CE Transact companies and more. Leverage the unique fusion of web traffic and transaction datasets to understand the addressable market and understand spending behavior on consumer and B2B websites. See the impact of changes in marketing spend, search engine algorithms, and social media awareness on visits to a merchant’s website, and discover the extent to which product mix and pricing drive or hinder visits and dwell time. Plus, Click uncovers a more global view of traffic trends in geographies not covered by Transact. Doubleclick into better forecasting, with Click.

    Consumer Edge’s Click is available in machine-readable file delivery and enables: • Comprehensive Global Coverage: Insights across 620+ brands and 59 countries, including key markets in the US, Europe, Asia, and Latin America. • Integrated Data Ecosystem: Click seamlessly maps web traffic data to CE entities and stock tickers, enabling a unified view across various business intelligence tools. • Near Real-Time Insights: Daily data delivery with a 5-day lag ensures timely, actionable insights for agile decision-making. • Enhanced Forecasting Capabilities: Combining web traffic indicators with transaction data helps identify patterns and predict revenue performance.

    Use Case: Analyze Year Over Year Growth Rate by Region

    Problem A public investor wants to understand how a company’s year-over-year growth differs by region.

    Solution The firm leveraged Consumer Edge Click data to: • Gain visibility into key metrics like views, bounce rate, visits, and addressable spend • Analyze year-over-year growth rates for a time period • Breakout data by geographic region to see growth trends

    Metrics Include: • Spend • Items • Volume • Transactions • Price Per Volume

    Inquire about a Click subscription to perform more complex, near real-time analyses on public tickers and private brands as well as for industries beyond CPG like: • Monitor web traffic as a leading indicator of stock performance and consumer demand • Analyze customer interest and sentiment at the brand and sub-brand levels

    Consumer Edge offers a variety of datasets covering the US, Europe (UK, Austria, France, Germany, Italy, Spain), and across the globe, with subscription options serving a wide range of business needs.

    Consumer Edge is the Leader in Data-Driven Insights Focused on the Global Consumer

  8. D

    Monthly Page Views to CDC.gov

    • data.cdc.gov
    • data.virginia.gov
    • +4more
    application/rdfxml +5
    Updated Jul 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office of the Associate Director for Communication, Division of News and Electronic Media (2025). Monthly Page Views to CDC.gov [Dataset]. https://data.cdc.gov/Web-Metrics/Monthly-Page-Views-to-CDC-gov/rq85-buyi
    Explore at:
    xml, application/rdfxml, json, csv, application/rssxml, tsvAvailable download formats
    Dataset updated
    Jul 1, 2025
    Dataset authored and provided by
    Office of the Associate Director for Communication, Division of News and Electronic Media
    Description

    For more information on CDC.gov metrics please see http://www.cdc.gov/metrics/

  9. e

    OGD Portal: Daily usage by record (since January 2024)

    • data.europa.eu
    csv, excel xls, json +5
    Updated Apr 6, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    kanton-basel-landschaft (2025). OGD Portal: Daily usage by record (since January 2024) [Dataset]. https://data.europa.eu/data/datasets/12610-kanton-basel-landschaft?locale=en
    Explore at:
    n3, rdf xml, csv, json-ld, json, rdf turtle, parquet, excel xlsAvailable download formats
    Dataset updated
    Apr 6, 2025
    Dataset authored and provided by
    kanton-basel-landschaft
    License

    http://dcat-ap.ch/vocabulary/licenses/terms_byhttp://dcat-ap.ch/vocabulary/licenses/terms_by

