62 datasets found
  1. d

    Custom dataset from any website on the Internet

    • datarade.ai
    Updated Sep 21, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ScrapeLabs (2022). Custom dataset from any website on the Internet [Dataset]. https://datarade.ai/data-products/custom-dataset-from-any-website-on-the-internet-scrapelabs
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    Sep 21, 2022
    Dataset authored and provided by
    ScrapeLabs
    Area covered
    Kazakhstan, Bulgaria, India, Argentina, Guinea-Bissau, Turks and Caicos Islands, Jordan, Tunisia, Lebanon, Aruba
    Description

    We'll extract any data from any website on the Internet. You don't have to worry about buying and maintaining complex and expensive software, or hiring developers.

    Some common use cases our customers use the data for: • Data Analysis • Market Research • Price Monitoring • Sales Leads • Competitor Analysis • Recruitment

    We can get data from websites with pagination or scroll, with captchas, and even from behind logins. Text, images, videos, documents.

    Receive data in any format you need: Excel, CSV, JSON, or any other.

  2. Number of internet users worldwide 2014-2029

    • statista.com
    Updated Apr 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2025). Number of internet users worldwide 2014-2029 [Dataset]. https://www.statista.com/topics/1145/internet-usage-worldwide/
    Explore at:
    Dataset updated
    Apr 11, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    World
    Description

    The global number of internet users in was forecast to continuously increase between 2024 and 2029 by in total 1.3 billion users (+23.66 percent). After the fifteenth consecutive increasing year, the number of users is estimated to reach 7 billion users and therefore a new peak in 2029. Notably, the number of internet users of was continuously increasing over the past years.Depicted is the estimated number of individuals in the country or region at hand, that use the internet. As the datasource clarifies, connection quality and usage frequency are distinct aspects, not taken into account here.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of internet users in countries like the Americas and Asia.

  3. e

    Internet and Computer use, London

    • data.europa.eu
    unknown
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics, Internet and Computer use, London [Dataset]. https://data.europa.eu/data/datasets/internet-and-computer-use-london
    Explore at:
    unknownAvailable download formats
    Dataset authored and provided by
    Office for National Statistics
    Area covered
    London
    Description

    Statistics of how many adults access the internet and use different types of technology covering:

    home internet access

    how people connect to the web

    how often people use the web/computers

    whether people use mobile devices

    whether people buy goods over the web

    whether people carried out specified activities over the internet

    For more information see the ONS website and the UKDS website.

  4. Attitudes towards the internet in China 2025

    • statista.com
    Updated Apr 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Umair Bashir (2025). Attitudes towards the internet in China 2025 [Dataset]. https://www.statista.com/topics/1145/internet-usage-worldwide/
    Explore at:
    Dataset updated
    Apr 11, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Umair Bashir
    Description

    When asked about "Attitudes towards the internet", most Chinese respondents pick "It is important to me to have mobile internet access in any place" as an answer. 50 percent did so in our online survey in 2025. Looking to gain valuable insights about users of internet providers worldwide? Check out our reports on consumers who use internet providers. These reports give readers a thorough picture of these customers, including their identities, preferences, opinions, and methods of communication.

  5. d

    Complete Domain Whois dataset (all zones)

    • datarade.ai
    .json, .csv
    Updated Dec 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Netlas.io (2022). Complete Domain Whois dataset (all zones) [Dataset]. https://datarade.ai/data-products/complete-domain-whois-dataset-all-zones-netlas-io
    Explore at:
    .json, .csvAvailable download formats
    Dataset updated
    Dec 16, 2022
    Dataset provided by
    Netlas.io
    Area covered
    Lebanon, Mauritius, Fiji, Spain, Timor-Leste, Slovenia, Cabo Verde, Latvia, Guadeloupe, Armenia
    Description

    Netlas.io is a set of internet intelligence apps that provide accurate technical information on IP addresses, domain names, websites, web applications, IoT devices, and other online assets.

    Netlas.io maintains five general data collections: Responses (internet scan data), DNS Registry data, IP Whois data, Domain Whois data, SSL Certificates.

    This dataset contains Domain WHOIS data. It covers active domains only, including just registered, published and parked domains, domains on redeption grace period (waiting for renewal), and domains pending delete. This dataset doesn't include any historical records.

  6. Job Offers Web Scraping Search

    • kaggle.com
    Updated Feb 11, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). Job Offers Web Scraping Search [Dataset]. https://www.kaggle.com/datasets/thedevastator/job-offers-web-scraping-search
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 11, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    The Devastator
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Job Offers Web Scraping Search

    Targeted Results to Find the Optimal Work Solution

    By [source]

    About this dataset

    This dataset collects job offers from web scraping which are filtered according to specific keywords, locations and times. This data gives users rich and precise search capabilities to uncover the best working solution for them. With the information collected, users can explore options that match with their personal situation, skillset and preferences in terms of location and schedule. The columns provide detailed information around job titles, employer names, locations, time frames as well as other necessary parameters so you can make a smart choice for your next career opportunity

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This dataset is a great resource for those looking to find an optimal work solution based on keywords, location and time parameters. With this information, users can quickly and easily search through job offers that best fit their needs. Here are some tips on how to use this dataset to its fullest potential:

    • Start by identifying what type of job offer you want to find. The keyword column will help you narrow down your search by allowing you to search for job postings that contain the word or phrase you are looking for.

