31 datasets found
  1. d

    Voter Registration by Census Tract

    • catalog.data.gov
    • data.kingcounty.gov
    • +1more
    Updated Jun 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.kingcounty.gov (2025). Voter Registration by Census Tract [Dataset]. https://catalog.data.gov/dataset/voter-registration-by-census-tract
    Explore at:
    Dataset updated
    Jun 29, 2025
    Dataset provided by
    data.kingcounty.gov
    Description

    This web map displays data from the voter registration database as the percent of registered voters by census tract in King County, Washington. The data for this web map is compiled from King County Elections voter registration data for the years 2013-2019. The total number of registered voters is based on the geo-location of the voter's registered address at the time of the general election for each year. The eligible voting population, age 18 and over, is based on the estimated population increase from the US Census Bureau and the Washington Office of Financial Management and was calculated as a projected 6 percent population increase for the years 2010-2013, 7 percent population increase for the years 2010-2014, 9 percent population increase for the years 2010-2015, 11 percent population increase for the years 2010-2016 & 2017, 14 percent population increase for the years 2010-2018 and 17 percent population increase for the years 2010-2019. The total population 18 and over in 2010 was 1,517,747 in King County, Washington. The percentage of registered voters represents the number of people who are registered to vote as compared to the eligible voting population, age 18 and over. The voter registration data by census tract was grouped into six percentage range estimates: 50% or below, 51-60%, 61-70%, 71-80%, 81-90% and 91% or above with an overall 84 percent registration rate. In the map the lighter colors represent a relatively low percentage range of voter registration and the darker colors represent a relatively high percentage range of voter registration. PDF maps of these data can be viewed at King County Elections downloadable voter registration maps. The 2019 General Election Voter Turnout layer is voter turnout data by historical precinct boundaries for the corresponding year. The data is grouped into six percentage ranges: 0-30%, 31-40%, 41-50% 51-60%, 61-70%, and 71-100%. The lighter colors represent lower turnout and the darker colors represent higher turnout. The King County Demographics Layer is census data for language, income, poverty, race and ethnicity at the census tract level and is based on the 2010-2014 American Community Survey 5 year Average provided by the United States Census Bureau. Since the data is based on a survey, they are considered to be estimates and should be used with that understanding. The demographic data sets were developed and are maintained by King County Staff to support the King County Equity and Social Justice program. Other data for this map is located in the King County GIS Spatial Data Catalog, where data is managed by the King County GIS Center, a multi-department enterprise GIS in King County, Washington. King County has nearly 1.3 million registered voters and is the largest jurisdiction in the United States to conduct all elections by mail. In the map you can view the percent of registered voters by census tract, compare registration within political districts, compare registration and demographic data, verify your voter registration or register to vote through a link to the VoteWA, Washington State Online Voter Registration web page.

  2. d

    Voter Election Registration and Turnout

    • catalog.data.gov
    Updated Apr 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Philadelphia (2025). Voter Election Registration and Turnout [Dataset]. https://catalog.data.gov/dataset/voter-election-registration-and-turnout
    Explore at:
    Dataset updated
    Apr 7, 2025
    Dataset provided by
    City of Philadelphia
    Description

    The current dataset captures voter registration counts and voter 'turnout', or the percentage of registered voters who voted in each election, since 2015. The data is aggregated at various levels including the political precinct (division), political ward, and city-wide and shows results for different elections (primary, general, special). Historical releases of this data prior to 2015 were separate datasets, one for voter turnout and one for voter registration.

  3. L2 Voter and Demographic Dataset

    • redivis.com
    • stanford.redivis.com
    application/jsonl +7
    Updated Aug 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stanford University Libraries (2025). L2 Voter and Demographic Dataset [Dataset]. http://doi.org/10.57761/jnrs-nf57
    Explore at:
    sas, arrow, csv, parquet, application/jsonl, spss, avro, stataAvailable download formats
    Dataset updated
    Aug 5, 2025
    Dataset provided by
    Redivis Inc.
    Authors
    Stanford University Libraries
    Description

    Abstract

    The L2 Voter and Demographic Dataset includes demographic and voter history tables for all 50 states and the District of Columbia. The dataset is built from publicly available government records about voter registration and election participation. These records indicate whether a person voted in an election or not, but they do not record whom that person voted for. Voter registration and election participation data are augmented by demographic information from outside data sources.

    Methodology

    To create this file, L2 processes registered voter data on an ongoing basis for all 50 states and the District of Columbia, with refreshes of the underlying state voter data typically at least every six months and refreshes of telephone numbers and National Change of Address processing approximately every 30 to 60 days. These data are standardized and enhanced with propriety commercial data and modeling codes and consist of approximately 185,000,000 records nationwide.

    Usage

    For each state, there are two available tables: demographic and voter history. The demographic and voter tables can be joined on the LALVOTERIDvariable. One can also use the LALVOTERIDvariable to link the L2 Voter and Demographic Dataset with the L2 Consumer Dataset.

    In addition, the LALVOTERIDvariable can be used to validate the state. For example, let's look at the LALVOTERID = LALCA3169443. The characters in the fourth and fifth positions of this identifier are 'CA' (California). The second way to validate the state is by using the RESIDENCE_ADDRESSES_STATEvariable, which should have a value of 'CA' (California).

