We'll extract any data from any website on the Internet. You don't have to worry about buying and maintaining complex and expensive software, or hiring developers.
Some common use cases our customers use the data for: • Data Analysis • Market Research • Price Monitoring • Sales Leads • Competitor Analysis • Recruitment
We can get data from websites with pagination or scroll, with captchas, and even from behind logins. Text, images, videos, documents.
Receive data in any format you need: Excel, CSV, JSON, or any other.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Popular Website Traffic Over Time ’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/yamqwe/popular-website-traffice on 13 February 2022.
--- Dataset description provided by original source is as follows ---
Background
Have you every been in a conversation and the question comes up, who uses Bing? This question comes up occasionally because people wonder if these sites have any views. For this research study, we are going to be exploring popular website traffic for many popular websites.
Methodology
The data collected originates from SimilarWeb.com.
Source
For the analysis and study, go to The Concept Center
This dataset was created by Chase Willden and contains around 0 samples along with 1/1/2017, Social Media, technical information and other features such as: - 12/1/2016 - 3/1/2017 - and more.
- Analyze 11/1/2016 in relation to 2/1/2017
- Study the influence of 4/1/2017 on 1/1/2017
- More datasets
If you use this dataset in your research, please credit Chase Willden
--- Original source retains full ownership of the source dataset ---
The Human Know-How Dataset describes 211,696 human activities from many different domains. These activities are decomposed into 2,609,236 entities (each with an English textual label). These entities represent over two million actions and half a million pre-requisites. Actions are interconnected both according to their dependencies (temporal/logical orders between actions) and decompositions (decomposition of complex actions into simpler ones). This dataset has been integrated with DBpedia (259,568 links). For more information see: - The project website: http://homepages.inf.ed.ac.uk/s1054760/prohow/index.htm - The data is also available on datahub: https://datahub.io/dataset/human-activities-and-instructions ---------------------------------------------------------------- * Quickstart: if you want to experiment with the most high-quality data before downloading all the datasets, download the file '9of11_knowhow_wikihow', and optionally files 'Process - Inputs', 'Process - Outputs', 'Process - Step Links' and 'wikiHow categories hierarchy'. * Data representation based on the PROHOW vocabulary: http://w3id.org/prohow# Data extracted from existing web resources is linked to the original resources using the Open Annotation specification * Data Model: an example of how the data is represented within the datasets is available in the attached Data Model PDF file. The attached example represents a simple set of instructions, but instructions in the dataset can have more complex structures. For example, instructions could have multiple methods, steps could have further sub-steps, and complex requirements could be decomposed into sub-requirements. ---------------------------------------------------------------- Statistics: * 211,696: number of instructions. From wikiHow: 167,232 (datasets 1of11_knowhow_wikihow to 9of11_knowhow_wikihow). From Snapguide: 44,464 (datasets 10of11_knowhow_snapguide to 11of11_knowhow_snapguide). * 2,609,236: number of RDF nodes within the instructions From wikiHow: 1,871,468 (datasets 1of11_knowhow_wikihow to 9of11_knowhow_wikihow). From Snapguide: 737,768 (datasets 10of11_knowhow_snapguide to 11of11_knowhow_snapguide). * 255,101: number of process inputs linked to 8,453 distinct DBpedia concepts (dataset Process - Inputs) * 4,467: number of process outputs linked to 3,439 distinct DBpedia concepts (dataset Process - Outputs) * 376,795: number of step links between 114,166 different sets of instructions (dataset Process - Step Links)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about stocks. It has 1 row and is filtered where the stock is MANY. It features 8 columns including stock name, company, exchange, and exchange symbol.
Company Datasets for valuable business insights!
Discover new business prospects, identify investment opportunities, track competitor performance, and streamline your sales efforts with comprehensive Company Datasets.
These datasets are sourced from top industry providers, ensuring you have access to high-quality information:
We provide fresh and ready-to-use company data, eliminating the need for complex scraping and parsing. Our data includes crucial details such as:
You can choose your preferred data delivery method, including various storage options, delivery frequency, and input/output formats.
Receive datasets in CSV, JSON, and other formats, with storage options like AWS S3 and Google Cloud Storage. Opt for one-time, monthly, quarterly, or bi-annual data delivery.
With Oxylabs Datasets, you can count on:
Pricing Options:
Standard Datasets: choose from various ready-to-use datasets with standardized data schemas, priced from $1,000/month.