    • Next, consider where the job is located – the Location column tells you where in the world each posting is from so make sure it’s somewhere that suits your needs!

    • Finally, consider when the position is available – look at the Time frame column which gives an indication of when each posting was made as well as if it’s a full-time/ part-time role or even if it’s a casual/temporary position from day one so make sure it meets your requirements first before applying!

    • Additionally, if details such as hours per week or further schedule information are important criteria then there is also info provided under Horari and Temps Oferta columns too! Now that all three criteria have been ticked off - key words, location and time frame - then take a look at Empresa (Company Name) and Nom_Oferta (Post Name) columns too in order to get an idea of who will be employing you should you land the gig!

      All these pieces of data put together should give any motivated individual all they need in order to seek out an optimal work solution - keep hunting good luck!

    Research Ideas

    • Machine learning can be used to groups job offers in order to facilitate the identification of similarities and differences between them. This could allow users to specifically target their search for a work solution.
    • The data can be used to compare job offerings across different areas or types of jobs, enabling users to make better informed decisions in terms of their career options and goals.
    • It may also provide an insight into the local job market, enabling companies and employers to identify where there is potential for new opportunities or possible trends that simply may have previously gone unnoticed

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    License: CC0 1.0 Universal (CC0 1.0) - Public Domain Dedication No Copyright - You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission. See Other Information.

    Columns

    File: web_scraping_information_offers.csv | Column name | Description | |:-----------------|:------------------------------------| | Nom_Oferta | Name of the job offer. (String) | | Empresa | Company offering the job. (String) | | Ubicació | Location of the job offer. (String) | | Temps_Oferta | Time of the job offer. (String) | | Horari | Schedule of the job offer. (String) |

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. If you use this dataset in your research, please credit .

  7. G

    Adverse effects of using the Internet and social networking websites or apps...

    • open.canada.ca
    • www150.statcan.gc.ca
    • +1more
    csv, html, xml
    Updated Jan 17, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2023). Adverse effects of using the Internet and social networking websites or apps by gender and age group, inactive [Dataset]. https://open.canada.ca/data/en/dataset/80c88ac9-8ea1-4ff7-856e-560f7683d660
    Explore at:
    html, xml, csvAvailable download formats
    Dataset updated
    Jan 17, 2023
    Dataset provided by
    Statistics Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    Percentage of Internet users who have experienced selected personal effects in their life because of the Internet and the use of social networking websites or apps, during the past 12 months.

  8. Data from: WikiReddit: Tracing Information and Attention Flows Between...

    • zenodo.org
    bin
    Updated May 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Patrick Gildersleve; Patrick Gildersleve; Anna Beers; Anna Beers; Viviane Ito; Viviane Ito; Agustin Orozco; Agustin Orozco; Francesca Tripodi; Francesca Tripodi (2025). WikiReddit: Tracing Information and Attention Flows Between Online Platforms [Dataset]. http://doi.org/10.5281/zenodo.14653265
    Explore at:
    binAvailable download formats
    Dataset updated
    May 4, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Patrick Gildersleve; Patrick Gildersleve; Anna Beers; Anna Beers; Viviane Ito; Viviane Ito; Agustin Orozco; Agustin Orozco; Francesca Tripodi; Francesca Tripodi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 15, 2025
    Description

    Preprint

    Gildersleve, P., Beers, A., Ito, V., Orozco, A., & Tripodi, F. (2025). WikiReddit: Tracing Information and Attention Flows Between Online Platforms. arXiv [Cs.CY]. https://doi.org/10.48550/arXiv.2502.04942
    Accepted at the International AAAI Conference on Web and Social Media (ICWSM) 2025

    Abstract

    The World Wide Web is a complex interconnected digital ecosystem, where information and attention flow between platforms and communities throughout the globe. These interactions co-construct how we understand the world, reflecting and shaping public discourse. Unfortunately, researchers often struggle to understand how information circulates and evolves across the web because platform-specific data is often siloed and restricted by linguistic barriers. To address this gap, we present a comprehensive, multilingual dataset capturing all Wikipedia links shared in posts and comments on Reddit from 2020 to 2023, excluding those from private and NSFW subreddits. Each linked Wikipedia article is enriched with revision history, page view data, article ID, redirects, and Wikidata identifiers. Through a research agreement with Reddit, our dataset ensures user privacy while providing a query and ID mechanism that integrates with the Reddit and Wikipedia APIs. This enables extended analyses for researchers studying how information flows across platforms. For example, Reddit discussions use Wikipedia for deliberation and fact-checking which subsequently influences Wikipedia content, by driving traffic to articles or inspiring edits. By analyzing the relationship between information shared and discussed on these platforms, our dataset provides a foundation for examining the interplay between social media discourse and collaborative knowledge consumption and production.