    The date appended to each table name represents when the data was last updated. These dates will differ state by state because states update their voter files at different cadences.

    The demographic files use 698 consistent variables. For more information about these variables, see 2025-01-10-VM2-File-Layout.xlsx.

    The voter history files have different variables depending on the state. The ***2025-08-05-L2-Voter-Dictionaries.tar.gz file contains .csv data dictionaries for each state's demographic and voter files. While the demographic file data dictionaries should mirror the 2025-01-10-VM2-File-Layout.xlsx*** file, the voter file data dictionaries will be unique to each state.

    ***2025-04-24-National-File-Notes.pdf ***contains L2 Voter and Demographic Dataset ("National File") release notes from 2018 to 2025.

    ***2025-08-05-L2-Voter-Fill-Rate.tar.gz ***contains .tab files tracking the percent of non-null values for any given field.

    Bulk Data Access

    Data access is required to view this section.

    DataMapping Tool

    Data access is required to view this section.

  4. National Neighborhood Data Archive (NaNDA): Voter Registration, Turnout, and...

    • icpsr.umich.edu
    • archive.icpsr.umich.edu
    ascii, delimited, r +3
    Updated Oct 14, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Clary, Will; Gomez-Lopez, Iris N.; Chenoweth, Megan; Gypin, Lindsay; Clarke, Philippa; Noppert, Grace; Li, Mao; Kollman, Ken (2024). National Neighborhood Data Archive (NaNDA): Voter Registration, Turnout, and Partisanship by County, United States, 2004-2022 [Dataset]. http://doi.org/10.3886/ICPSR38506.v2
    Explore at:
    delimited, spss, stata, ascii, r, sasAvailable download formats
    Dataset updated
    Oct 14, 2024
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    Clary, Will; Gomez-Lopez, Iris N.; Chenoweth, Megan; Gypin, Lindsay; Clarke, Philippa; Noppert, Grace; Li, Mao; Kollman, Ken
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/38506/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38506/terms

    Time period covered
    2004 - 2022
    Area covered
    United States
    Description

    This dataset contains counts of voter registration and voter turnout for all counties in the United States for the years 2004-2022. It also contains measures of each county's Democratic and Republican partisanship, including six-year longitudinal partisan indices for 2006-2022.

  5. Voter Registration

    • data.ca.gov
    • data.chhs.ca.gov
    • +1more
    csv, pdf, zip
    Updated Aug 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2024). Voter Registration [Dataset]. https://data.ca.gov/dataset/voter-registration
    Explore at:
    pdf, zip, csvAvailable download formats
    Dataset updated
    Aug 29, 2024
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This table contains data on the percent of adults (18 years or older) who are registered voters and the percent of adults who voted in general elections, for California, its regions, counties, cities/towns, and census tracts. Data is from the Statewide Database, University of California Berkeley Law, and the California Secretary of State, Elections Division. The table is part of a series of indicators in the Healthy Communities Data and Indicators Project of the Office of Health Equity. Political participation can be associated with the health of a community through two possible mechanisms: through the implementation of social policies or as an indirect measure of social capital. Disparities in political participation across socioeconomic groups can influence political outcomes and the resulting policies could have an impact on the opportunities available to the poor to live a healthy life. Lower representation of poorer voters could result in reductions of social programs aimed toward supporting disadvantaged groups. Although there is no direct evidentiary connection between voter registration or participation and health, there is evidence that populations with higher levels of political participation also have greater social capital. Social capital is defined as resources accessed by individuals or groups through social networks that provide a mutual benefit. Several studies have shown a positive association between social capital and lower mortality rates, and higher self- assessed health ratings. There is also evidence of a cycle where lower levels of political participation are associated with poor self-reported health, and poor self-reported health hinders political participation. More information about the data table and a data dictionary can be found in the About/Attachments section.

  6. US General Election - County Level Voter Registration & Turnout Data,...

    • archive.ciser.cornell.edu
    Updated Dec 27, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Leip, David. Dave Leip’s Atlas of U.S. Presidential Elections. http://uselectionatlas.org (2019). US General Election - County Level Voter Registration & Turnout Data, 1992-2022 [Dataset]. http://doi.org/10.6077/h0y1-q517
    Explore at:
    Dataset updated
    Dec 27, 2019
    Dataset provided by
    Dave Leip's Atlas of U.S. Presidential Electionshttps://uselectionatlas.org/
    Authors
    Leip, David. Dave Leip’s Atlas of U.S. Presidential Elections. http://uselectionatlas.org
    Variables measured
    GeographicUnit
    Description

    This data collection contains voter registration and turnout surveys. The files contain summaries at state, town, and county levels. Each level of data include: total population, total voting-age population, total voter registration (excluding ND, WI), total ballots cast, total votes cast for president, and voter registration by party. Note: see the documentation for information on missing data.

    Dave Leip's website

    The Dave Leip website here: https://uselectionatlas.org/BOTTOM/store_data.php lists the available data. Files are occasionally updated by Dave Leip, and new versions are made available, but CCSS is not notified. If you suspect the file you want may be updated, please get in touch with CCSS. These files were last updated on 9 JUL 2024.