Custom Datasets: Tailor datasets from any public web domain to your unique business needs. Contact our sales team for custom pricing.
Experience a seamless journey with Oxylabs:
Unlock the power of data with Oxylabs' Company Datasets and supercharge your business insights today!
This dataset is composed of the URLs of the top 1 million websites. The domains are ranked using the Alexa traffic ranking which is determined using a combination of the browsing behavior of users on the website, the number of unique visitors, and the number of pageviews. In more detail, unique visitors are the number of unique users who visit a website on a given day, and pageviews are the total number of user URL requests for the website. However, multiple requests for the same website on the same day are counted as a single pageview. The website with the highest combination of unique visitors and pageviews is ranked the highest
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This users dataset is a preview of a much bigger dataset, with lots of related data (product listings of sellers, comments on listed products, etc...).
My Telegram bot will answer your queries and allow you to contact me.
There are a lot of unknowns when running an E-commerce store, even when you have analytics to guide your decisions.
Users are an important factor in an e-commerce business. This is especially true in a C2C-oriented store, since they are both the suppliers (by uploading their products) AND the customers (by purchasing other user's articles).
This dataset aims to serve as a benchmark for an e-commerce fashion store. Using this dataset, you may want to try and understand what you can expect of your users and determine in advance how your grows may be.
If you think this kind of dataset may be useful or if you liked it, don't forget to show your support or appreciation with an upvote/comment. You may even include how you think this dataset might be of use to you. This way, I will be more aware of specific needs and be able to adapt my datasets to suits more your needs.
This dataset is part of a preview of a much larger dataset. Please contact me for more.
The data was scraped from a successful online C2C fashion store with over 10M registered users. The store was first launched in Europe around 2009 then expanded worldwide.
Visitors vs Users: Visitors do not appear in this dataset. Only registered users are included. "Visitors" cannot purchase an article but can view the catalog.
We wouldn't be here without the help of others. If you owe any attributions or thanks, include them here along with any citations of past research.
Questions you might want to answer using this dataset:
Example works:
For other licensing options, contact me.
WebLI (Web Language Image) is a web-scale multilingual image-text dataset, designed to support Google’s vision-language research, such as the large-scale pre-training for image understanding, image captioning, visual question answering, object detection etc.
The dataset is built from the public web, including image bytes, image-associated texts (alt-text, OCR, page title), 109 languages and many other features. The dataset is deduplicated on 68 common vision/vision-language tasks, and has no user or personally identifiable data with careful RAI considerations.
Context There's a story behind every dataset and here's your opportunity to share yours.
Content What's inside is more than just rows and columns. Make it easy for others to get started by describing how you acquired the data and what time period it represents, too.
Acknowledgements We wouldn't be here without the help of others. If you owe any attributions or thanks, include them here along with any citations of past research.
Inspiration Your data will be in front of the world's largest data science community. What questions do you want to see answered?
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A collection of 22 data set of 50+ requirements each, expressed as user stories.
The dataset has been created by gathering data from web sources and we are not aware of license agreements or intellectual property rights on the requirements / user stories. The curator took utmost diligence in minimizing the risks of copyright infringement by using non-recent data that is less likely to be critical, by sampling a subset of the original requirements collection, and by qualitatively analyzing the requirements. In case of copyright infringement, please contact the dataset curator (Fabiano Dalpiaz, f.dalpiaz@uu.nl) to discuss the possibility of removal of that dataset [see Zenodo's policies]
The data sets have been originally used to conduct experiments about ambiguity detection with the REVV-Light tool: https://github.com/RELabUU/revv-light
This collection has been originally published in Mendeley data: https://data.mendeley.com/datasets/7zbk8zsd8y/1
The following text provides a description of the datasets, including links to the systems and websites, when available. The datasets are organized by macro-category and then by identifier.
g02-federalspending.txt
(2018) originates from early data in the Federal Spending Transparency project, which pertain to the website that is used to share publicly the spending data for the U.S. government. The website was created because of the Digital Accountability and Transparency Act of 2014 (DATA Act). The specific dataset pertains a system called DAIMS or Data Broker, which stands for DATA Act Information Model Schema. The sample that was gathered refers to a sub-project related to allowing the government to act as a data broker, thereby providing data to third parties. The data for the Data Broker project is currently not available online, although the backend seems to be hosted in GitHub under a CC0 1.0 Universal license. Current and recent snapshots of federal spending related websites, including many more projects than the one described in the shared collection, can be found here.