    Description

    The data on the use of the data sets on the OGD portal BL (data.bl.ch) are collected and published by the specialist and coordination office OGD BL. Contains the day the usage was measured.dataset_title: The title of the dataset_id record: The technical ID of the dataset.visitors: Specifies the number of daily visitors to the record. Visitors are recorded by counting the unique IP addresses that recorded access on the day of the survey. The IP address represents the network address of the device from which the portal was accessed.interactions: Includes all interactions with any record on data.bl.ch. A visitor can trigger multiple interactions. Interactions include clicks on the website (searching datasets, filters, etc.) as well as API calls (downloading a dataset as a JSON file, etc.).RemarksOnly calls to publicly available datasets are shown.IP addresses and interactions of users with a login of the Canton of Basel-Landschaft - in particular of employees of the specialist and coordination office OGD - are removed from the dataset before publication and therefore not shown.Calls from actors that are clearly identifiable as bots by the user agent header are also not shown.Combinations of dataset and date for which no use occurred (Visitors == 0 & Interactions == 0) are not shown.Due to synchronization problems, data may be missing by the day.

  10. d

    Swash Web Browsing Clickstream Data - 1.5M Worldwide Users - GDPR Compliant

    • datarade.ai
    .csv, .xls
    Updated Jun 27, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Swash (2023). Swash Web Browsing Clickstream Data - 1.5M Worldwide Users - GDPR Compliant [Dataset]. https://datarade.ai/data-products/swash-blockchain-bitcoin-and-web3-enthusiasts-swash
    Explore at:
    .csv, .xlsAvailable download formats
    Dataset updated
    Jun 27, 2023
    Dataset authored and provided by
    Swash
    Area covered
    India, Saint Vincent and the Grenadines, Jordan, Uzbekistan, Belarus, Jamaica, Latvia, Liechtenstein, Russian Federation, Monaco
    Description

    Unlock the Power of Behavioural Data with GDPR-Compliant Clickstream Insights.

    Swash clickstream data offers a comprehensive and GDPR-compliant dataset sourced from users worldwide, encompassing both desktop and mobile browsing behaviour. Here's an in-depth look at what sets us apart and how our data can benefit your organisation.

    User-Centric Approach: Unlike traditional data collection methods, we take a user-centric approach by rewarding users for the data they willingly provide. This unique methodology ensures transparent data collection practices, encourages user participation, and establishes trust between data providers and consumers.

    Wide Coverage and Varied Categories: Our clickstream data covers diverse categories, including search, shopping, and URL visits. Whether you are interested in understanding user preferences in e-commerce, analysing search behaviour across different industries, or tracking website visits, our data provides a rich and multi-dimensional view of user activities.

    GDPR Compliance and Privacy: We prioritise data privacy and strictly adhere to GDPR guidelines. Our data collection methods are fully compliant, ensuring the protection of user identities and personal information. You can confidently leverage our clickstream data without compromising privacy or facing regulatory challenges.

    Market Intelligence and Consumer Behaviuor: Gain deep insights into market intelligence and consumer behaviour using our clickstream data. Understand trends, preferences, and user behaviour patterns by analysing the comprehensive user-level, time-stamped raw or processed data feed. Uncover valuable information about user journeys, search funnels, and paths to purchase to enhance your marketing strategies and drive business growth.

    High-Frequency Updates and Consistency: We provide high-frequency updates and consistent user participation, offering both historical data and ongoing daily delivery. This ensures you have access to up-to-date insights and a continuous data feed for comprehensive analysis. Our reliable and consistent data empowers you to make accurate and timely decisions.

    Custom Reporting and Analysis: We understand that every organisation has unique requirements. That's why we offer customisable reporting options, allowing you to tailor the analysis and reporting of clickstream data to your specific needs. Whether you need detailed metrics, visualisations, or in-depth analytics, we provide the flexibility to meet your reporting requirements.

    Data Quality and Credibility: We take data quality seriously. Our data sourcing practices are designed to ensure responsible and reliable data collection. We implement rigorous data cleaning, validation, and verification processes, guaranteeing the accuracy and reliability of our clickstream data. You can confidently rely on our data to drive your decision-making processes.