    Note that file version numbers are those assigned to them by Dave Leip's Election Atlas. Please refer to the Data and Reproduction Archive Version number in your citations for the full dataset.

    For additional information on file layout, etc. see https://uselectionatlas.org/BOTTOM/DOWNLOAD/spread_turnout.html.

    Similar data may be available at https://www.electproject.org/election-data/voter-turnout-data dating back to 1787.

  7. d

    Voter Registration

    • catalog.data.gov
    Updated Nov 27, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2024). Voter Registration [Dataset]. https://catalog.data.gov/dataset/voter-registration-f2e6b
    Explore at:
    Dataset updated
    Nov 27, 2024
    Dataset provided by
    California Department of Public Health
    Description

    This table contains data on the percent of adults (18 years or older) who are registered voters and the percent of adults who voted in general elections, for California, its regions, counties, cities/towns, and census tracts. Data is from the Statewide Database, University of California Berkeley Law, and the California Secretary of State, Elections Division. The table is part of a series of indicators in the Healthy Communities Data and Indicators Project of the Office of Health Equity. Political participation can be associated with the health of a community through two possible mechanisms: through the implementation of social policies or as an indirect measure of social capital. Disparities in political participation across socioeconomic groups can influence political outcomes and the resulting policies could have an impact on the opportunities available to the poor to live a healthy life. Lower representation of poorer voters could result in reductions of social programs aimed toward supporting disadvantaged groups. Although there is no direct evidentiary connection between voter registration or participation and health, there is evidence that populations with higher levels of political participation also have greater social capital. Social capital is defined as resources accessed by individuals or groups through social networks that provide a mutual benefit. Several studies have shown a positive association between social capital and lower mortality rates, and higher self- assessed health ratings. There is also evidence of a cycle where lower levels of political participation are associated with poor self-reported health, and poor self-reported health hinders political participation. More information about the data table and a data dictionary can be found in the About/Attachments section.

  8. d

    Agency Voter Registration Activity

    • catalog.data.gov
    • data.cityofnewyork.us
    • +1more
    Updated Sep 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofnewyork.us (2025). Agency Voter Registration Activity [Dataset]. https://catalog.data.gov/dataset/agency-voter-registration-activity
    Explore at:
    Dataset updated
    Sep 7, 2025
    Dataset provided by
    data.cityofnewyork.us
    Description

    This dataset captures how many voter registration applications each agency has distributed, how many applications agency staff sent to the Board of Elections, how many staff each agency trained to distribute voter registration applications, whether or not the agency hosts a link to voting.nyc on its website and if so, how many clicks that link received during the reporting period.

  9. A

    1920 Women's Voter Register

    • data.boston.gov
    csv, xlsx
    Updated Apr 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archives and Record Management (2024). 1920 Women's Voter Register [Dataset]. https://data.boston.gov/dataset/1920-women-s-voter-register
    Explore at:
    csv(4658), xlsx(10656554)Available download formats
    Dataset updated
    Apr 10, 2024
    Dataset authored and provided by
    Archives and Record Management
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Description

    The Women's Voter Register Dataset is created from Election Department registers used to register women voters in 1920 after the passage of the 19th Amendment. The dataset contains information about newly registered women voters including name, address, place of birth, occupation, place of work, naturalization information, and closest male relative. This dataset is in progress and is updated periodically as additional voter registers are transcribed.

  10. d

    AP VoteCast 2020 - General Election

    • data.world
    csv, zip
    Updated Mar 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2024). AP VoteCast 2020 - General Election [Dataset]. https://data.world/associatedpress/ap-votecast
    Explore at:
    csv, zipAvailable download formats
    Dataset updated
    Mar 29, 2024
    Authors
    The Associated Press
    Description

    AP VoteCast is a survey of the American electorate conducted by NORC at the University of Chicago for Fox News, NPR, PBS NewsHour, Univision News, USA Today Network, The Wall Street Journal and The Associated Press.

    AP VoteCast combines interviews with a random sample of registered voters drawn from state voter files with self-identified registered voters selected using nonprobability approaches. In general elections, it also includes interviews with self-identified registered voters conducted using NORC’s probability-based AmeriSpeak® panel, which is designed to be representative of the U.S. population.

    Interviews are conducted in English and Spanish. Respondents may receive a small monetary incentive for completing the survey. Participants selected as part of the random sample can be contacted by phone and mail and can take the survey by phone or online. Participants selected as part of the nonprobability sample complete the survey online.

    In the 2020 general election, the survey of 133,103 interviews with registered voters was conducted between Oct. 26 and Nov. 3, concluding as polls closed on Election Day. AP VoteCast delivered data about the presidential election in all 50 states as well as all Senate and governors’ races in 2020.

    Using this Data - IMPORTANT

    This is survey data and must be properly weighted during analysis: DO NOT REPORT THIS DATA AS RAW OR AGGREGATE NUMBERS!!

    Instead, use statistical software such as R or SPSS to weight the data.