g03-loudoun.txt
(2018) is a set of extracted requirements from a document, by the Loudoun County Virginia, that describes the to-be user stories and use cases about a system for land management readiness assessment called Loudoun County LandMARC. The source document can be found here and it is part of the Electronic Land Management System and EPlan Review Project - RFP RFQ issued in March 2018. More information about the overall LandMARC system and services can be found here.
g04-recycling.txt
(2017) concerns a web application where recycling and waste disposal facilities can be searched and located. The application operates through the visualization of a map that the user can interact with. The dataset has obtained from a GitHub website and it is at the basis of a students' project on web site design; the code is available (no license).
g05-openspending.txt
(2018) is about the OpenSpending project (www), a project of the Open Knowledge foundation which aims at transparency about how local governments spend money. At the time of the collection, the data was retrieved from a Trello board that is currently unavailable. The sample focuses on publishing, importing and editing datasets, and how the data should be presented. Currently, OpenSpending is managed via a GitHub repository which contains multiple sub-projects with unknown license.
g11-nsf.txt
(2018) refers to a collection of user stories referring to the NSF Site Redesign & Content Discovery project, which originates from a publicly accessible GitHub repository (GPL 2.0 license). In particular, the user stories refer to an early version of the NSF's website. The user stories can be found as closed Issues.
g08-frictionless.txt
(2016) regards the Frictionless Data project, which offers an open source dataset for building data infrastructures, to be used by researchers, data scientists, and data engineers. Links to the many projects within the Frictionless Data project are on GitHub (with a mix of Unlicense and MIT license) and web. The specific set of user stories has been collected in 2016 by GitHub user @danfowler and are stored in a Trello board.
g14-datahub.txt
(2013) concerns the open source project DataHub, which is currently developed via a GitHub repository (the code has Apache License 2.0). DataHub is a data discovery platform which has been developed over multiple years. The specific data set is an initial set of user stories, which we can date back to 2013 thanks to a comment therein.
g16-mis.txt
(2015) is a collection of user stories that pertains a repository for researchers and archivists. The source of the dataset is a public Trello repository. Although the user stories do not have explicit links to projects, it can be inferred that the stories originate from some project related to the library of Duke University.
g17-cask.txt
(2016) refers to the Cask Data Application Platform (CDAP). CDAP is an open source application platform (GitHub, under Apache License 2.0) that can be used to develop applications within the Apache Hadoop ecosystem, an open-source framework which can be used for distributed processing of large datasets. The user stories are extracted from a document that includes requirements regarding dataset management for Cask 4.0, which includes the scenarios, user stories and a design for the implementation of these user stories. The raw data is available in the following environment.
g18-neurohub.txt
(2012) is concerned with the NeuroHub platform, a neuroscience data management, analysis and collaboration platform for researchers in neuroscience to collect, store, and share data with colleagues or with the research community. The user stories were collected at a time NeuroHub was still a research project sponsored by the UK Joint Information Systems Committee (JISC). For information about the research project from which the requirements were collected, see the following record.
g22-rdadmp.txt
(2018) is a collection of user stories from the Research Data Alliance's working group on DMP Common Standards. Their GitHub repository contains a collection of user stories that were created by asking the community to suggest functionality that should part of a website that manages data management plans. Each user story is stored as an issue on the GitHub's page.
g23-archivesspace.txt
(2012-2013) refers to ArchivesSpace: an open source, web application for managing archives information. The application is designed to support core functions in archives administration such as accessioning; description and arrangement of processed materials including analog, hybrid, and
born digital content; management of authorities and rights; and reference service. The application supports collection management through collection management records, tracking of events, and a growing number of administrative reports. ArchivesSpace is open source and its
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The provided dataset includes 11430 URLs with 87 extracted features. The dataset are designed to be used as a a benchmark for machine learning based phishing detection systems. Features are from three different classes: 56 extracted from the structure and syntax of URLs, 24 extracted from the content of their correspondent pages and 7 are extracetd by querying external services. The datatset is balanced, it containes exactly 50% phishing and 50% legitimate URLs. Associated to the dataset, we provide Python scripts used for the extraction of the features for potential replication or extension. Datasets are constructed on May 2020.
dataset_A: contains a list a URLs together with their DOM tree objects that can be used for replication and experimenting new URL and content-based features overtaking short-time living of phishing web pages.
