7 datasets found
  1. Facebook: distribution of global audiences 2024, by age and gender

    • statista.com
    • es.statista.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon, Facebook: distribution of global audiences 2024, by age and gender [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    As of April 2024, it was found that men between the ages of 25 and 34 years made up Facebook largest audience, accounting for 18.4 percent of global users. Additionally, Facebook's second largest audience base could be found with men aged 18 to 24 years.

                  Facebook connects the world
    
                  Founded in 2004 and going public in 2012, Facebook is one of the biggest internet companies in the world with influence that goes beyond social media. It is widely considered as one of the Big Four tech companies, along with Google, Apple, and Amazon (all together known under the acronym GAFA). Facebook is the most popular social network worldwide and the company also owns three other billion-user properties: mobile messaging apps WhatsApp and Facebook Messenger,
                  as well as photo-sharing app Instagram. Facebook usersThe vast majority of Facebook users connect to the social network via mobile devices. This is unsurprising, as Facebook has many users in mobile-first online markets. Currently, India ranks first in terms of Facebook audience size with 378 million users. The United States, Brazil, and Indonesia also all have more than 100 million Facebook users each.
    
  2. Amazon revenue 2004-2024

    • statista.com
    Updated Jun 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Amazon revenue 2004-2024 [Dataset]. https://www.statista.com/statistics/266282/annual-net-revenue-of-amazoncom/
    Explore at:
    Dataset updated
    Jun 25, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide, United States
    Description

    From 2004 to 2024, the net revenue of Amazon e-commerce and service sales has increased tremendously. In the fiscal year ending December 31, the multinational e-commerce company's net revenue was almost *** billion U.S. dollars, up from *** billion U.S. dollars in 2023.Amazon.com, a U.S. e-commerce company originally founded in 1994, is the world’s largest online retailer of books, clothing, electronics, music, and many more goods. As of 2024, the company generates the majority of it's net revenues through online retail product sales, followed by third-party retail seller services, cloud computing services, and retail subscription services including Amazon Prime. From seller to digital environment Through Amazon, consumers are able to purchase goods at a rather discounted price from both small and large companies as well as from other users. Both new and used goods are sold on the website. Due to the wide variety of goods available at prices which often undercut local brick-and-mortar retail offerings, Amazon has dominated the retailer market. As of 2024, Amazon’s brand worth amounts to over *** billion U.S. dollars, topping the likes of companies such as Walmart, Ikea, as well as digital competitors Alibaba and eBay. One of Amazon's first forays into the world of hardware was its e-reader Kindle, one of the most popular e-book readers worldwide. More recently, Amazon has also released several series of own-branded products and a voice-controlled virtual assistant, Alexa. Headquartered in North America Due to its location, Amazon offers more services in North America than worldwide. As a result, the majority of the company’s net revenue in 2023 was actually earned in the United States, Canada, and Mexico. In 2023, approximately *** billion U.S. dollars was earned in North America compared to only roughly *** billion U.S. dollars internationally.

  3. I

    Data for Implementing Deep Soil and Dynamic Root Uptake in Noah-MP (v4.5):...

    • databank.illinois.edu
    • investigacion.usc.gal
    • +1more
    Updated Mar 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Carolina A. Bieri; Francina Dominguez; Gonzalo Miguez-Macho; Ying Fan (2025). Data for Implementing Deep Soil and Dynamic Root Uptake in Noah-MP (v4.5): Impact on Amazon Dry-Season Transpiration [Dataset]. http://doi.org/10.13012/B2IDB-8777292_V1
    Explore at:
    Dataset updated
    Mar 19, 2025
    Authors
    Carolina A. Bieri; Francina Dominguez; Gonzalo Miguez-Macho; Ying Fan
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Dataset funded by
    U.S. National Science Foundation (NSF)
    Description