  11. P

    Alexa Domains Dataset

    • paperswithcode.com
    • opendatalab.com
    Updated Feb 1, 2001
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Isaac Corley; Jonathan Lwowski; Justin Hoffman (2001). Alexa Domains Dataset [Dataset]. https://paperswithcode.com/dataset/gagan-bhatia
    Explore at:
    Dataset updated
    Feb 1, 2001
    Authors
    Isaac Corley; Jonathan Lwowski; Justin Hoffman
    Description

    This dataset is composed of the URLs of the top 1 million websites. The domains are ranked using the Alexa traffic ranking which is determined using a combination of the browsing behavior of users on the website, the number of unique visitors, and the number of pageviews. In more detail, unique visitors are the number of unique users who visit a website on a given day, and pageviews are the total number of user URL requests for the website. However, multiple requests for the same website on the same day are counted as a single pageview. The website with the highest combination of unique visitors and pageviews is ranked the highest

  12. A web tracking data set of online browsing behavior of 2,148 users

    • zenodo.org
    • data.niaid.nih.gov
    application/gzip, txt +1
    Updated May 14, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Juhi Kulshrestha; Juhi Kulshrestha; Marcos Oliveira; Marcos Oliveira; Orkut Karacalik; Denis Bonnay; Claudia Wagner; Orkut Karacalik; Denis Bonnay; Claudia Wagner (2021). A web tracking data set of online browsing behavior of 2,148 users [Dataset]. http://doi.org/10.5281/zenodo.4757574
    Explore at:
    zip, txt, application/gzipAvailable download formats
    Dataset updated
    May 14, 2021
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Juhi Kulshrestha; Juhi Kulshrestha; Marcos Oliveira; Marcos Oliveira; Orkut Karacalik; Denis Bonnay; Claudia Wagner; Orkut Karacalik; Denis Bonnay; Claudia Wagner
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    This anonymized data set consists of one month's (October 2018) web tracking data of 2,148 German users. For each user, the data contains the anonymized URL of the webpage the user visited, the domain of the webpage, category of the domain, which provides 41 distinct categories. In total, these 2,148 users made 9,151,243 URL visits, spanning 49,918 unique domains. For each user in our data set, we have self-reported information (collected via a survey) about their gender and age.

    We acknowledge the support of Respondi AG, which provided the web tracking and survey data free of charge for research purposes, with special thanks to François Erner and Luc Kalaora at Respondi for their insights and help with data extraction.

    The data set is analyzed in the following paper:

    • Kulshrestha, J., Oliveira, M., Karacalik, O., Bonnay, D., Wagner, C. "Web Routineness and Limits of Predictability: Investigating Demographic and Behavioral Differences Using Web Tracking Data." Proceedings of the International AAAI Conference on Web and Social Media. 2021. https://arxiv.org/abs/2012.15112.

    The code used to analyze the data is also available at https://github.com/gesiscss/web_tracking.

    If you use data or code from this repository, please cite the paper above and the Zenodo link.

  13. g

    Dept. of Treasury and Finance Website Visitor Information - Quarterly |...

    • gimi9.com
    Updated Aug 21, 2012
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2012). Dept. of Treasury and Finance Website Visitor Information - Quarterly | gimi9.com [Dataset]. https://gimi9.com/dataset/au_dept-of-treasury-and-finance-website-visitor-information-quarterly
    Explore at:
    Dataset updated
    Aug 21, 2012
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The Department of Treasury and Finance collects usage information of the www.dtf.vic.gov.au website using Google Analytics. Google Analytics anonymously tracks how our visitors interact with this website, including where they came from, what they did on the site, and whether they completed any transactions on the site such as newsletter registration. The data provides aggregate information on unique visitors to the site, based on: - Browser - Country - Mobile devices - Operating system - Page views

  14. E-commerce - Users of a French C2C fashion store

    • kaggle.com
    Updated Feb 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jeffrey Mvutu Mabilama (2024). E-commerce - Users of a French C2C fashion store [Dataset]. https://www.kaggle.com/jmmvutu/ecommerce-users-of-a-french-c2c-fashion-store/notebooks
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 24, 2024
    Dataset provided by
    Kaggle
    Authors
    Jeffrey Mvutu Mabilama
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    French
    Description

    Foreword

    This users dataset is a preview of a much bigger dataset, with lots of related data (product listings of sellers, comments on listed products, etc...).