dataset_B: containes the extracted feature values that can be used directly as inupt to classifiers for examination. Note that the data in this dataset are indexed with URLs so that one need to remove the index before experimentation.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Dataset Card for Dataset Name
Dataset Summary
Mind2Web is a dataset for developing and evaluating generalist agents for the web that can follow language instructions to complete complex tasks on any website. Existing datasets for web agents either use simulated websites or only cover a limited set of websites and tasks, thus not suitable for generalist web agents. With over 2,000 open-ended tasks collected from 137 websites spanning 31 domains and crowdsourced action… See the full description on the dataset page: https://huggingface.co/datasets/osunlp/Mind2Web.
https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy
Images files download from different sites like walmart, amazon, instacart, gopuff, target and kroger.
Dataset not included any schema
Images extracted from the different categories its included coffee, cups, beer, filters and cat food.
Total images count: 12K
Image formats: JPEG, JPG and PNG
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Ultimate Arabic News Dataset is a collection of single-label modern Arabic texts that are used in news websites and press articles.
Arabic news data was collected by web scraping techniques from many famous news sites such as Al-Arabiya, Al-Youm Al-Sabea (Youm7), the news published on the Google search engine and other various sources.
UltimateArabic: A file containing more than 193,000 original Arabic news texts, without pre-processing. The texts contain words, numbers, and symbols that can be removed using pre-processing to increase accuracy when using the dataset in various Arabic natural language processing tasks such as text classification.
UltimateArabicPrePros: It is a file that contains the data mentioned in the first file, but after pre-processing, where the number of data became about 188,000 text documents, where stop words, non-Arabic words, symbols and numbers have been removed so that this file is ready for use directly in the various Arabic natural language processing tasks. Like text classification.
1- Sample: This folder contains samples of the results of web-scraping techniques for two popular Arab websites in two different news categories, Sports and Politics. this folder contain two datasets:
Sample_Youm7_Politic: An example of news in the "Politic" category collected from the Youm7 website. Sample_alarabiya_Sport: An example of news in the "Sport" category collected from the Al-Arabiya website.
2- Dataset Versions: This volume contains four different versions of the original data set, from which the appropriate version can be selected for use in text classification techniques. The first data set (Original) contains the raw data without pre-processing the data in any way, so the number of tokens in the first data set is very high. In the second data set (Original_without_Stop) the data was cleaned, such as removing symbols, numbers, and non-Arabic words, as well as stop words, so the number of symbols is greatly reduced. In the third dataset (Original_with_Stem) the data was cleaned, and text stemming technique was used to remove all additions and suffixes that might affect the accuracy of the results and to obtain the words roots. In the 4th edition of the dataset (Original_Without_Stop_Stem) all preprocessing techniques such as data cleaning, stop word removal and text stemming technique were applied, so we note that the number of tokens in the 4th edition is the lowest among all releases.
Phishing is a form of identity theft that occurs when a malicious website impersonates a legitimate one in order to acquire sensitive information such as passwords, account details, or credit card numbers. People generally tend to fall pray to this very easily. Kudos to the commendable craftsmanship of the attackers which makes people believe that it is a legitimate website. There is a need to identify the potential phishing websites and differentiate them from the legitimate ones. This dataset identifies the prominent features of the phishing websites, 10 such features have been identified.
Generally, the open source datasets available on the internet do not comes with the code and the logic which arises certain problems i.e.:
On the contrary we are trying to overcome all the above-mentioned problems.
1. Real Time Data: Before applying a Machine Learning algorithm, we can run the script and fetch real time URLs from Phishtank (for phishing URLs) and from moz (for legitimate URLs) 2. Scalable Data: We can also specify the number of URLs we want to feed the model and hence the web scrapper will fetch that much amount of data from the websites. Presently we are using 1401 URLs in this project i.e. 901 Phishing URLs and 500 Legitimate URLS. 3. New Features: We have tried to implement the prominent new features that is there in the current phishing URLs and since we own the code, new features can also be added. 4. Source code on Github: The source code is published on GitHub for public use and can be used for further scope of improvements. This way there will be transparency to the logic and more creators can add there meaningful additions to the code.
https://github.com/akshaya1508/detection_of_phishing_websites.git
The idea to develop the dataset and the code for this dataset has been inspired by various other creators who have worked on the similar lines.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is the dataset accompanying the EMNLP 2023 paper "Analysing state-backed propaganda websites: a new dataset and linguistic study".