    This repository includes HRLDAS Noah-MP model output generated as part of Bieri et al. (2025) - Implementing deep soil and dynamic root uptake in Noah-MP (v4.5): Impact on Amazon dry-season transpiration. These data are distributed in two different formats: Raw model output files and subsetted files that include data for a specific variable. All files are .nc format (NetCDF) and aggregated into .tar files to facilitate download. Given the size of these datasets, Globus transfer is the best way to download them. Raw model output for four model experiments is available: FD (control), GW, SOIL, and ROOT. See the associated publication for information on the different experiments. These data span an approximately 20 year period from 01 Jun 2000 to 31 Dec 2019. The data have a spatial resolution of 4 km and a temporal frequency of 3 hours. These data are for a domain in the southern Amazon basin (see Figure 1 in the associated publication). Data for each experiment is available as a .tar file which includes 3-hourly NetCDF files. All default Noah-MP output variables are included in each file. As a result, the .tar files are quite large and may take many hours or even days to transfer depending on your network speed and local configurations. These files are named 'noahmp_output_2000_2019_EXP.tar', where EXP is the name of the experiment (FD, GW, SOIL, or ROOT). Subsetted model output at a daily temporal resolution for all four model experiments is also available. These .tar files include the following variables: water table depth (ZWT), latent heat flux (LH), sensible heat flux (HFX), soil moisture (SOIL_M), canopy evaporation (ECAN), ground evaporation (EDIR), transpiration (ETRAN), rainfall rate at the surface (QRAIN), and two variables that are specific to the ROOT experiment: ROOTACTIVITY (root activity function) and GWRD (active root water uptake depth). There is one file for each variable within the tarred files. These files are named 'noahmp_output_subset_2000_2019_EXP.tar', where EXP is the name of the experiment (FD, GW, SOIL, or ROOT). Finally, there is a sample dataset with raw 3-hourly output from the ROOT experiment for one day. The purpose of this sample dataset is to allow users to confirm if these data meet their needs before initiating a full transfer via Globus. This file is named 'noahmp_output_sample_ROOT.tar'. The README.txt file provides information on the Noah-MP output variables in these datasets, among other specifications. Information on HRLDAS Noah-MP and names/definitions of model output variables that are useful in working with these data are available here: http://dx.doi.org/10.5065/ew8g-yr95. Note that some output variables may be listed in this document under a different variable name, so searching for the long name (e.g. 'baseflow' instead of 'QRF') is recommended. Information on additional output variables that were added to the model as part of this study is available here: https://github.com/bieri2/bieri-et-al-2025-EGU-GMD/tree/DynaRoot. Model code, configuration files, and forcing data used to carry out the model simulations are linked in the related resources section.

  4. NOAA Global Forecast System (GFS) netCDF Formatted Data

    • registry.opendata.aws
    Updated Mar 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA (2025). NOAA Global Forecast System (GFS) netCDF Formatted Data [Dataset]. https://registry.opendata.aws/noaa-oar-arl-nacc-pds/
    Explore at:
    Dataset updated
    Mar 5, 2025
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Description

    The Global Forecast System (GFS) is a weather forecast model produced by the National Centers for Environmental Prediction (NCEP). Dozens of atmospheric and land-soil variables are available through this dataset, from temperatures, winds, and precipitation to soil moisture and atmospheric ozone concentration. The GFS data files stored here can be immediately used for OAR/ARL’s NOAA-EPA Atmosphere-Chemistry Coupler Cloud (NACC-Cloud) tool, and are in a Network Common Data Form (netCDF), which is a very common format used across the scientific community. These particular GFS files contain a comprehensive number of global atmosphere/land variables at a relatively high spatiotemporal resolution (approximately 13x13 km horizontal, vertical resolution of 127 levels, and hourly), are not only necessary for the NACC-Cloud tool to adequately drive community air quality applications (e.g., U.S. EPA’s Community Multiscale Air Quality model; https://www.epa.gov/cmaq), but can be very useful for a myriad of other applications in the Earth system modeling communities (e.g., atmosphere, hydrosphere, pedosphere, etc.). While many other data file and record formats are indeed available for Earth system and climate research (e.g., GRIB, HDF, GeoTIFF), the netCDF files here are advantageous to the larger community because of the comprehensive, high spatiotemporal information they contain, and because they are more scalable, appendable, shareable, self-describing, and community-friendly (i.e., many tools available to the community of users). Out of the four operational GFS forecast cycles per day (at 00Z, 06Z, 12Z and 18Z) this particular netCDF dataset is updated daily (/inputs/yyyymmdd/) for the 12Z cycle and includes 24-hr output for both 2D (gfs.t12z.sfcf$0hh.nc) and 3D variables (gfs.t12z.atmf$0hh.nc).

