We'll extract any data from any website on the Internet. You don't have to worry about buying and maintaining complex and expensive software, or hiring developers.
Some common use cases our customers use the data for: • Data Analysis • Market Research • Price Monitoring • Sales Leads • Competitor Analysis • Recruitment
We can get data from websites with pagination or scroll, with captchas, and even from behind logins. Text, images, videos, documents.
Receive data in any format you need: Excel, CSV, JSON, or any other.
The global number of internet users in was forecast to continuously increase between 2024 and 2029 by in total 1.3 billion users (+23.66 percent). After the fifteenth consecutive increasing year, the number of users is estimated to reach 7 billion users and therefore a new peak in 2029. Notably, the number of internet users of was continuously increasing over the past years.Depicted is the estimated number of individuals in the country or region at hand, that use the internet. As the datasource clarifies, connection quality and usage frequency are distinct aspects, not taken into account here.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of internet users in countries like the Americas and Asia.
When asked about "Attitudes towards the internet", most Mexican respondents pick "It is important to me to have mobile internet access in any place" as an answer. 56 percent did so in our online survey in 2025. Looking to gain valuable insights about users of internet providers worldwide? Check out our reports on consumers who use internet providers. These reports give readers a thorough picture of these customers, including their identities, preferences, opinions, and methods of communication.
When asked about "Attitudes towards the internet", most Chinese respondents pick "It is important to me to have mobile internet access in any place" as an answer. 48 percent did so in our online survey in 2025. Looking to gain valuable insights about users of internet providers worldwide? Check out our reports on consumers who use internet providers. These reports give readers a thorough picture of these customers, including their identities, preferences, opinions, and methods of communication.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Percentage of Internet users who have experienced selected personal effects in their life because of the Internet and the use of social networking websites or apps, during the past 12 months.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This users dataset is a preview of a much bigger dataset, with lots of related data (product listings of sellers, comments on listed products, etc...).
My Telegram bot will answer your queries and allow you to contact me.
There are a lot of unknowns when running an E-commerce store, even when you have analytics to guide your decisions.
Users are an important factor in an e-commerce business. This is especially true in a C2C-oriented store, since they are both the suppliers (by uploading their products) AND the customers (by purchasing other user's articles).
This dataset aims to serve as a benchmark for an e-commerce fashion store. Using this dataset, you may want to try and understand what you can expect of your users and determine in advance how your grows may be.
If you think this kind of dataset may be useful or if you liked it, don't forget to show your support or appreciation with an upvote/comment. You may even include how you think this dataset might be of use to you. This way, I will be more aware of specific needs and be able to adapt my datasets to suits more your needs.
This dataset is part of a preview of a much larger dataset. Please contact me for more.
The data was scraped from a successful online C2C fashion store with over 10M registered users. The store was first launched in Europe around 2009 then expanded worldwide.
Visitors vs Users: Visitors do not appear in this dataset. Only registered users are included. "Visitors" cannot purchase an article but can view the catalog.
We wouldn't be here without the help of others. If you owe any attributions or thanks, include them here along with any citations of past research.
Questions you might want to answer using this dataset:
Example works:
For other licensing options, contact me.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This data set contains the number of unique customers who logged in to their accounts on a website. The value column shows this count.
Potential use cases; - timeseries modelling - in month targeting
Phishing is a form of identity theft that occurs when a malicious website impersonates a legitimate one in order to acquire sensitive information such as passwords, account details, or credit card numbers. People generally tend to fall pray to this very easily. Kudos to the commendable craftsmanship of the attackers which makes people believe that it is a legitimate website. There is a need to identify the potential phishing websites and differentiate them from the legitimate ones. This dataset identifies the prominent features of the phishing websites, 10 such features have been identified.
Generally, the open source datasets available on the internet do not comes with the code and the logic which arises certain problems i.e.:
On the contrary we are trying to overcome all the above-mentioned problems.