    Datasheet

    Motivation

    The motivations for this dataset stem from the challenges researchers face in studying the flow of information across the web. While the World Wide Web enables global communication and collaboration, data silos, linguistic barriers, and platform-specific restrictions hinder our ability to understand how information circulates, evolves, and impacts public discourse. Wikipedia and Reddit, as major hubs of knowledge sharing and discussion, offer an invaluable lens into these processes. However, without comprehensive data capturing their interactions, researchers are unable to fully examine how platforms co-construct knowledge. This dataset bridges this gap, providing the tools needed to study the interconnectedness of social media and collaborative knowledge systems.

    Composition

    WikiReddit, a comprehensive dataset capturing all Wikipedia mentions (including links) shared in posts and comments on Reddit from 2020 to 2023, excluding those from private and NSFW (not safe for work) subreddits. The SQL database comprises 336K total posts, 10.2M comments, 1.95M unique links, and 1.26M unique articles spanning 59 languages on Reddit and 276 Wikipedia language subdomains. Each linked Wikipedia article is enriched with its revision history and page view data within a ±10-day window of its posting, as well as article ID, redirects, and Wikidata identifiers. Supplementary anonymous metadata from Reddit posts and comments further contextualizes the links, offering a robust resource for analysing cross-platform information flows, collective attention dynamics, and the role of Wikipedia in online discourse.

    Collection Process

    Data was collected from the Reddit4Researchers and Wikipedia APIs. No personally identifiable information is published in the dataset. Data from Reddit to Wikipedia is linked via the hyperlink and article titles appearing in Reddit posts.

    Preprocessing/cleaning/labeling

    Extensive processing with tools such as regex was applied to the Reddit post/comment text to extract the Wikipedia URLs. Redirects for Wikipedia URLs and article titles were found through the API and mapped to the collected data. Reddit IDs are hashed with SHA-256 for post/comment/user/subreddit anonymity.

    Uses

    We foresee several applications of this dataset and preview four here. First, Reddit linking data can be used to understand how attention is driven from one platform to another. Second, Reddit linking data can shed light on how Wikipedia's archive of knowledge is used in the larger social web. Third, our dataset could provide insights into how external attention is topically distributed across Wikipedia. Our dataset can help extend that analysis into the disparities in what types of external communities Wikipedia is used in, and how it is used. Fourth, relatedly, a topic analysis of our dataset could reveal how Wikipedia usage on Reddit contributes to societal benefits and harms. Our dataset could help examine if homogeneity within the Reddit and Wikipedia audiences shapes topic patterns and assess whether these relationships mitigate or amplify problematic engagement online.

    Distribution

    The dataset is publicly shared with a Creative Commons Attribution 4.0 International license. The article describing this dataset should be cited: https://doi.org/10.48550/arXiv.2502.04942

    Maintenance

    Patrick Gildersleve will maintain this dataset, and add further years of content as and when available.


    SQL Database Schema

    Table: posts

    Column NameTypeDescription
    subreddit_idTEXTThe unique identifier for the subreddit.
    crosspost_parent_idTEXTThe ID of the original Reddit post if this post is a crosspost.
    post_idTEXTUnique identifier for the Reddit post.
    created_atTIMESTAMPThe timestamp when the post was created.
    updated_atTIMESTAMPThe timestamp when the post was last updated.
    language_codeTEXTThe language code of the post.
    scoreINTEGERThe score (upvotes minus downvotes) of the post.
    upvote_ratioREALThe ratio of upvotes to total votes.
    gildingsINTEGERNumber of awards (gildings) received by the post.
    num_commentsINTEGERNumber of comments on the post.

    Table: comments

    Column NameTypeDescription
    subreddit_idTEXTThe unique identifier for the subreddit.
    post_idTEXTThe ID of the Reddit post the comment belongs to.
    parent_idTEXTThe ID of the parent comment (if a reply).
    comment_idTEXTUnique identifier for the comment.
    created_atTIMESTAMPThe timestamp when the comment was created.
    last_modified_atTIMESTAMPThe timestamp when the comment was last modified.
    scoreINTEGERThe score (upvotes minus downvotes) of the comment.
    upvote_ratioREALThe ratio of upvotes to total votes for the comment.
    gildedINTEGERNumber of awards (gildings) received by the comment.

    Table: postlinks

    Column NameTypeDescription
    post_idTEXTUnique identifier for the Reddit post.
    end_processed_validINTEGERWhether the extracted URL from the post resolves to a valid URL.
    end_processed_urlTEXTThe extracted URL from the Reddit post.
    final_validINTEGERWhether the final URL from the post resolves to a valid URL after redirections.
    final_statusINTEGERHTTP status code of the final URL.
    final_urlTEXTThe final URL after redirections.
    redirectedINTEGERIndicator of whether the posted URL was redirected (1) or not (0).
    in_titleINTEGERIndicator of whether the link appears in the post title (1) or post body (0).