    Also available are netCDF formatted Global Land Surface Datasets (GLSDs) developed by Hung et al. (2024). The GLSDs are based on numerous satellite products, and have been gridded to match the GFS spatial resolution (~13x13 km). These GLSDs contain vegetation canopy data (e.g., land surface type, vegetation clumping index, leaf area index, vegetative canopy height, and green vegetation fraction) that are supplemental to and can be combined with the GFS meteorological netCDF data for various applications, including NOAA-ARL's canopy-app. The canopy data variables are climatological, based on satellite data from the year 2020, combined with GFS meteorology for the year 2022, and are created at a daily temporal resolution (/inputs/geo-files/gfs.canopy.t12z.2022mmdd.sfcf000.global.nc)

  5. NOAA Terrestrial Climate Data Records

    • registry.opendata.aws
    Updated Jul 17, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA (2021). NOAA Terrestrial Climate Data Records [Dataset]. https://registry.opendata.aws/noaa-cdr-terrestrial/
    Explore at:
    Dataset updated
    Jul 17, 2021
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Description

    NOAA's Climate Data Records (CDRs) are robust, sustainable, and scientifically sound climate records that provide trustworthy information on how, where, and to what extent the land, oceans, atmosphere and ice sheets are changing. These datasets are thoroughly vetted time series measurements with the longevity, consistency, and continuity to assess and measure climate variability and change. NOAA CDRs are vetted using standards established by the National Research Council (NRC).

    Climate Data Records are created by merging data from surface, atmosphere, and space-based systems across decades. NOAA’s Climate Data Records provides authoritative and traceable long-term climate records. NOAA developed CDRs by applying modern data analysis methods to historical global satellite data. This process can clarify the underlying climate trends within the data and allows researchers and other users to identify economic and scientific value in these records. NCEI maintains and extends CDRs by applying the same methods to present-day and future satellite measurements.

    Terrestrial CDRs are composed of sensor data that have been improved and quality controlled over time, together with ancillary calibration data.

  6. n

    MODIS Aggregate for Amazon Basin/Large Scale Biosphere-Atmosphere...

    • cmr.earthdata.nasa.gov
    Updated Apr 21, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). MODIS Aggregate for Amazon Basin/Large Scale Biosphere-Atmosphere Experiment; MODIS/Terra Surface Reflectance 8-Day L3 Global 500m ISIN Grid, 1/1/03-1/1/05 [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C1214611754-SCIOPS
    Explore at:
    Dataset updated
    Apr 21, 2017
    Time period covered
    Jan 1, 2003 - Dec 31, 2004
    Area covered
    Description

    This dataset represents spatial aggregates of the MODIS/Terra Surface Reflectance 8-Day L3 Global 500m ISIN Grid (MOD09A1), as provided by the EROS Data Center (EDC). THis product is available for multiple days.

    The University of New Hampshire's (UNH) Earth Science Information Partner (ESIP), EOS-WEBSTER (http://eos-earthdata.sr.unh.edu/), has created this MODIS surface reflectance aggregate product from MOD09A1 8-day 500m surface reflectance tiles. MOD09A1 data are provided every 8 days as a gridded level-3 product in the Integerized Sinusoidal projection. UNH has aggregated multiple tiles to create a large-region surface reflectance product, which can be spatially subset within the EOS-WEBSTER Search & Retrieve data ordering tool. Our system has also reprojected these data from the original Integerized Sinusoidal projection to Geographic, with a pixel resolution of 15 arc seconds.

    The aggregate products contain all the layers from the original input products plus an additional layer created by EOS-WEBSTER, which provides a look-up code to map each pixel in the aggregate back to its original input tile.