1. Real Time Data: Before applying a Machine Learning algorithm, we can run the script and fetch real time URLs from Phishtank (for phishing URLs) and from moz (for legitimate URLs) 2. Scalable Data: We can also specify the number of URLs we want to feed the model and hence the web scrapper will fetch that much amount of data from the websites. Presently we are using 1401 URLs in this project i.e. 901 Phishing URLs and 500 Legitimate URLS. 3. New Features: We have tried to implement the prominent new features that is there in the current phishing URLs and since we own the code, new features can also be added. 4. Source code on Github: The source code is published on GitHub for public use and can be used for further scope of improvements. This way there will be transparency to the logic and more creators can add there meaningful additions to the code.
https://github.com/akshaya1508/detection_of_phishing_websites.git
The idea to develop the dataset and the code for this dataset has been inspired by various other creators who have worked on the similar lines.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dynamic face-to-face interaction networks represent the interactions that happen during discussions between a group of participants playing the Resistance game. This dataset contains networks extracted from 62 games. Each game is played by 5-8 participants and lasts between 45--60 minutes. We extract dynamically evolving networks from the free-form discussions using the ICAF algorithm. The extracted networks are used to characterize and detect group deceptive behavior using the DeceptionRank algorithm.
The networks are weighted, directed and temporal. Each node represents a participant. At each 1/3 second, a directed edge from node u to v is weighted by the probability of participant u looking at participant v or the laptop. Additionally, we also provide a binary version where an edge from u to v indicates participant u looks at participant v (or the laptop).
Stanford Network Analysis Platform (SNAP) is a general purpose, high performance system for analysis and manipulation of large networks. Graphs consists of nodes and directed/undirected/multiple edges between the graph nodes. Networks are graphs with data on nodes and/or edges of the network.
The core SNAP library is written in C++ and optimized for maximum performance and compact graph representation. It easily scales to massive networks with hundreds of millions of nodes, and billions of edges. It efficiently manipulates large graphs, calculates structural properties, generates regular and random graphs, and supports attributes on nodes and edges. Besides scalability to large graphs, an additional strength of SNAP is that nodes, edges and attributes in a graph or a network can be changed dynamically during the computation.
SNAP was originally developed by Jure Leskovec in the course of his PhD studies. The first release was made available in Nov, 2009. SNAP uses a general purpose STL (Standard Template Library)-like library GLib developed at Jozef Stefan Institute. SNAP and GLib are being actively developed and used in numerous academic and industrial projects.
When asked about "Attitudes towards the internet", most Japanese respondents pick "I'm concerned that my data is being misused on the internet" as an answer. 35 percent did so in our online survey in 2025. Looking to gain valuable insights about users of internet providers worldwide? Check out our reports on consumers who use internet providers. These reports give readers a thorough picture of these customers, including their identities, preferences, opinions, and methods of communication.
The data represent web-scraping of hyperlinks from a selection of environmental stewardship organizations that were identified in the 2017 NYC Stewardship Mapping and Assessment Project (STEW-MAP) (USDA 2017). There are two data sets: 1) the original scrape containing all hyperlinks within the websites and associated attribute values (see "README" file); 2) a cleaned and reduced dataset formatted for network analysis. For dataset 1: Organizations were selected from from the 2017 NYC Stewardship Mapping and Assessment Project (STEW-MAP) (USDA 2017), a publicly available, spatial data set about environmental stewardship organizations working in New York City, USA (N = 719). To create a smaller and more manageable sample to analyze, all organizations that intersected (i.e., worked entirely within or overlapped) the NYC borough of Staten Island were selected for a geographically bounded sample. Only organizations with working websites and that the web scraper could access were retained for the study (n = 78). The websites were scraped between 09 and 17 June 2020 to a maximum search depth of ten using the snaWeb package (version 1.0.1, Stockton 2020) in the R computational language environment (R Core Team 2020). For dataset 2: The complete scrape results were cleaned, reduced, and formatted as a standard edge-array (node1, node2, edge attribute) for network analysis. See "READ ME" file for further details. References: R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. Version 4.0.3. Stockton, T. (2020). snaWeb Package: An R package for finding and building social networks for a website, version 1.0.1. USDA Forest Service. (2017). Stewardship Mapping and Assessment Project (STEW-MAP). New York City Data Set. Available online at https://www.nrs.fs.fed.us/STEW-MAP/data/. This dataset is associated with the following publication: Sayles, J., R. Furey, and M. Ten Brink. How deep to dig: effects of web-scraping search depth on hyperlink network analysis of environmental stewardship organizations. Applied Network Science. Springer Nature, New York, NY, 7: 36, (2022).