    National Survey

    The national AP VoteCast survey of voters and nonvoters in 2020 is based on the results of the 50 state-based surveys and a nationally representative survey of 4,141 registered voters conducted between Nov. 1 and Nov. 3 on the probability-based AmeriSpeak panel. It included 41,776 probability interviews completed online and via telephone, and 87,186 nonprobability interviews completed online. The margin of sampling error is plus or minus 0.4 percentage points for voters and 0.9 percentage points for nonvoters.

    State Surveys

    In 20 states in 2020, AP VoteCast is based on roughly 1,000 probability-based interviews conducted online and by phone, and roughly 3,000 nonprobability interviews conducted online. In these states, the margin of sampling error is about plus or minus 2.3 percentage points for voters and 5.5 percentage points for nonvoters.

    In an additional 20 states, AP VoteCast is based on roughly 500 probability-based interviews conducted online and by phone, and roughly 2,000 nonprobability interviews conducted online. In these states, the margin of sampling error is about plus or minus 2.9 percentage points for voters and 6.9 percentage points for nonvoters.

    In the remaining 10 states, AP VoteCast is based on about 1,000 nonprobability interviews conducted online. In these states, the margin of sampling error is about plus or minus 4.5 percentage points for voters and 11.0 percentage points for nonvoters.

    Although there is no statistically agreed upon approach for calculating margins of error for nonprobability samples, these margins of error were estimated using a measure of uncertainty that incorporates the variability associated with the poll estimates, as well as the variability associated with the survey weights as a result of calibration. After calibration, the nonprobability sample yields approximately unbiased estimates.

    As with all surveys, AP VoteCast is subject to multiple sources of error, including from sampling, question wording and order, and nonresponse.

    Sampling Details

    Probability-based Registered Voter Sample

    In each of the 40 states in which AP VoteCast included a probability-based sample, NORC obtained a sample of registered voters from Catalist LLC’s registered voter database. This database includes demographic information, as well as addresses and phone numbers for registered voters, allowing potential respondents to be contacted via mail and telephone. The sample is stratified by state, partisanship, and a modeled likelihood to respond to the postcard based on factors such as age, race, gender, voting history, and census block group education. In addition, NORC attempted to match sampled records to a registered voter database maintained by L2, which provided additional phone numbers and demographic information.

    Prior to dialing, all probability sample records were mailed a postcard inviting them to complete the survey either online using a unique PIN or via telephone by calling a toll-free number. Postcards were addressed by name to the sampled registered voter if that individual was under age 35; postcards were addressed to “registered voter” in all other cases. Telephone interviews were conducted with the adult that answered the phone following confirmation of registered voter status in the state.

    Nonprobability Sample

    Nonprobability participants include panelists from Dynata or Lucid, including members of its third-party panels. In addition, some registered voters were selected from the voter file, matched to email addresses by V12, and recruited via an email invitation to the survey. Digital fingerprint software and panel-level ID validation is used to prevent respondents from completing the AP VoteCast survey multiple times.

    AmeriSpeak Sample

    During the initial recruitment phase of the AmeriSpeak panel, randomly selected U.S. households were sampled with a known, non-zero probability of selection from the NORC National Sample Frame and then contacted by mail, email, telephone and field interviewers (face-to-face). The panel provides sample coverage of approximately 97% of the U.S. household population. Those excluded from the sample include people with P.O. Box-only addresses, some addresses not listed in the U.S. Postal Service Delivery Sequence File and some newly constructed dwellings. Registered voter status was confirmed in field for all sampled panelists.

    Weighting Details

    AP VoteCast employs a four-step weighting approach that combines the probability sample with the nonprobability sample and refines estimates at a subregional level within each state. In a general election, the 50 state surveys and the AmeriSpeak survey are weighted separately and then combined into a survey representative of voters in all 50 states.

    State Surveys

    First, weights are constructed separately for the probability sample (when available) and the nonprobability sample for each state survey. These weights are adjusted to population totals to correct for demographic imbalances in age, gender, education and race/ethnicity of the responding sample compared to the population of registered voters in each state. In 2020, the adjustment targets are derived from a combination of data from the U.S. Census Bureau’s November 2018 Current Population Survey Voting and Registration Supplement, Catalist’s voter file and the Census Bureau’s 2018 American Community Survey. Prior to adjusting to population totals, the probability-based registered voter list sample weights are adjusted for differential non-response related to factors such as availability of phone numbers, age, race and partisanship.

    Second, all respondents receive a calibration weight. The calibration weight is designed to ensure the nonprobability sample is similar to the probability sample in regard to variables that are predictive of vote choice, such as partisanship or direction of the country, which cannot be fully captured through the prior demographic adjustments. The calibration benchmarks are based on regional level estimates from regression models that incorporate all probability and nonprobability cases nationwide.

    Third, all respondents in each state are weighted to improve estimates for substate geographic regions. This weight combines the weighted probability (if available) and nonprobability samples, and then uses a small area model to improve the estimate within subregions of a state.

    Fourth, the survey results are weighted to the actual vote count following the completion of the election. This weighting is done in 10–30 subregions within each state.