    Table: commentlinks

    Column NameTypeDescription
    comment_idTEXTUnique identifier for the Reddit comment.
    end_processed_validINTEGERWhether the extracted URL from the comment resolves to a valid URL.
    end_processed_urlTEXTThe extracted URL from the comment.
    final_validINTEGERWhether the final URL from the comment resolves to a valid URL after redirections.
    final_statusINTEGERHTTP status code of the final

  9. E-commerce - Users of a French C2C fashion store

    • kaggle.com
    Updated Feb 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jeffrey Mvutu Mabilama (2024). E-commerce - Users of a French C2C fashion store [Dataset]. https://www.kaggle.com/jmmvutu/ecommerce-users-of-a-french-c2c-fashion-store/notebooks
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 24, 2024
    Dataset provided by
    Kaggle
    Authors
    Jeffrey Mvutu Mabilama
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    French
    Description

    Foreword

    This users dataset is a preview of a much bigger dataset, with lots of related data (product listings of sellers, comments on listed products, etc...).

    My Telegram bot will answer your queries and allow you to contact me.

    Context

    There are a lot of unknowns when running an E-commerce store, even when you have analytics to guide your decisions.

    Users are an important factor in an e-commerce business. This is especially true in a C2C-oriented store, since they are both the suppliers (by uploading their products) AND the customers (by purchasing other user's articles).

    This dataset aims to serve as a benchmark for an e-commerce fashion store. Using this dataset, you may want to try and understand what you can expect of your users and determine in advance how your grows may be.

    • For instance, if you see that most of your users are not very active, you may look into this dataset to compare your store's performance.

    If you think this kind of dataset may be useful or if you liked it, don't forget to show your support or appreciation with an upvote/comment. You may even include how you think this dataset might be of use to you. This way, I will be more aware of specific needs and be able to adapt my datasets to suits more your needs.

    This dataset is part of a preview of a much larger dataset. Please contact me for more.

    Content

    The data was scraped from a successful online C2C fashion store with over 10M registered users. The store was first launched in Europe around 2009 then expanded worldwide.

    Visitors vs Users: Visitors do not appear in this dataset. Only registered users are included. "Visitors" cannot purchase an article but can view the catalog.

    Acknowledgements

    We wouldn't be here without the help of others. If you owe any attributions or thanks, include them here along with any citations of past research.

    Inspiration

    Questions you might want to answer using this dataset:

    • Are e-commerce users interested in social network feature ?
    • Are my users active enough (compared to those of this dataset) ?
    • How likely are people from other countries to sign up in a C2C website ?
    • How many users are likely to drop off after years of using my service ?

    Example works:

    • Report(s) made using SQL queries can be found on the data.world page of the dataset.
    • Notebooks may be found on the Kaggle page of the dataset.

    License

    CC-BY-NC-SA 4.0

    For other licensing options, contact me.

  10. Web Graphs

    • kaggle.com
    zip
    Updated Nov 11, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Subhajit Sahu (2021). Web Graphs [Dataset]. https://www.kaggle.com/wolfram77/graphs-web
    Explore at:
    zip(52848952 bytes)Available download formats
    Dataset updated
    Nov 11, 2021
    Authors
    Subhajit Sahu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The dynamic face-to-face interaction networks represent the interactions that happen during discussions between a group of participants playing the Resistance game. This dataset contains networks extracted from 62 games. Each game is played by 5-8 participants and lasts between 45--60 minutes. We extract dynamically evolving networks from the free-form discussions using the ICAF algorithm. The extracted networks are used to characterize and detect group deceptive behavior using the DeceptionRank algorithm.

    The networks are weighted, directed and temporal. Each node represents a participant. At each 1/3 second, a directed edge from node u to v is weighted by the probability of participant u looking at participant v or the laptop. Additionally, we also provide a binary version where an edge from u to v indicates participant u looks at participant v (or the laptop).

    Stanford Network Analysis Platform (SNAP) is a general purpose, high performance system for analysis and manipulation of large networks. Graphs consists of nodes and directed/undirected/multiple edges between the graph nodes. Networks are graphs with data on nodes and/or edges of the network.

    The core SNAP library is written in C++ and optimized for maximum performance and compact graph representation. It easily scales to massive networks with hundreds of millions of nodes, and billions of edges. It efficiently manipulates large graphs, calculates structural properties, generates regular and random graphs, and supports attributes on nodes and edges. Besides scalability to large graphs, an additional strength of SNAP is that nodes, edges and attributes in a graph or a network can be changed dynamically during the computation.