    My Telegram bot will answer your queries and allow you to contact me.

    Context

    There are a lot of unknowns when running an E-commerce store, even when you have analytics to guide your decisions.

    Users are an important factor in an e-commerce business. This is especially true in a C2C-oriented store, since they are both the suppliers (by uploading their products) AND the customers (by purchasing other user's articles).

    This dataset aims to serve as a benchmark for an e-commerce fashion store. Using this dataset, you may want to try and understand what you can expect of your users and determine in advance how your grows may be.

    • For instance, if you see that most of your users are not very active, you may look into this dataset to compare your store's performance.

    If you think this kind of dataset may be useful or if you liked it, don't forget to show your support or appreciation with an upvote/comment. You may even include how you think this dataset might be of use to you. This way, I will be more aware of specific needs and be able to adapt my datasets to suits more your needs.

    This dataset is part of a preview of a much larger dataset. Please contact me for more.

    Content

    The data was scraped from a successful online C2C fashion store with over 10M registered users. The store was first launched in Europe around 2009 then expanded worldwide.

    Visitors vs Users: Visitors do not appear in this dataset. Only registered users are included. "Visitors" cannot purchase an article but can view the catalog.

    Acknowledgements

    We wouldn't be here without the help of others. If you owe any attributions or thanks, include them here along with any citations of past research.

    Inspiration

    Questions you might want to answer using this dataset:

    • Are e-commerce users interested in social network feature ?
    • Are my users active enough (compared to those of this dataset) ?
    • How likely are people from other countries to sign up in a C2C website ?
    • How many users are likely to drop off after years of using my service ?

    Example works:

    • Report(s) made using SQL queries can be found on the data.world page of the dataset.
    • Notebooks may be found on the Kaggle page of the dataset.

    License

    CC-BY-NC-SA 4.0

    For other licensing options, contact me.

  15. g

    Statistics, compilation of visits to TCN websites

    • gimi9.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics, compilation of visits to TCN websites [Dataset]. https://gimi9.com/dataset/eu_01c2fafa-25cb-4aae-9729-b86ee4851a6b/
    Explore at:
    Description

    Statistics on the visits to the websites of the institutions located on the single platform of the websites of national and local authorities. Statistics do not reflect all website visitors, but only those who have consented to statistical cookies.

  16. Jordan Number of Visitors: Desert Castles: Residents

    • ceicdata.com
    Updated May 29, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2018). Jordan Number of Visitors: Desert Castles: Residents [Dataset]. https://www.ceicdata.com/en/jordan/number-of-visitors-by-tourist-sites
    Explore at:
    Dataset updated
    May 29, 2018
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2017 - Dec 1, 2017
    Area covered
    Jordan
    Variables measured
    Tourism Statistics
    Description

    Number of Visitors: Desert Castles: Residents data was reported at 0.000 Person in Jun 2018. This stayed constant from the previous number of 0.000 Person for May 2018. Number of Visitors: Desert Castles: Residents data is updated monthly, averaging 0.000 Person from Jan 2011 (Median) to Jun 2018, with 81 observations. The data reached an all-time high of 110.000 Person in Jun 2016 and a record low of 0.000 Person in Jun 2018. Number of Visitors: Desert Castles: Residents data remains active status in CEIC and is reported by Ministry of Tourism and Antiquities. The data is categorized under Global Database’s Jordan – Table JO.Q009: Number of Visitors: by Tourist Sites.