    National Survey

    In a general election, the national survey is weighted to combine the 50 state surveys with the nationwide AmeriSpeak survey. Each of the state surveys is weighted as described. The AmeriSpeak survey receives a nonresponse-adjusted weight that is then adjusted to national totals for registered voters that in 2020 were derived from the U.S. Census Bureau’s November 2018 Current Population Survey Voting and Registration Supplement, the Catalist voter file and the Census Bureau’s 2018 American Community Survey. The state surveys are further adjusted to represent their appropriate proportion of the registered voter population for the country and combined with the AmeriSpeak survey. After all votes are counted, the national data file is adjusted to match the national popular vote for president.

  11. d

    U.S. Voting by Census Block Groups

    • search.dataone.org
    Updated Nov 9, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bryan, Michael (2023). U.S. Voting by Census Block Groups [Dataset]. http://doi.org/10.7910/DVN/NKNWBX
    Explore at:
    Dataset updated
    Nov 9, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Bryan, Michael
    Area covered
    United States
    Description

    PROBLEM AND OPPORTUNITY In the United States, voting is largely a private matter. A registered voter is given a randomized ballot form or machine to prevent linkage between their voting choices and their identity. This disconnect supports confidence in the election process, but it provides obstacles to an election's analysis. A common solution is to field exit polls, interviewing voters immediately after leaving their polling location. This method is rife with bias, however, and functionally limited in direct demographics data collected. For the 2020 general election, though, most states published their election results for each voting location. These publications were additionally supported by the geographical areas assigned to each location, the voting precincts. As a result, geographic processing can now be applied to project precinct election results onto Census block groups. While precinct have few demographic traits directly, their geographies have characteristics that make them projectable onto U.S. Census geographies. Both state voting precincts and U.S. Census block groups: are exclusive, and do not overlap are adjacent, fully covering their corresponding state and potentially county have roughly the same size in area, population and voter presence Analytically, a projection of local demographics does not allow conclusions about voters themselves. However, the dataset does allow statements related to the geographies that yield voting behavior. One could say, for example, that an area dominated by a particular voting pattern would have mean traits of age, race, income or household structure. The dataset that results from this programming provides voting results allocated by Census block groups. The block group identifier can be joined to Census Decennial and American Community Survey demographic estimates. DATA SOURCES The state election results and geographies have been compiled by Voting and Election Science team on Harvard's dataverse. State voting precincts lie within state and county boundaries. The Census Bureau, on the other hand, publishes its estimates across a variety of geographic definitions including a hierarchy of states, counties, census tracts and block groups. Their definitions can be found here. The geometric shapefiles for each block group are available here. The lowest level of this geography changes often and can obsolesce before the next census survey (Decennial or American Community Survey programs). The second to lowest census level, block groups, have the benefit of both granularity and stability however. The 2020 Decennial survey details US demographics into 217,740 block groups with between a few hundred and a few thousand people. Dataset Structure The dataset's columns include: Column Definition BLOCKGROUP_GEOID 12 digit primary key. Census GEOID of the block group row. This code concatenates: 2 digit state 3 digit county within state 6 digit Census Tract identifier 1 digit Census Block Group identifier within tract STATE State abbreviation, redundent with 2 digit state FIPS code above REP Votes for Republican party candidate for president DEM Votes for Democratic party candidate for president LIB Votes for Libertarian party candidate for president OTH Votes for presidential candidates other than Republican, Democratic or Libertarian AREA square kilometers of area associated with this block group GAP total area of the block group, net of area attributed to voting precincts PRECINCTS Number of voting precincts that intersect this block group ASSUMPTIONS, NOTES AND CONCERNS: Votes are attributed based upon the proportion of the precinct's area that intersects the corresponding block group. Alternative methods are left to the analyst's initiative. 50 states and the District of Columbia are in scope as those U.S. possessions voting in the general election for the U.S. Presidency. Three states did not report their results at the precinct level: South Dakota, Kentucky and West Virginia. A dummy block group is added for each of these states to maintain national totals. These states represent 2.1% of all votes cast. Counties are commonly coded using FIPS codes. However, each election result file may have the county field named differently. Also, three states do not share county definitions - Delaware, Massachusetts, Alaska and the District of Columbia. Block groups may be used to capture geographies that do not have population like bodies of water. As a result, block groups without intersection voting precincts are not uncommon. In the U.S., elections are administered at a state level with the Federal Elections Commission compiling state totals against the Electoral College weights. The states have liberty, though, to define and change their own voting precincts https://en.wikipedia.org/wiki/Electoral_precinct. The Census Bureau... Visit https://dataone.org/datasets/sha256%3A05707c1dc04a814129f751937a6ea56b08413546b18b351a85bc96da16a7f8b5 for complete metadata about this dataset.