    SNAP was originally developed by Jure Leskovec in the course of his PhD studies. The first release was made available in Nov, 2009. SNAP uses a general purpose STL (Standard Template Library)-like library GLib developed at Jozef Stefan Institute. SNAP and GLib are being actively developed and used in numerous academic and industrial projects.

    http://snap.stanford.edu/data/index.html#face2face

  11. Attitudes towards the internet in Japan 2025

    • statista.com
    Updated Apr 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Umair Bashir (2025). Attitudes towards the internet in Japan 2025 [Dataset]. https://www.statista.com/topics/1145/internet-usage-worldwide/
    Explore at:
    Dataset updated
    Apr 11, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Umair Bashir
    Description

    When asked about "Attitudes towards the internet", most Japanese respondents pick "I'm concerned that my data is being misused on the internet" as an answer. 35 percent did so in our online survey in 2025. Looking to gain valuable insights about users of internet providers worldwide? Check out our reports on consumers who use internet providers. These reports give readers a thorough picture of these customers, including their identities, preferences, opinions, and methods of communication.

  12. Attitudes towards the internet in Mexico 2025

    • statista.com
    Updated Apr 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Umair Bashir (2025). Attitudes towards the internet in Mexico 2025 [Dataset]. https://www.statista.com/topics/1145/internet-usage-worldwide/
    Explore at:
    Dataset updated
    Apr 11, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Umair Bashir
    Description

    When asked about "Attitudes towards the internet", most Mexican respondents pick "It is important to me to have mobile internet access in any place" as an answer. 56 percent did so in our online survey in 2025. Looking to gain valuable insights about users of internet providers worldwide? Check out our reports on consumers who use internet providers. These reports give readers a thorough picture of these customers, including their identities, preferences, opinions, and methods of communication.

  13. The Items Dataset

    • zenodo.org
    Updated Nov 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Patrick Egan; Patrick Egan (2024). The Items Dataset [Dataset]. http://doi.org/10.5281/zenodo.10964134
    Explore at:
    Dataset updated
    Nov 13, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Patrick Egan; Patrick Egan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Dataset originally created 03/01/2019 UPDATE: Packaged on 04/18/2019 UPDATE: Edited README on 04/18/2019

    I. About this Data Set This data set is a snapshot of work that is ongoing as a collaboration between Kluge Fellow in Digital Studies, Patrick Egan and an intern at the Library of Congress in the American Folklife Center. It contains a combination of metadata from various collections that contain audio recordings of Irish traditional music. The development of this dataset is iterative, and it integrates visualizations that follow the key principles of trust and approachability. The project, entitled, “Connections In Sound” invites you to use and re-use this data.

    The text available in the Items dataset is generated from multiple collections of audio material that were discovered at the American Folklife Center. Each instance of a performance was listed and “sets” or medleys of tunes or songs were split into distinct instances in order to allow machines to read each title separately (whilst still noting that they were part of a group of tunes). The work of the intern was then reviewed before publication, and cross-referenced with the tune index at www.irishtune.info. The Items dataset consists of just over 1000 rows, with new data being added daily in a separate file.

    The collections dataset contains at least 37 rows of collections that were located by a reference librarian at the American Folklife Center. This search was complemented by searches of the collections by the scholar both on the internet at https://catalog.loc.gov and by using card catalogs.

    Updates to these datasets will be announced and published as the project progresses.

    II. What’s included? This data set includes:

    • The Items Dataset – a .CSV containing Media Note, OriginalFormat, On Website, Collection Ref, Missing In Duplication, Collection, Outside Link, Performer, Solo/multiple, Sub-item, type of tune, Tune, Position, Location, State, Date, Notes/Composer, Potential Linked Data, Instrument, Additional Notes, Tune Cleanup. This .CSV is the direct export of the Items Google Spreadsheet

    III. How Was It Created? These data were created by a Kluge Fellow in Digital Studies and an intern on this program over the course of three months. By listening, transcribing, reviewing, and tagging audio recordings, these scholars improve access and connect sounds in the American Folklife Collections by focusing on Irish traditional music. Once transcribed and tagged, information in these datasets is reviewed before publication.

    IV. Data Set Field Descriptions

    IV

    a) Collections dataset field descriptions

    • ItemId – this is the identifier for the collection that was found at the AFC
    • Viewed – if the collection has been viewed, or accessed in any way by the researchers.
    • On LOC – whether or not there are audio recordings of this collection available on the Library of Congress website.
    • On Other Website – if any of the recordings in this collection are available elsewhere on the internet
    • Original Format – the format that was used during the creation of the recordings that were found within each collection
    • Search – this indicates the type of search that was performed in order that resulted in locating recordings and collections within the AFC
    • Collection – the official title for the collection as noted on the Library of Congress website
    • State – The primary state where recordings from the collection were located
    • Other States – The secondary states where recordings from the collection were located
    • Era / Date – The decade or year associated with each collection
    • Call Number – This is the official reference number that is used to locate the collections, both in the urls used on the Library website, and in the reference search for catalog cards (catalog cards can be searched at this address: https://memory.loc.gov/diglib/ihas/html/afccards/afccards-home.html)
    • Finding Aid Online? – Whether or not a finding aid is available for this collection on the internet