    These aggregate products allow the users of EOS-WEBSTER to subset MODIS 8-day surface reflectance data across tile boundaries and to customize the spatial region of interest using an on-line GUI interface. Data are also provided in a generic binary format (BSQ) with detailed header information, which can be read into most image or data processing applications. EOS-WEBSTER has broken the original 12 layers in the input tiles into 6 logical holdings so that a user may order 1 or more of the band sets (see below). For instance, the user may only wish to order the 7 reflectance bands and not all the other supporting data which are provided with the original data-this significantly cuts down on the data volume.

    Version-4 input products were used to create these output files. Please see the Global Change Master Directory (GCMD) to learn more about the MOD09A1 input data (http://gcmd.nasa.gov/getdif.htm?MOD09A13).

    This MODIS surface reflectance product may be used to generate land- related products or used as input to global and regional climate models and surface energy balance models. These data also may be used for land cover characterization.

    Data Set Characteristics: Output format: BSQ with header,netCDF,HDF-EOS,GEOTIFF, ASCII Grid Logical Data Holdings: Surface Reflectance: 7 surface reflectance bands Surface Reflectance QC: 1 bit field band Sun/Sensor Geometry: 3 bands State Flags: 1 bit field band Day-of-Year: 1 band Input Tile Code: 1 band

  7. Amazon Web Services: year-on-year growth 2014-2025

    • statista.com
    Updated May 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Amazon Web Services: year-on-year growth 2014-2025 [Dataset]. https://www.statista.com/statistics/422273/yoy-quarterly-growth-aws-revenues/
    Explore at:
    Dataset updated
    May 13, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    In the first quarter of 2025, revenues of Amazon Web Services (AWS) rose to 17 percent, a decrease from the previous three quarters. AWS is one of Amazon’s strongest revenue segments, generating over 115 billion U.S. dollars in 2024 net sales, up from 105 billion U.S. dollars in 2023. Amazon Web Services Amazon Web Services (AWS) provides on-demand cloud platforms and APIs through a pay-as-you-go-model to customers. AWS launched in 2002 providing general services and tools and produced its first cloud products in 2006. Today, more than 175 different cloud services for a variety of technologies and industries are released already. AWS ranks as one of the most popular public cloud infrastructure and platform services running applications worldwide in 2020, ahead of Microsoft Azure and Google cloud services. Cloud computing Cloud computing is essentially the delivery of online computing services to customers. As enterprises continually migrate their applications and data to the cloud instead of storing it on local machines, it becomes possible to access resources from different locations. Some of the key services of the AWS ecosystem for cloud applications include storage, database, security tools, and management tools. AWS is among the most popular cloud providers Some of the largest globally operating enterprises use AWS for their cloud services, including Netflix, BBC, and Baidu. Accordingly, AWS is one of the leading cloud providers in the global cloud market. Due to its continuously expanding portfolio of services and deepening of expertise, the company continues to be not only an important cloud service provider but also a business partner.

  8. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Stacy Jo Dixon, Facebook: distribution of global audiences 2024, by age and gender [Dataset]. https://www.statista.com/topics/1164/social-networks/
Organization logo

Facebook: distribution of global audiences 2024, by age and gender

Explore at:
Dataset provided by
Statistahttp://statista.com/
Authors
Stacy Jo Dixon
Description

As of April 2024, it was found that men between the ages of 25 and 34 years made up Facebook largest audience, accounting for 18.4 percent of global users. Additionally, Facebook's second largest audience base could be found with men aged 18 to 24 years.

              Facebook connects the world

              Founded in 2004 and going public in 2012, Facebook is one of the biggest internet companies in the world with influence that goes beyond social media. It is widely considered as one of the Big Four tech companies, along with Google, Apple, and Amazon (all together known under the acronym GAFA). Facebook is the most popular social network worldwide and the company also owns three other billion-user properties: mobile messaging apps WhatsApp and Facebook Messenger,
              as well as photo-sharing app Instagram. Facebook usersThe vast majority of Facebook users connect to the social network via mobile devices. This is unsurprising, as Facebook has many users in mobile-first online markets. Currently, India ranks first in terms of Facebook audience size with 378 million users. The United States, Brazil, and Indonesia also all have more than 100 million Facebook users each.
Search
Clear search
Close search
Google apps
Main menu