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Alexa Internet was founded in April 1996 by Brewster Kahle and Bruce Gilliat. The company's name was chosen in homage to the Library of Alexandria of Ptolemaic Egypt, drawing a parallel between the largest repository of knowledge in the ancient world and the potential of the Internet to become a similar store of knowledge. (from Wikipedia)
The categories list was going out by September, 17h, 2020. So I would like to save it. https://support.alexa.com/hc/en-us/articles/360051913314
This dataset was elaborated by this python script (V2.0): https://github.com/natanael127/dump-alexa-ranking
The sites are grouped in 17 macro categories and this tree ends having more than 360.000 nodes. Subjects are very organized and each of them has its own rank of most accessed domains. So, even the keys of a sub-dictionary may be a good small dataset to use.
Thank you my friend André (https://github.com/andrerclaudio) by helping me with tips of Google Colaboratory and computational power to get the data until our deadline.
Alexa ranking was inspired by Library of Alexandria. In the modern world, it may be a good start for AI know more about many, many subjects of the world.
The population share with mobile internet access in North America was forecast to increase between 2024 and 2029 by in total 2.9 percentage points. This overall increase does not happen continuously, notably not in 2028 and 2029. The mobile internet penetration is estimated to amount to 84.21 percent in 2029. Notably, the population share with mobile internet access of was continuously increasing over the past years.The penetration rate refers to the share of the total population having access to the internet via a mobile broadband connection.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the population share with mobile internet access in countries like Caribbean and Europe.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Percentage of Canadians who have experienced selected personal effects in their life because of the Internet and the use of social networking websites or apps, during the past 12 months.
The establishment of a BES Multi-User Geodatabase (BES-MUG) allows for the storage, management, and distribution of geospatial data associated with the Baltimore Ecosystem Study. At present, BES data is distributed over the internet via the BES website. While having geospatial data available for download is a vast improvement over having the data housed at individual research institutions, it still suffers from some limitations. BES-MUG overcomes these limitations; improving the quality of the geospatial data available to BES researches, thereby leading to more informed decision-making.
BES-MUG builds on Environmental Systems Research Institute's (ESRI) ArcGIS and ArcSDE technology. ESRI was selected because its geospatial software offers robust capabilities. ArcGIS is implemented agency-wide within the USDA and is the predominant geospatial software package used by collaborating institutions.
Commercially available enterprise database packages (DB2, Oracle, SQL) provide an efficient means to store, manage, and share large datasets. However, standard database capabilities are limited with respect to geographic datasets because they lack the ability to deal with complex spatial relationships. By using ESRI's ArcSDE (Spatial Database Engine) in conjunction with database software, geospatial data can be handled much more effectively through the implementation of the Geodatabase model. Through ArcSDE and the Geodatabase model the database's capabilities are expanded, allowing for multiuser editing, intelligent feature types, and the establishment of rules and relationships. ArcSDE also allows users to connect to the database using ArcGIS software without being burdened by the intricacies of the database itself.
For an example of how BES-MUG will help improve the quality and timeless of BES geospatial data consider a census block group layer that is in need of updating. Rather than the researcher downloading the dataset, editing it, and resubmitting to through ORS, access rules will allow the authorized user to edit the dataset over the network. Established rules will ensure that the attribute and topological integrity is maintained, so that key fields are not left blank and that the block group boundaries stay within tract boundaries. Metadata will automatically be updated showing who edited the dataset and when they did in the event any questions arise.
Currently, a functioning prototype Multi-User Database has been developed for BES at the University of Vermont Spatial Analysis Lab, using Arc SDE and IBM's DB2 Enterprise Database as a back end architecture. This database, which is currently only accessible to those on the UVM campus network, will shortly be migrated to a Linux server where it will be accessible for database connections over the Internet. Passwords can then be handed out to all interested researchers on the project, who will be able to make a database connection through the Geographic Information Systems software interface on their desktop computer.
This database will include a very large number of thematic layers. Those layers are currently divided into biophysical, socio-economic and imagery categories. Biophysical includes data on topography, soils, forest cover, habitat areas, hydrology and toxics. Socio-economics includes political and administrative boundaries, transportation and infrastructure networks, property data, census data, household survey data, parks, protected areas, land use/land cover, zoning, public health and historic land use change. Imagery includes a variety of aerial and satellite imagery.