  12. H

    2020 General Election Voting by US Census Block Group

    • dataverse.harvard.edu
    Updated Mar 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Michael Bryan (2025). 2020 General Election Voting by US Census Block Group [Dataset]. http://doi.org/10.7910/DVN/NKNWBX
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 10, 2025
    Dataset provided by
    Harvard Dataverse
    Authors
    Michael Bryan
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    PROBLEM AND OPPORTUNITY In the United States, voting is largely a private matter. A registered voter is given a randomized ballot form or machine to prevent linkage between their voting choices and their identity. This disconnect supports confidence in the election process, but it provides obstacles to an election's analysis. A common solution is to field exit polls, interviewing voters immediately after leaving their polling location. This method is rife with bias, however, and functionally limited in direct demographics data collected. For the 2020 general election, though, most states published their election results for each voting location. These publications were additionally supported by the geographical areas assigned to each location, the voting precincts. As a result, geographic processing can now be applied to project precinct election results onto Census block groups. While precinct have few demographic traits directly, their geographies have characteristics that make them projectable onto U.S. Census geographies. Both state voting precincts and U.S. Census block groups: are exclusive, and do not overlap are adjacent, fully covering their corresponding state and potentially county have roughly the same size in area, population and voter presence Analytically, a projection of local demographics does not allow conclusions about voters themselves. However, the dataset does allow statements related to the geographies that yield voting behavior. One could say, for example, that an area dominated by a particular voting pattern would have mean traits of age, race, income or household structure. The dataset that results from this programming provides voting results allocated by Census block groups. The block group identifier can be joined to Census Decennial and American Community Survey demographic estimates. DATA SOURCES The state election results and geographies have been compiled by Voting and Election Science team on Harvard's dataverse. State voting precincts lie within state and county boundaries. The Census Bureau, on the other hand, publishes its estimates across a variety of geographic definitions including a hierarchy of states, counties, census tracts and block groups. Their definitions can be found here. The geometric shapefiles for each block group are available here. The lowest level of this geography changes often and can obsolesce before the next census survey (Decennial or American Community Survey programs). The second to lowest census level, block groups, have the benefit of both granularity and stability however. The 2020 Decennial survey details US demographics into 217,740 block groups with between a few hundred and a few thousand people. Dataset Structure The dataset's columns include: Column Definition BLOCKGROUP_GEOID 12 digit primary key. Census GEOID of the block group row. This code concatenates: 2 digit state 3 digit county within state 6 digit Census Tract identifier 1 digit Census Block Group identifier within tract STATE State abbreviation, redundent with 2 digit state FIPS code above REP Votes for Republican party candidate for president DEM Votes for Democratic party candidate for president LIB Votes for Libertarian party candidate for president OTH Votes for presidential candidates other than Republican, Democratic or Libertarian AREA square kilometers of area associated with this block group GAP total area of the block group, net of area attributed to voting precincts PRECINCTS Number of voting precincts that intersect this block group ASSUMPTIONS, NOTES AND CONCERNS: Votes are attributed based upon the proportion of the precinct's area that intersects the corresponding block group. Alternative methods are left to the analyst's initiative. 50 states and the District of Columbia are in scope as those U.S. possessions voting in the general election for the U.S. Presidency. Three states did not report their results at the precinct level: South Dakota, Kentucky and West Virginia. A dummy block group is added for each of these states to maintain national totals. These states represent 2.1% of all votes cast. Counties are commonly coded using FIPS codes. However, each election result file may have the county field named differently. Also, three states do not share county definitions - Delaware, Massachusetts, Alaska and the District of Columbia. Block groups may be used to capture geographies that do not have population like bodies of water. As a result, block groups without intersection voting precincts are not uncommon. In the U.S., elections are administered at a state level with the Federal Elections Commission compiling state totals against the Electoral College weights. The states have liberty, though, to define and change their own voting precincts https://en.wikipedia.org/wiki/Electoral_precinct. The Census Bureau practices "data suppression", filtering some block groups from demographic publication because they do not meet a population threshold. This practice...

  13. H

    Replication data for: Estimating Voter Registration Deadline Effects with...

    • dataverse.harvard.edu
    Updated Jan 21, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Harvard Dataverse (2015). Replication data for: Estimating Voter Registration Deadline Effects with Web Search Data [Dataset]. http://doi.org/10.7910/DVN/28575
    Explore at:
    text/plain; charset=us-ascii(3609), text/plain; charset=us-ascii(29109), text/plain; charset=us-ascii(6451), text/plain; charset=us-ascii(1846), text/plain; charset=us-ascii(5290), text/plain; charset=us-ascii(14768), text/plain; charset=us-ascii(50832), text/plain; charset=us-ascii(882), text/plain; charset=us-ascii(7297)Available download formats
    Dataset updated
    Jan 21, 2015
    Dataset provided by
    Harvard Dataverse
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Electoral rules have the potential to affect the size and composition of the voting public. Yet scholars disagree over whether requiring voters to register well in advance of Election Day reduces turnout. We present a new approach, using web searches for voter registration'' to measure interest in registering, both before and after registration deadlines for the 2012 US presidential election. Many Americans sought information onvoter registration'' even after the deadline in their state had passed. Combining web search data with evidence on the timing of registration for 80 million Americans, we model the relationship between search and registration. Extrapolating this relationship to the post-deadline period, we estimate that an additional three to four million Americans would have registered in time to vote, if deadlines had been extended to Election Day. We test our approach by predicting out of sample and with historical data. Web search data provide new opportunities to measure and study information-seeking behavior.