For copyright and liability reasons, we do not publicly distribute the complete dataset. Instead, we provide the software used to create the dataset (DOI: 10.5281/zenodo.10008086) and a list containing the URLs of all the posts in the full dataset (this repository).
To reconstruct our dataset: use the software to extract the sites, then filter the posts to the corresponding URL list. Please note that some posts may no longer be available or may have been modified.
If you are researching disinformation, propaganda, or a relevant field: please contact the authors, we may be able to provide you with the original dataset.
Data Access: The data in the research collection provided may only be used for research purposes. Portions of the data are copyrighted and have commercial value as data, so you must be careful to use it only for research purposes. Due to these restrictions, the collection is not open data. Please download the Agreement at Data Sharing Agreement and send the signed form to fakenewstask@gmail.com .
Citation
Please cite our work as
@article{shahi2021overview, title={Overview of the CLEF-2021 CheckThat! lab task 3 on fake news detection}, author={Shahi, Gautam Kishore and Stru{\ss}, Julia Maria and Mandl, Thomas}, journal={Working Notes of CLEF}, year={2021} }
Problem Definition: Given the text of a news article, determine whether the main claim made in the article is true, partially true, false, or other (e.g., claims in dispute) and detect the topical domain of the article. This task will run in English.
Subtask 3A: Multi-class fake news detection of news articles (English) Sub-task A would detect fake news designed as a four-class classification problem. The training data will be released in batches and roughly about 900 articles with the respective label. Given the text of a news article, determine whether the main claim made in the article is true, partially true, false, or other. Our definitions for the categories are as follows:
False - The main claim made in an article is untrue.
Partially False - The main claim of an article is a mixture of true and false information. The article contains partially true and partially false information but cannot be considered 100% true. It includes all articles in categories like partially false, partially true, mostly true, miscaptioned, misleading etc., as defined by different fact-checking services.
True - This rating indicates that the primary elements of the main claim are demonstrably true.
Other- An article that cannot be categorised as true, false, or partially false due to lack of evidence about its claims. This category includes articles in dispute and unproven articles.
Subtask 3B: Topical Domain Classification of News Articles (English) Fact-checkers require background expertise to identify the truthfulness of an article. The categorisation will help to automate the sampling process from a stream of data. Given the text of a news article, determine the topical domain of the article (English). This is a classification problem. The task is to categorise fake news articles into six topical categories like health, election, crime, climate, election, education. This task will be offered for a subset of the data of Subtask 3A.
Input Data
The data will be provided in the format of Id, title, text, rating, the domain; the description of the columns is as follows:
Task 3a
Task 3b
Output data format
Task 3a
Sample File
public_id, predicted_rating
1, false
2, true
Task 3b
Sample file
public_id, predicted_domain
1, health
2, crime
Additional data for Training
To train your model, the participant can use additional data with a similar format; some datasets are available over the web. We don't provide the background truth for those datasets. For testing, we will not use any articles from other datasets. Some of the possible source:
IMPORTANT!
Evaluation Metrics
This task is evaluated as a classification task. We will use the F1-macro measure for the ranking of teams. There is a limit of 5 runs (total and not per day), and only one person from a team is allowed to submit runs.
Submission Link: https://competitions.codalab.org/competitions/31238
Related Work
Introducing Job Posting Datasets: Uncover labor market insights!
Elevate your recruitment strategies, forecast future labor industry trends, and unearth investment opportunities with Job Posting Datasets.
Job Posting Datasets Source:
Indeed: Access datasets from Indeed, a leading employment website known for its comprehensive job listings.
Glassdoor: Receive ready-to-use employee reviews, salary ranges, and job openings from Glassdoor.
StackShare: Access StackShare datasets to make data-driven technology decisions.
Job Posting Datasets provide meticulously acquired and parsed data, freeing you to focus on analysis. You'll receive clean, structured, ready-to-use job posting data, including job titles, company names, seniority levels, industries, locations, salaries, and employment types.
Choose your preferred dataset delivery options for convenience:
Receive datasets in various formats, including CSV, JSON, and more. Opt for storage solutions such as AWS S3, Google Cloud Storage, and more. Customize data delivery frequencies, whether one-time or per your agreed schedule.
Why Choose Oxylabs Job Posting Datasets:
Fresh and accurate data: Access clean and structured job posting datasets collected by our seasoned web scraping professionals, enabling you to dive into analysis.