  17. O

    Total Visits & Downloads by Asset Type - Official, Public, TDA-Owned Assets

    • data.texas.gov
    application/rdfxml +5
    Updated Jul 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Total Visits & Downloads by Asset Type - Official, Public, TDA-Owned Assets [Dataset]. https://data.texas.gov/dataset/Total-Visits-Downloads-by-Asset-Type-Official-Publ/w7bj-2tzn
    Explore at:
    csv, application/rdfxml, tsv, json, xml, application/rssxmlAvailable download formats
    Dataset updated
    Jul 1, 2025
    Description

    This dataset is a complete inventory of all assets on this site and any assets sourced from other sites, if applicable. Use this dataset to track the performance of data publishing, conduct metadata maintenance, or present an overview of what kinds of data exists on the site.

  18. Museums and galleries monthly visits

    • gov.uk
    • s3.amazonaws.com
    Updated May 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department for Culture, Media and Sport (2025). Museums and galleries monthly visits [Dataset]. https://www.gov.uk/government/statistical-data-sets/museums-and-galleries-monthly-visits
    Explore at:
    Dataset updated
    May 15, 2025
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Department for Culture, Media and Sport
    Description

    https://assets.publishing.service.gov.uk/media/682322602a6442d07e7e078c/Monthly_and_Quarterly_Visits_to_DCMS-Sponsored_Museums_and_Galleries_-_to_March_2025_data_tables.ods">Monthly and quarterly visits to DCMS-sponsored museums and galleries - to March 2025 data tables

     <p class="gem-c-attachment_metadata"><span class="gem-c-attachment_attribute"><abbr title="OpenDocument Spreadsheet" class="gem-c-attachment_abbr">ODS</abbr></span>, <span class="gem-c-attachment_attribute">235 KB</span></p>
    
    
    
      <p class="gem-c-attachment_metadata">
       This file is in an <a href="https://www.gov.uk/guidance/using-open-document-formats-odf-in-your-organisation" target="_self" class="govuk-link">OpenDocument</a> format
    

    https://assets.publishing.service.gov.uk/media/681ddaf453add7d476d81835/Pre-release_access_to_DCMS-sponsored_museums_and_galleries_monthly_and_quarterly_visitor_figures_January_to_March_2025.odt">Pre-release access to DCMS-sponsored museums and galleries monthly and quarterly visitor figures January to March 2025

     <p class="gem-c-attachment_metadata"><span class="gem-c-attachment_attribute"><abbr title="OpenDocument Text document" class="gem-c-attachment_abbr">ODT</abbr></span>, <span class="gem-c-attachment_attribute">7.64 KB</span></p>
    
    
    
      <p class="gem-c-attachment_metadata">
       This file is in an <a href="https://www.gov.uk/guidance/using-open-document-formats-odf-in-your-organisation" target="_self" class="govuk-link">OpenDocument</a> format
    

    Last update

    15 May 2025

    Geographic coverage

    England

    Frequency of release

    Quarterly

    Summary

    Between January and March 2025, there were 9.5 million visits to DCMS sponsored museums and galleries. Overall visits were 7% lower than the equivalent period last year (when comparing museums open in both time periods). Overall visits were 17% lower than the equivalent period pre-pandemic in 2019 (when comparing museums open in both time periods).

    Between 2021 and the end of the 2023/24 financial year, museum visitor numbers were increasing following the closure of museums and galleries during the pandemic. The growth in museum visitor numbers has slowed over the last year, and the total museum visitor numbers are yet to reach pre-pandemic levels. The fall in visitor numbers compared to last year continues to suggest that the growth in museum visitor numbers has slowed, but it doesn’t ne

  19. d

    GreenThumb Site Visits

    • catalog.data.gov
    • data.cityofnewyork.us
    Updated Jul 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofnewyork.us (2025). GreenThumb Site Visits [Dataset]. https://catalog.data.gov/dataset/greenthumb-site-visits
    Explore at:
    Dataset updated
    Jul 12, 2025
    Dataset provided by
    data.cityofnewyork.us
    Description