  14. d

    Early Voting & Grace Period Registration and Voting - 2014 November 4...

    • catalog.data.gov
    • datacatalog.cookcountyil.gov
    • +3more
    Updated Jun 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    datacatalog.cookcountyil.gov (2025). Early Voting & Grace Period Registration and Voting - 2014 November 4 Gubernatorial Election [Dataset]. https://catalog.data.gov/dataset/early-voting-grace-period-registration-and-voting-2014-november-4-gubernatorial-election
    Explore at:
    Dataset updated
    Jun 29, 2025
    Dataset provided by
    datacatalog.cookcountyil.gov
    Description

    This dataset details the hours and locations for voter registration and voting in suburban Cook County between Oct. 8 and election day, Nov. 4, 2014. Voters may visit one of the 18 election day registration sites if they are not already registered and eligible to vote in their precinct. For more information on Early Voting see http://www.cookcountyclerk.com/elections/earlyvoting/Pages/default.aspx , For more information on Grace Period Registration and Voting see http://www.cookcountyclerk.com/elections/registertovote/Pages/GracePeriod.aspx . For more information on Election Day Registration and Voting see http://www.cookcountyclerk.com/elections/registertovote/Pages/ElectionDayRegistration.aspx .

  15. d

    Replication Data for Happy Birthday: You Get to Vote!

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gronke, Paul (2023). Replication Data for Happy Birthday: You Get to Vote! [Dataset]. http://doi.org/10.7910/DVN/RMXATJ
    Explore at:
    Dataset updated
    Nov 8, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Gronke, Paul
    Description

    This paper estimates the effect of Automatic Voter Registration (AVR) on voter turnout in California and Oregon. AVR systems register to vote all eligible individuals who transact with proscribed government agencies, most commonly the Department of Motor Vehicles (DMVs). The article isolates one part of the causal impact of AVR on turnout by taking advantage of a temporal feature of license renewals. Many individuals interact with the DMV periodically due to the need to renew drivers’ licenses. Because licenses in both California and Oregon expire on birthdays, an individual’s birth date can be treated as an exogenous variable discriminating between some individuals are registered to vote in time for an election, whereas others are not. Our instrumental variable analysis compares registration and voting rates for individuals with birth dates prior and subsequent to the voter registration deadline. After calculating a causal effect of AVR on turnout at the individual level, we extrapolate this AVR “birthday” effect to overall voter turnout for these states.

  16. o

    Total Number of Population and Registered Voters per Districts - Year 2017

    • opendatanepal.com
    Updated Jul 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Total Number of Population and Registered Voters per Districts - Year 2017 [Dataset]. https://opendatanepal.com/dataset/total-number-of-population-and-registered-voters-per-districts
    Explore at:
    Dataset updated
    Jul 20, 2025
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    A total number of population and registered voters per districts, Data harvested for the Election Commission Nepal website.

  17. n

    L2 Political Academic Voter File, 2023-04-01 Delivery

    • ultraviolet.library.nyu.edu
    Updated Apr 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    L2 Data Company (2025). L2 Political Academic Voter File, 2023-04-01 Delivery [Dataset]. http://doi.org/10.58153/h9bre-xch77
    Explore at:
    Dataset updated
    Apr 25, 2025
    Dataset provided by
    L2 Data Company
    Time period covered
    Dec 31, 2022 - Apr 3, 2023
    Description

    NYU Libraries has licensed access to the L2 Political Academic Voter File. The file is a continuously updated dataset consisting of public information for every registered voter in the United States and includes basic socio-demographic indicators (some of which are modeled), consumer preferences, political party affiliation, voting history, and more.

    The data consists of .tab files organized into individual state folders (all states and DC). Each state folder contains two files: demographics data and voter history data, with a data dictionary for each dataset. The size of the folders vary by state and data for all states adds up to approximately 40 GB. The data is organized into releases, generally two per year (spring and fall), which represent a snapshot of the country's voters at the time of the dataset creation.

    NYU has also licensed access to L2 Political historical backlog of data. This backlog includes versions of the L2 Processed voter file going back to 2008 (for most U.S. states) and unprocessed "raw" state voter rolls, also going back to 2008 for most U.S. states.

    This collection is available to NYU faculty and students only, and requires users to first submit a data management plan to account for how access and storage of the data will be handled. Information on how to submit a request to use this data and create a data management plan is available at https://guides.nyu.edu/l2political.