Time and resource savings: Focus on data analysis and your core business objectives while we efficiently handle the data extraction process cost-effectively.
Customized solutions: Tailor our approach to your business needs, ensuring your goals are met.
Legal compliance: Partner with a trusted leader in ethical data collection. Oxylabs is a founding member of the Ethical Web Data Collection Initiative, aligning with GDPR and CCPA best practices.
Pricing Options:
Standard Datasets: choose from various ready-to-use datasets with standardized data schemas, priced from $1,000/month.
Custom Datasets: Tailor datasets from any public web domain to your unique business needs. Contact our sales team for custom pricing.
Experience a seamless journey with Oxylabs:
Effortlessly access fresh job posting data with Oxylabs Job Posting Datasets.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
There are lots of datasets available for different machine learning tasks like NLP, Computer vision etc. However I couldn't find any dataset which catered to the domain of software testing. This is one area which has lots of potential for application of Machine Learning techniques specially deep-learning.
This was the reason I wanted such a dataset to exist. So, I made one.
New version [28th Nov'20]- Uploaded testing related questions and related details from stack-overflow. These are query results which were collected from stack-overflow by using stack-overflow's query viewer. The result set of this query contained posts which had the words "testing web pages".
New version[27th Nov'20] - Created a csv file containing pairs of test case titles and test case description.
This dataset is very tiny (approximately 200 rows of data). I have collected sample test cases from around the web and created a text file which contains all the test cases that I have collected. This text file has sections and under each section there are numbered rows of test cases.
I would like to thank websites like guru99.com, softwaretestinghelp.com and many other such websites which host great many sample test cases. These were the source for the test cases in this dataset.
My Inspiration to create this dataset was the scarcity of examples showcasing the implementation of machine learning on the domain of software testing. I would like to see if this dataset can be used to answer questions similar to the following--> * Finding semantic similarity between different test cases ranging across products and applications. * Automating the elimination of duplicate test cases in a test case repository. * Cana recommendation system be built for suggesting domain specific test cases to software testers.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Author: Víctor Yeste. Universitat Politècnica de Valencia.The object of this study is the design of a cybermetric methodology whose objectives are to measure the success of the content published in online media and the possible prediction of the selected success variables.In this case, due to the need to integrate data from two separate areas, such as web publishing and the analysis of their shares and related topics on Twitter, has opted for programming as you access both the Google Analytics v4 reporting API and Twitter Standard API, always respecting the limits of these.The website analyzed is hellofriki.com. It is an online media whose primary intention is to solve the need for information on some topics that provide daily a vast number of news in the form of news, as well as the possibility of analysis, reports, interviews, and many other information formats. All these contents are under the scope of the sections of cinema, series, video games, literature, and comics.This dataset has contributed to the elaboration of the PhD Thesis:Yeste Moreno, VM. (2021). Diseño de una metodología cibermétrica de cálculo del éxito para la optimización de contenidos web [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/176009Data have been obtained from each last-minute news article published online according to the indicators described in the doctoral thesis. All related data are stored in a database, divided into the following tables:tesis_followers: User ID list of media account followers.tesis_hometimeline: data from tweets posted by the media account sharing breaking news from the web.status_id: Tweet IDcreated_at: date of publicationtext: content of the tweetpath: URL extracted after processing the shortened URL in textpost_shared: Article ID in WordPress that is being sharedretweet_count: number of retweetsfavorite_count: number of favoritestesis_hometimeline_other: data from tweets posted by the media account that do not share breaking news from the web. Other typologies, automatic Facebook shares, custom tweets without link to an article, etc. With the same fields as tesis_hometimeline.tesis_posts: data of articles published by the web and processed for some analysis.stats_id: Analysis IDpost_id: Article ID in WordPresspost_date: article publication date in WordPresspost_title: title of the articlepath: URL of the article in the middle webtags: Tags ID or WordPress tags related to the articleuniquepageviews: unique page viewsentrancerate: input ratioavgtimeonpage: average visit timeexitrate: output ratiopageviewspersession: page views per sessionadsense_adunitsviewed: number of ads viewed by usersadsense_viewableimpressionpercent: ad display ratioadsense_ctr: ad click ratioadsense_ecpm: estimated ad revenue per 1000 page viewstesis_stats: data from a particular analysis, performed at each published breaking news item. Fields with statistical values can be computed from the data in the other tables, but total and average calculations are saved for faster and easier further processing.id: ID of the analysisphase: phase of the thesis in which analysis has been carried out (right now all are 1)time: "0" if at the time of publication, "1" if 14 days laterstart_date: date and time of measurement on the day of publicationend_date: date and time when the measurement is made 14 days latermain_post_id: ID of the published article to be analysedmain_post_theme: Main section of the published article to analyzesuperheroes_theme: "1" if about superheroes, "0" if nottrailer_theme: "1" if trailer, "0" if notname: empty field, possibility to add a custom name manuallynotes: empty field, possibility to add personalized notes manually, as if some tag has been removed manually for being considered too generic, despite the fact that the editor put itnum_articles: number of articles analysednum_articles_with_traffic: number of articles analysed with traffic (which will be taken into account for traffic analysis)num_articles_with_tw_data: number of articles with data from when they were shared on the media’s Twitter accountnum_terms: number of terms analyzeduniquepageviews_total: total page viewsuniquepageviews_mean: average page viewsentrancerate_mean: average input ratioavgtimeonpage_mean: average duration of visitsexitrate_mean: average output ratiopageviewspersession_mean: average page views per sessiontotal: total of ads viewedadsense_adunitsviewed_mean: average of ads viewedadsense_viewableimpressionpercent_mean: average ad display ratioadsense_ctr_mean: average ad click ratioadsense_ecpm_mean: estimated ad revenue per 1000 page viewsTotal: total incomeretweet_count_mean: average incomefavorite_count_total: total of favoritesfavorite_count_mean: average of favoritesterms_ini_num_tweets: total tweets on the terms on the day of publicationterms_ini_retweet_count_total: total retweets on the terms on the day of publicationterms_ini_retweet_count_mean: average retweets on the terms on the day of publicationterms_ini_favorite_count_total: total of favorites on the terms on the day of publicationterms_ini_favorite_count_mean: average of favorites on the terms on the day of publicationterms_ini_followers_talking_rate: ratio of followers of the media Twitter account who have recently published a tweet talking about the terms on the day of publicationterms_ini_user_num_followers_mean: average followers of users who have spoken of the terms on the day of publicationterms_ini_user_num_tweets_mean: average number of tweets published by users who spoke about the terms on the day of publicationterms_ini_user_age_mean: average age in days of users who have spoken of the terms on the day of publicationterms_ini_ur_inclusion_rate: URL inclusion ratio of tweets talking about terms on the day of publicationterms_end_num_tweets: total tweets on terms 14 days after publicationterms_ini_retweet_count_total: total retweets on terms 14 days after publicationterms_ini_retweet_count_mean: average retweets on terms 14 days after publicationterms_ini_favorite_count_total: total bookmarks on terms 14 days after publicationterms_ini_favorite_count_mean: average of favorites on terms 14 days after publicationterms_ini_followers_talking_rate: ratio of media Twitter account followers who have recently posted a tweet talking about the terms 14 days after publicationterms_ini_user_num_followers_mean: average followers of users who have spoken of the terms 14 days after publicationterms_ini_user_num_tweets_mean: average number of tweets published by users who have spoken about the terms 14 days after publicationterms_ini_user_age_mean: the average age in days of users who have spoken of the terms 14 days after publicationterms_ini_ur_inclusion_rate: URL inclusion ratio of tweets talking about terms 14 days after publication.tesis_terms: data of the terms (tags) related to the processed articles.stats_id: Analysis IDtime: "0" if at the time of publication, "1" if 14 days laterterm_id: Term ID (tag) in WordPressname: Name of the termslug: URL of the termnum_tweets: number of tweetsretweet_count_total: total retweetsretweet_count_mean: average retweetsfavorite_count_total: total of favoritesfavorite_count_mean: average of favoritesfollowers_talking_rate: ratio of followers of the media Twitter account who have recently published a tweet talking about the termuser_num_followers_mean: average followers of users who were talking about the termuser_num_tweets_mean: average number of tweets published by users who were talking about the termuser_age_mean: average age in days of users who were talking about the termurl_inclusion_rate: URL inclusion ratio
We'll extract any data from any website on the Internet. You don't have to worry about buying and maintaining complex and expensive software, or hiring developers.
Some common use cases our customers use the data for: • Data Analysis • Market Research • Price Monitoring • Sales Leads • Competitor Analysis • Recruitment
We can get data from websites with pagination or scroll, with captchas, and even from behind logins. Text, images, videos, documents.
Receive data in any format you need: Excel, CSV, JSON, or any other.