See the readme: http://96.56.36.108/geodatabase_SAL/readme.txt
See the file listing: http://96.56.36.108/geodatabase_SAL/diroutput.txt
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Abstract: Cookie notices (or cookie banners) are a popular mechanism for websites to provide (European) Internet users a tool to choose which cookies the site may set. Banner implementations range from merely providing information that a site uses cookies over offering the choice to accepting or denying all cookies to allowing fine-grained control of cookie usage. Users frequently get annoyed by the banner's pervasiveness as they interrupt natural'' browsing on the Web. As a remedy, different browser extensions have been developed to automate the interaction with cookie banners. In this work, we perform a large-scale measurement study comparing the effectiveness of extensions for cookie banner interaction.'' We configured the extensions to express different privacy choices (e.g., accepting all cookies, accepting functional cookies, or rejecting all cookies) to understand their capabilities to execute a user's preferences. The results show statistically significant differences in which cookies are set, how many of them are set, and which types are set---even for extensions that aim to implement the same cookie choice. Extensions forcookie banner interaction'' can effectively reduce the number of set cookies compared to no interaction with the banners. However, all extensions increase the tracking requests significantly except when rejecting all cookies. Abstract: Cookie notices (or cookie banners) are a popular mechanism for websites to provide (European) Internet users a tool to choose which cookies the site may set. Banner implementations range from merely providing information that a site uses cookies over offering the choice to accepting or denying all cookies to allowing fine-grained control of cookie usage. Users frequently get annoyed by the banner's pervasiveness as they interrupt
natural'' browsing on the Web. As a remedy, different browser extensions have been developed to automate the interaction with cookie banners. In this work, we perform a large-scale measurement study comparing the effectiveness of extensions for cookie banner interaction.'' We configured the extensions to express different privacy choices (e.g., accepting all cookies, accepting functional cookies, or rejecting all cookies) to understand their capabilities to execute a user's preferences. The results show statistically significant differences in which cookies are set, how many of them are set, and which types are set---even for extensions that aim to implement the same cookie choice. Extensions forcookie banner interaction'' can effectively reduce the number of set cookies compared to no interaction with the banners. However, all extensions increase the tracking requests significantly except when rejecting all cookies. TechnicalRemarks: This repository hosts the dataset corresponding to the paper "A Large-Scale Study of Cookie Banner Interaction Tools and their Impact on Users’ Privacy", which was published at the Privacy Enhancing Technologies Symposium (PETS) in 2024.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Please cite the following paper when using this dataset:
N. Thakur, V. Su, M. Shao, K. Patel, H. Jeong, V. Knieling, and A. Bian “A labelled dataset for sentiment analysis of videos on YouTube, TikTok, and other sources about the 2024 outbreak of measles,” Proceedings of the 26th International Conference on Human-Computer Interaction (HCII 2024), Washington, USA, 29 June - 4 July 2024. (Accepted as a Late Breaking Paper, Preprint Available at: https://doi.org/10.48550/arXiv.2406.07693)
Abstract
This dataset contains the data of 4011 videos about the ongoing outbreak of measles published on 264 websites on the internet between January 1, 2024, and May 31, 2024. These websites primarily include YouTube and TikTok, which account for 48.6% and 15.2% of the videos, respectively. The remainder of the websites include Instagram and Facebook as well as the websites of various global and local news organizations. For each of these videos, the URL of the video, title of the post, description of the post, and the date of publication of the video are presented as separate attributes in the dataset. After developing this dataset, sentiment analysis (using VADER), subjectivity analysis (using TextBlob), and fine-grain sentiment analysis (using DistilRoBERTa-base) of the video titles and video descriptions were performed. This included classifying each video title and video description into (i) one of the sentiment classes i.e. positive, negative, or neutral, (ii) one of the subjectivity classes i.e. highly opinionated, neutral opinionated, or least opinionated, and (iii) one of the fine-grain sentiment classes i.e. fear, surprise, joy, sadness, anger, disgust, or neutral. These results are presented as separate attributes in the dataset for the training and testing of machine learning algorithms for performing sentiment analysis or subjectivity analysis in this field as well as for other applications. The paper associated with this dataset (please see the above-mentioned citation) also presents a list of open research questions that may be investigated using this dataset.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Population by Country - 2020’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/tanuprabhu/population-by-country-2020 on 28 January 2022.
--- Dataset description provided by original source is as follows ---
I always wanted to access a data set that was related to the world’s population (Country wise). But I could not find a properly documented data set. Rather, I just created one manually.
Now I knew I wanted to create a dataset but I did not know how to do so. So, I started to search for the content (Population of countries) on the internet. Obviously, Wikipedia was my first search. But I don't know why the results were not acceptable. And also there were only I think 190 or more countries. So then I surfed the internet for quite some time until then I stumbled upon a great website. I think you probably have heard about this. The name of the website is Worldometer. This is exactly the website I was looking for. This website had more details than Wikipedia. Also, this website had more rows I mean more countries with their population.