    b) Items dataset field descriptions

    • id – the specific identification of the instance of a tune, song or dance within the dataset
    • Media Note – Any information that is included with the original format, such as identification, name of physical item, additional metadata written on the physical item
    • Original Format – The physical format that was used when recording each specific performance. Note: this field is used in order to calculate the number of physical items that were created in each collection such as 32 wax cylinders.
    • On Webste? – Whether or not each instance of a performance is available on the Library of Congress website
    • Collection Ref – The official reference number of the collection
    • Missing In Duplication – This column marks if parts of some recordings had been made available on other websites, but not all of the recordings were included in duplication (see recordings from Philadelphia Céilí Group on Villanova University website)
    • Collection – The official title of the collection given by the American Folklife Center
    • Outside Link – If recordings are available on other websites externally
    • Performer – The name of the contributor(s)
    • Solo/multiple – This field is used to calculate the amount of solo performers vs group performers in each collection
    • Sub-item – In some cases, physical recordings contained extra details, the sub-item column was used to denote these details
    • Type of item – This column describes each individual item type, as noted by performers and collectors
    • Item – The item title, as noted by performers and collectors. If an item was not described, it was entered as “unidentified”
    • Position – The position on the recording (in some cases during playback, audio cassette player counter markers were used)
    • Location – Local address of the recording
    • State – The state where the recording was made
    • Date – The date that the recording was made
    • Notes/Composer – The stated composer or source of the item recorded
    • Potential Linked Data – If items may be linked to other recordings or data, this column was used to provide examples of potential relationships between them
    • Instrument – The instrument(s) that was used during the performance
    • Additional Notes – Notes about the process of capturing, transcribing and tagging recordings (for researcher and intern collaboration purposes)
    • Tune Cleanup – This column was used to tidy each item so that it could be read by machines, but also so that spelling mistakes from the Item column could be corrected, and as an aid to preserving iterations of the editing process

    V. Rights statement The text in this data set was created by the researcher and intern and can be used in many different ways under creative commons with attribution. All contributions to Connections In Sound are released into the public domain as they are created. Anyone is free to use and re-use this data set in any way they want, provided reference is given to the creators of these datasets.

    VI. Creator and Contributor Information

    Creator: Connections In Sound

    Contributors: Library of Congress Labs

    VII. Contact Information Please direct all questions and comments to Patrick Egan via www.twitter.com/drpatrickegan or via his website at www.patrickegan.org. You can also get in touch with the Library of Congress Labs team via LC-Labs@loc.gov.

  14. A Labelled Dataset for Sentiment Analysis of Videos on YouTube, TikTok, and...

    • zenodo.org
    • data.niaid.nih.gov
    • +2more
    csv
    Updated Jul 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nirmalya Thakur; Nirmalya Thakur; Vanessa Su; Mingchen Shao; Kesha A. Patel; Hongseok Jeong; Victoria Knieling; Andrew Bian; Vanessa Su; Mingchen Shao; Kesha A. Patel; Hongseok Jeong; Victoria Knieling; Andrew Bian (2024). A Labelled Dataset for Sentiment Analysis of Videos on YouTube, TikTok, and other sources about the 2024 outbreak of Measles [Dataset]. http://doi.org/10.5281/zenodo.11711230
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jul 20, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Nirmalya Thakur; Nirmalya Thakur; Vanessa Su; Mingchen Shao; Kesha A. Patel; Hongseok Jeong; Victoria Knieling; Andrew Bian; Vanessa Su; Mingchen Shao; Kesha A. Patel; Hongseok Jeong; Victoria Knieling; Andrew Bian
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jun 15, 2024
    Area covered
    YouTube
    Description

    Please cite the following paper when using this dataset:

    N. Thakur, V. Su, M. Shao, K. Patel, H. Jeong, V. Knieling, and A. Bian “A labelled dataset for sentiment analysis of videos on YouTube, TikTok, and other sources about the 2024 outbreak of measles,” Proceedings of the 26th International Conference on Human-Computer Interaction (HCII 2024), Washington, USA, 29 June - 4 July 2024. (Accepted as a Late Breaking Paper, Preprint Available at: https://doi.org/10.48550/arXiv.2406.07693)

    Abstract

    This dataset contains the data of 4011 videos about the ongoing outbreak of measles published on 264 websites on the internet between January 1, 2024, and May 31, 2024. These websites primarily include YouTube and TikTok, which account for 48.6% and 15.2% of the videos, respectively. The remainder of the websites include Instagram and Facebook as well as the websites of various global and local news organizations. For each of these videos, the URL of the video, title of the post, description of the post, and the date of publication of the video are presented as separate attributes in the dataset. After developing this dataset, sentiment analysis (using VADER), subjectivity analysis (using TextBlob), and fine-grain sentiment analysis (using DistilRoBERTa-base) of the video titles and video descriptions were performed. This included classifying each video title and video description into (i) one of the sentiment classes i.e. positive, negative, or neutral, (ii) one of the subjectivity classes i.e. highly opinionated, neutral opinionated, or least opinionated, and (iii) one of the fine-grain sentiment classes i.e. fear, surprise, joy, sadness, anger, disgust, or neutral. These results are presented as separate attributes in the dataset for the training and testing of machine learning algorithms for performing sentiment analysis or subjectivity analysis in this field as well as for other applications. The paper associated with this dataset (please see the above-mentioned citation) also presents a list of open research questions that may be investigated using this dataset.