  18. 1992 Detailed Voter Registration and Turnout Data

    • aura.american.edu
    Updated Apr 9, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dave Leip (2024). 1992 Detailed Voter Registration and Turnout Data [Dataset]. http://doi.org/10.57912/25106906.v1
    Explore at:
    Dataset updated
    Apr 9, 2024
    Dataset provided by
    Dave Leip's Atlas of U.S. Presidential Electionshttps://uselectionatlas.org/
    Authors
    Dave Leip
    License

    http://rightsstatements.org/vocab/InC/1.0/http://rightsstatements.org/vocab/InC/1.0/

    Description

    Description to be added

  19. g

    Voter Address Precinct Crosswalk | gimi9.com

    • gimi9.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Voter Address Precinct Crosswalk | gimi9.com [Dataset]. https://gimi9.com/dataset/data-gov_voter-address-precinct-crosswalk/
    Explore at:
    Description

    The PDC uses this data set for its online web applications to assist the public in finding information relative to a particular jurisdiction. It is provided here for the purpose of assisting application developers and may be of limited interest for the general public. This dataset is a subset (copy) of voter registration records provided to the Public Disclosure Commission by the Washington Secretary of State (SOS) under the terms of SOS and applicable law. Use of this data is governed by any restrictions or limitations of the original release by SOS. By accessing this data you are agreeing to use the data in accordance with the RCW 29A.08.720, RCW 29A.08.740 and RCW 42.56.070(9) and any other applicable law. The PDC has removed all information from the original data set except the address and precinct information for the purpose of assisting the public in determining how their address correlates to the PDC's internal accounting of jurisdictions. This data set is updated infrequently. Please see the date of last update in the metadata. This data set can be used to correlate an address in Washington state with a precinct code. The precinct code can then be used to lookup a corresponding PDC jurisdiction and office in the data set containing the PDCs precinct to jurisdiction crosswalk. These data are provided as-is and may contain errors or omissions. Please refer to the SOS for the most recent data.

  20. d

    Voter Precinct to Jurisdiction Crosswalk

    • catalog.data.gov
    • data.wa.gov
    • +3more
    Updated Feb 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.wa.gov (2025). Voter Precinct to Jurisdiction Crosswalk [Dataset]. https://catalog.data.gov/dataset/voter-precinct-to-jurisdiction-crosswalk
    Explore at:
    Dataset updated
    Feb 7, 2025
    Dataset provided by
    data.wa.gov
    Description

    The PDC uses this data set for its online web applications to assist the public in finding information relative to a particular jurisdiction. It is provided here for the purpose of assisting application developers and may be of limited interest for the general public. This dataset is a subset (copy) of voter registration records provided to the Public Disclosure Commission by the Washington Secretary of State (SOS) under the terms of SOS and applicable law. Use of this data is governed by any restrictions or limitations of the original release by SOS. By accessing this data you are agreeing to use the data in accordance with the RCW 29A.08.720, RCW 29A.08.740 and RCW 42.56.070(9) and any other applicable law. This data set can be used to correlate a precinct to a PDC jurisdiction and office. These data are provided as-is and may contain errors or omissions. Please refer to the SOS for the most recent precinct data.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
data.kingcounty.gov (2025). Voter Registration by Census Tract [Dataset]. https://catalog.data.gov/dataset/voter-registration-by-census-tract

Voter Registration by Census Tract

Explore at:
Dataset updated
Jun 29, 2025
Dataset provided by
data.kingcounty.gov
Description

This web map displays data from the voter registration database as the percent of registered voters by census tract in King County, Washington. The data for this web map is compiled from King County Elections voter registration data for the years 2013-2019. The total number of registered voters is based on the geo-location of the voter's registered address at the time of the general election for each year. The eligible voting population, age 18 and over, is based on the estimated population increase from the US Census Bureau and the Washington Office of Financial Management and was calculated as a projected 6 percent population increase for the years 2010-2013, 7 percent population increase for the years 2010-2014, 9 percent population increase for the years 2010-2015, 11 percent population increase for the years 2010-2016 & 2017, 14 percent population increase for the years 2010-2018 and 17 percent population increase for the years 2010-2019. The total population 18 and over in 2010 was 1,517,747 in King County, Washington. The percentage of registered voters represents the number of people who are registered to vote as compared to the eligible voting population, age 18 and over. The voter registration data by census tract was grouped into six percentage range estimates: 50% or below, 51-60%, 61-70%, 71-80%, 81-90% and 91% or above with an overall 84 percent registration rate. In the map the lighter colors represent a relatively low percentage range of voter registration and the darker colors represent a relatively high percentage range of voter registration. PDF maps of these data can be viewed at King County Elections downloadable voter registration maps. The 2019 General Election Voter Turnout layer is voter turnout data by historical precinct boundaries for the corresponding year. The data is grouped into six percentage ranges: 0-30%, 31-40%, 41-50% 51-60%, 61-70%, and 71-100%. The lighter colors represent lower turnout and the darker colors represent higher turnout. The King County Demographics Layer is census data for language, income, poverty, race and ethnicity at the census tract level and is based on the 2010-2014 American Community Survey 5 year Average provided by the United States Census Bureau. Since the data is based on a survey, they are considered to be estimates and should be used with that understanding. The demographic data sets were developed and are maintained by King County Staff to support the King County Equity and Social Justice program. Other data for this map is located in the King County GIS Spatial Data Catalog, where data is managed by the King County GIS Center, a multi-department enterprise GIS in King County, Washington. King County has nearly 1.3 million registered voters and is the largest jurisdiction in the United States to conduct all elections by mail. In the map you can view the percent of registered voters by census tract, compare registration within political districts, compare registration and demographic data, verify your voter registration or register to vote through a link to the VoteWA, Washington State Online Voter Registration web page.

Search
Clear search
Close search
Google apps
Main menu