Once I got the data, now my next hard task was to download it. Of course, I could not get the raw form of data. I did not mail them regarding the data. Now I learned a new skill which is very important for a data scientist. I read somewhere that to obtain the data from websites you need to use this technique. Any guesses, keep reading you will come to know in the next paragraph.
https://fiverr-res.cloudinary.com/images/t_main1,q_auto,f_auto/gigs/119580480/original/68088c5f588ec32a6b3a3a67ec0d1b5a8a70648d/do-web-scraping-and-data-mining-with-python.png" alt="alt text">
You are right its, Web Scraping. Now I learned this so that I could convert the data into a CSV format. Now I will give you the scraper code that I wrote and also I somehow found a way to directly convert the pandas data frame to a CSV(Comma-separated fo format) and store it on my computer. Now just go through my code and you will know what I'm talking about.
Below is the code that I used to scrape the code from the website
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F3200273%2Fe814c2739b99d221de328c72a0b2571e%2FCapture.PNG?generation=1581314967227445&alt=media" alt="">
Now I couldn't have got the data without Worldometer. So special thanks to the website. It is because of them I was able to get the data.
As far as I know, I don't have any questions to ask. You guys can let me know by finding your ways to use the data and let me know via kernel if you find something interesting
--- Original source retains full ownership of the source dataset ---
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is derived from the COCI, the OpenCitations Index of Crossref open DOI-to-DOI references (opencitations.net). Silvio Peroni, David Shotton (2020). OpenCitations, an infrastructure organization for open scholarship. Quantitative Science Studies, 1(1): 428-444. https://doi.org/10.1162/qss_a_00023 We have curated it to remove duplicates, self-loops, and parallel edges. These data were copied from the Open Citations website on May 6, 2023 and subsequently processed to produce a node list and an edge-list. Integer_ids have been assigned to the DOIs to reduce memory and storage needs when working with these data. As noted on the Open Citation website, each record is a citing-cited pair that uses DOIs as persistent identifiers.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The CalFish Abundance Database contains a comprehensive collection of anadromous fisheries abundance information. The "Other Fish" category contains data collected for species other than salmonids, or salmonids that have not been identified as to species. Beginning in 1998, the Pacific States Marine Fisheries Commission, the California Department of Fish and Game, and the National Marine Fisheries Service, began a cooperative project aimed at collecting, archiving, and entering into standardized electronic formats, the wealth of information generated by fisheries resource management agencies and tribes throughout California. Extensive data are currently available for chinook, coho, steelhead and to a lesser degree other fish species as well. Major data categories include adult abundance population estimates, actual fish and/or carcass counts, counts of fish collected at dams, weirs, or traps, and redd counts. Updates are made to the CalFish web server quarterly. This CalFish Abundance Database shapefile was generated from fully routed 1:100,000 hydrography. In a few cases streams had to be added to the hydrography dataset in order to provide a means to create shapefiles to represent abundance data associated with them. Streams added were digitized at no more than 1:24,000 scale based on stream line images portrayed in 1:24,000 Digital Raster Graphics (DRG). These features generally represent abundance counts resulting from stream surveys. The linear features in this layer typically represent the location for which abundance data records apply. This would be the reach or length of stream surveyed, or the stream sections for which a given population estimate applies. In some cases the actual stream section surveyed was not specified and linear features represent the entire stream. In many cases there are multiple datasets associated with the same length of stream, and so, linear features overlap. Please view the associated datasets for detail regarding specific features. In CalFish these are accessed through the "link" that is visible when performing an identify or query operation. A URL string is provided with each feature in the downloadable data which can also be used to access the underlying datasets. The data that is available via the CalFish website is actually linked directly to the StreamNet website where the database's tabular data is currently stored. Additional information about StreamNet may be downloaded at http://www.streamnet.org. Complete documentation for the StreamNet database may be accessed at http://www.streamnet.org/online-data/archive/exc_982.html .
We'll extract any data from any website on the Internet. You don't have to worry about buying and maintaining complex and expensive software, or hiring developers.
Some common use cases our customers use the data for: • Data Analysis • Market Research • Price Monitoring • Sales Leads • Competitor Analysis • Recruitment
We can get data from websites with pagination or scroll, with captchas, and even from behind logins. Text, images, videos, documents.
Receive data in any format you need: Excel, CSV, JSON, or any other.