  15. e

    The internet and everyday rights in Russia - Dataset - B2FIND

    • b2find.eudat.eu
    Updated Jul 17, 2010
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2010). The internet and everyday rights in Russia - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/68c7603b-0a69-5e8d-972d-e18b6030d627
    Explore at:
    Dataset updated
    Jul 17, 2010
    Area covered
    Russia
    Description

    This two-year project analyses whether the internet can champion the causes of citizens in non-democratic states. While there is much speculation that the internet can provide critical social capital when there is a democratic deficit, there is relatively little empirical work on the interplay between online and off-line social protest and action. This project will study the role of the internet in political life in Russia through an analysis of how people seek to fulfil their 'everyday' human rights in gaining access to social services such as pensions and health care. The study uses five central elements to study the role of the internet in these efforts: content community catalyst control co-optation. The project will analyse internet content against a background of key factors, including the nature and behaviour of online users (community), how the internet activity is sparked by real-world events such as protests or funding cuts (catalysts), how the government attempts to regulate the internet (control); and - more pessimistically - how political elites may attempt to hijack the influence of populist bloggers or websites once they have become influential (co-optation).

  16. Phishing Websites Detection

    • kaggle.com
    Updated May 28, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    J Akshaya (2020). Phishing Websites Detection [Dataset]. https://www.kaggle.com/akshaya1508/phishing-websites-detection/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 28, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    J Akshaya
    Description

    Context

    Phishing is a form of identity theft that occurs when a malicious website impersonates a legitimate one in order to acquire sensitive information such as passwords, account details, or credit card numbers. People generally tend to fall pray to this very easily. Kudos to the commendable craftsmanship of the attackers which makes people believe that it is a legitimate website. There is a need to identify the potential phishing websites and differentiate them from the legitimate ones. This dataset identifies the prominent features of the phishing websites, 10 such features have been identified.

    Content

    Generally, the open source datasets available on the internet do not comes with the code and the logic which arises certain problems i.e.:

    1. Limited Data: The ML algorithms can only be tested with the existing phishing URLs and no new phishing URLS can be checked for its validity.
    2. Outdated URLs: The datasets available on the internet has been uploaded long time ago, there are new kind of phishing URLs arising in every second.
    3. Outdated Features: The datasets available on the internet has been uploaded long time ago, there are new methodologies arising in phishing techniques.
    4. No Access to Backend: There is no stepwise guide describing how the feature has been derived.

    On the contrary we are trying to overcome all the above-mentioned problems.

    1. Real Time Data: Before applying a Machine Learning algorithm, we can run the script and fetch real time URLs from Phishtank (for phishing URLs) and from moz (for legitimate URLs) 2. Scalable Data: We can also specify the number of URLs we want to feed the model and hence the web scrapper will fetch that much amount of data from the websites. Presently we are using 1401 URLs in this project i.e. 901 Phishing URLs and 500 Legitimate URLS. 3. New Features: We have tried to implement the prominent new features that is there in the current phishing URLs and since we own the code, new features can also be added. 4. Source code on Github: The source code is published on GitHub for public use and can be used for further scope of improvements. This way there will be transparency to the logic and more creators can add there meaningful additions to the code.

    Link to the source code

    https://github.com/akshaya1508/detection_of_phishing_websites.git

    Inspiration

    The idea to develop the dataset and the code for this dataset has been inspired by various other creators who have worked on the similar lines.

  17. h

    ontolearner-web_and_internet

    • huggingface.co
    Updated May 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Scientific Knowledge Organization (2025). ontolearner-web_and_internet [Dataset]. https://huggingface.co/datasets/SciKnowOrg/ontolearner-web_and_internet
    Explore at:
    Dataset updated
    May 14, 2025
    Dataset authored and provided by
    Scientific Knowledge Organization
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Web And Internet Domain Ontologies

      Overview
    

    The "web_and_internet" domain encompasses ontologies that articulate the structure and semantics of web technologies, including the intricate relationships and protocols that underpin linked data, web services, and online communication standards. This domain is pivotal in advancing knowledge representation by enabling the seamless integration and interoperability of diverse data sources, thereby facilitating more intelligent… See the full description on the dataset page: https://huggingface.co/datasets/SciKnowOrg/ontolearner-web_and_internet.