    Data Dictionary: https://docs.google.com/spreadsheets/d/1ItvGzNG8O_Yj97Tf6am4T-QyhnxP-BeIRjm7ZaUeAxs/edit#gid=1499621902 GreenThumb provides programming and material support to over 550 community gardens in New York City. NYC Parks GreenThumb staff visit all active community gardens under the jurisdiction of NYC Parks once each calendar year, subject to staff capacity. These site visits typically occur during the summer months and representatives of licensed garden groups are invited to attend. During these site visits, NYC Parks GreenThumb staff observe and record quantitative and qualitative information related to the physical status of the garden, as well as its ongoing operation, maintenance, and programming. This information is used by NYC Parks GreenThumb to inform maintenance needs at the garden and to help NYC Parks GreenThumb understand the needs of garden groups so that we can plan accordingly. In addition, this information is necessary for NYC Parks GreenThumb to confirm that publicly accessible community gardens under its jurisdiction are being operated in safe manner and in accordance with the NYC Parks GreenThumb License Agreement and applicable NYS and NYC laws and regulations. NYC Parks GreenThumb may conduct additional site visits as deemed necessary.

  20. C

    Monthly web access to the Open Data portal

    • ckan.mobidatalab.eu
    csv, json
    Updated Oct 9, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Unità Open Data (2023). Monthly web access to the Open Data portal [Dataset]. https://ckan.mobidatalab.eu/ru/dataset/ds1475_monthly-web-accesses-to-the-open-data-portal
    Explore at:
    csv(4846), json(14505)Available download formats
    Dataset updated
    Oct 9, 2023
    Dataset provided by
    Unità Open Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The dataset contains information, divided by month, on accesses made to the online services offered by the opendata portal and provided by the municipality of Milan. The pageviews column represents the total number of web pages that have been viewed within the time frame used. The visits column represents the total visits made, within the time frame used. The visitors column represents the total number of unique visitors who have accessed the web pages. By unique visitor, we mean a visitor counted only once within the time frame used.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Bob Nau (2020). Daily website visitors (time series regression) [Dataset]. https://www.kaggle.com/bobnau/daily-website-visitors/code
Organization logo

Daily website visitors (time series regression)

Predict tomorrow's number of website visitors from 5 years of daily data

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Aug 20, 2020
Dataset provided by
Kagglehttp://kaggle.com/
Authors
Bob Nau
Description

Context

This file contains 5 years of daily time series data for several measures of traffic on a statistical forecasting teaching notes website whose alias is statforecasting.com. The variables have complex seasonality that is keyed to the day of the week and to the academic calendar. The patterns you you see here are similar in principle to what you would see in other daily data with day-of-week and time-of-year effects. Some good exercises are to develop a 1-day-ahead forecasting model, a 7-day ahead forecasting model, and an entire-next-week forecasting model (i.e., next 7 days) for unique visitors.

Content

The variables are daily counts of page loads, unique visitors, first-time visitors, and returning visitors to an academic teaching notes website. There are 2167 rows of data spanning the date range from September 14, 2014, to August 19, 2020. A visit is defined as a stream of hits on one or more pages on the site on a given day by the same user, as identified by IP address. Multiple individuals with a shared IP address (e.g., in a computer lab) are considered as a single user, so real users may be undercounted to some extent. A visit is classified as "unique" if a hit from the same IP address has not come within the last 6 hours. Returning visitors are identified by cookies if those are accepted. All others are classified as first-time visitors, so the count of unique visitors is the sum of the counts of returning and first-time visitors by definition. The data was collected through a traffic monitoring service known as StatCounter.

Inspiration

This file and a number of other sample datasets can also be found on the website of RegressIt, a free Excel add-in for linear and logistic regression which I originally developed for use in the course whose website generated the traffic data given here. If you use Excel to some extent as well as Python or R, you might want to try it out on this dataset.

Search
Clear search
Close search
Google apps
Main menu