  18. Mobile internet users worldwide 2020-2029

    • statista.com
    Updated Feb 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2025). Mobile internet users worldwide 2020-2029 [Dataset]. https://www.statista.com/topics/779/mobile-internet/
    Explore at:
    Dataset updated
    Feb 5, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Description

    The global number of smartphone users in was forecast to continuously increase between 2024 and 2029 by in total 1.8 billion users (+42.62 percent). After the ninth consecutive increasing year, the smartphone user base is estimated to reach 6.1 billion users and therefore a new peak in 2029. Notably, the number of smartphone users of was continuously increasing over the past years.Smartphone users here are limited to internet users of any age using a smartphone. The shown figures have been derived from survey data that has been processed to estimate missing demographics.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of smartphone users in countries like Australia & Oceania and Asia.

  19. e

    Dataset: A Large-Scale Study of Cookie Banner Interaction Tools and their...

    • b2find.eudat.eu
    Updated Sep 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Dataset: A Large-Scale Study of Cookie Banner Interaction Tools and their Impact on Users' Privacy / Part1 - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/c5c887d5-dbfa-539f-a53a-511cfa87bb18
    Explore at:
    Dataset updated
    Sep 15, 2023
    Description

    Cookie notices (or cookie banners) are a popular mechanism for websites to provide (European) Internet users a tool to choose which cookies the site may set. Banner implementations range from merely providing information that a site uses cookies over offering the choice to accepting or denying all cookies to allowing fine-grained control of cookie usage. Users frequently get annoyed by the banner's pervasiveness as they interrupt ``natural'' browsing on the Web. As a remedy, different browser extensions have been developed to automate the interaction with cookie banners. In this work, we perform a large-scale measurement study comparing the effectiveness of extensions for cookie banner interaction.'' We configured the extensions to express different privacy choices (e.g., accepting all cookies, accepting functional cookies, or rejecting all cookies) to understand their capabilities to execute a user's preferences. The results show statistically significant differences in which cookies are set, how many of them are set, and which types are set---even for extensions that aim to implement the same cookie choice. Extensions forcookie banner interaction'' can effectively reduce the number of set cookies compared to no interaction with the banners. However, all extensions increase the tracking requests significantly except when rejecting all cookies. This repository hosts the dataset corresponding to the paper "A Large-Scale Study of Cookie Banner Interaction Tools and their Impact on Users’ Privacy", which was published at the Privacy Enhancing Technologies Symposium (PETS) in 2024.

  20. e

    Diversification index for the activities realised online by internet users

    • data.europa.eu
    csv, rdf n-triples +2
    Updated Oct 27, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Directorate-General for Communications Networks, Content and Technology (2016). Diversification index for the activities realised online by internet users [Dataset]. https://data.europa.eu/data/datasets/kpndij9ake0q2himi0kdsw?locale=ga
    Explore at:
    rdf n-triples, csv, rdf xml, unknownAvailable download formats
    Dataset updated
    Oct 27, 2016
    Dataset authored and provided by
    Directorate-General for Communications Networks, Content and Technology
    License

    http://data.europa.eu/eli/dec/2011/833/ojhttp://data.europa.eu/eli/dec/2011/833/oj

    Description

    The diversification index is based on counting how many activities, out of a list of 12, have been realised at least once in the previous months. It is computed at individual level for those individuals having used internet in the last 3 months.

    Notes

    The 12 activities included in the index are: sending/receiving e-mails, information about goods and services, reading online newspapers/news, information on travel/accommodation services, posting messages to social media, interaction with public authorities, internet banking, telephoning or video calls, selling goods or services, purchases of content (films,music,software,etc), purchase of goods, purchase of services.

    Original source

    Eurostat, Table isoc_bde15cua: Internet use and activities:

    http://ec.europa.eu/eurostat/web/products-datasets/-/isoc_bde15cua

    Parent dataset

    This dataset is part of of another dataset:

    http://digital-agenda-data.eu/datasets/digital_agenda_scoreboard_key_indicators

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
ScrapeLabs (2022). Custom dataset from any website on the Internet [Dataset]. https://datarade.ai/data-products/custom-dataset-from-any-website-on-the-internet-scrapelabs

Custom dataset from any website on the Internet

Explore at:
.bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
Dataset updated
Sep 21, 2022
Dataset authored and provided by
ScrapeLabs
Area covered
Kazakhstan, Bulgaria, India, Argentina, Guinea-Bissau, Turks and Caicos Islands, Jordan, Tunisia, Lebanon, Aruba
Description

We'll extract any data from any website on the Internet. You don't have to worry about buying and maintaining complex and expensive software, or hiring developers.

Some common use cases our customers use the data for: • Data Analysis • Market Research • Price Monitoring • Sales Leads • Competitor Analysis • Recruitment

We can get data from websites with pagination or scroll, with captchas, and even from behind logins. Text, images, videos, documents.

Receive data in any format you need: Excel, CSV, JSON, or any other.

Search
Clear search
Close search
Google apps
Main menu