Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the median household incomes over the past decade across various racial categories identified by the U.S. Census Bureau in South Gorin. It portrays the median household income of the head of household across racial categories (excluding ethnicity) as identified by the Census Bureau. It also showcases the annual income trends, between 2011 and 2021, providing insights into the economic shifts within diverse racial communities.The dataset can be utilized to gain insights into income disparities and variations across racial categories, aiding in data analysis and decision-making..
Key observations
https://i.neilsberg.com/ch/south-gorin-mo-median-household-income-by-race-trends.jpeg" alt="South Gorin, MO median household income trends across races (2011-2021, in 2022 inflation-adjusted dollars)">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for South Gorin median household income by race. You can refer the same here
This dataset provides the racial demographics of South Africa based on percentages as reported in the 2018 South African Census.
The population census conducted in South Africa in 1985 covered the whole of South Africa, but excluded the "Homelands" of Transkei, Bophutatswana, Ciskei, and Venda. This dataset is the full census, as opposed to the 10% sample datasets provided by Statistics South Africa from 1996 onwards.
The 1985 census covered the so-called white areas of South Africa - the provinces of the Cape, the Orange Free State, Transvaal, and Natal - and the so-called National States of KwaZulu, Kangwane, Gazankulu, Lebowa, Qwaqwa, and Kwandebele. The 1985 South African census excluded the areas of the Transkei, Bophutatswana, Ciskei, and Venda.
The 1985 Census dataset has 9 data files. These refer to Development Regions demarcated by the South African Government according to their socio-economic conditions and development needs. These Development Regions are labeled A to J (there is no Region I, presumably because Statistics SA felt an "I" could be confused with the number 1). The 9 data files in the 1985 Census dataset refer to the following areas:
DEV REGION AREA COVERED A Western Cape Province including Walvis Bay B Northern Cape C Orange Free State and Qwaqwa D Eastern Cape/Border E Natal and Kwazulu F Eastern Transvaal, KaNgwane and part of the Simdlangentsha district of Kwazulu G Northern Transvaal, Lebowa and Gazankulu H PWV area, Moutse and KwaNdebele J Western Transvaal
The units of analysis under observation in the South African census 1985 are households and individuals
All persons who were present on Republic of South African territory during census night were enumerated. Visitors from abroad who were present in the RSA on holiday or business on the night of the census, as well as foreigners (and their families) who were studying or economically active, were enumerated but not included in the final data. Likewise, members of the Diplomatic and Consular Corps of foreign countries were not included. However, the South African personnel linked to the foreign missions including domestic workers were enumerated. Crews and passengers of ships were also not enumerated, unless they were normally resident in the Republic of South Africa. Residents of the RSA who were absent from the night were as far as possible enumerated on their return and included in the region where they normally resided. Personnel of the South African Government stationed abroad and their families were, however enumerated. Such persons were included in the Transvaal (Pretoria).
Census/enumeration data [cen]
Face-to-face [f2f]
The1985 population census questionnaire was administered to each household and collected information on household and area type, and information on household members, including relationship within household, sex, age, marital status, population group, birthplace, country of citizenship, level of education, occupation, identity of employer and the nature of economic activities
UNDER-ENUMERATION:
The following under-enumeration figures have been calculated for the 1985 census.
Estimated percentage distribution of undercount by race according to the HSRC:
Percent undercount
Whites 7.6%
Blacks in the “RSA” 20.4%
Blacks in the “National States” 15.1%
Coloureds 1.0%
Asians 4.6%
The 1985 census covered the so-called white areas of South Africa, i.e. the areas in the former four provinces of the Cape, the Orange Free State, Transvaal, and Natal. It also covered the so-called National States of KwaZulu, Kangwane, Gazankulu, Lebowa, Qwaqwa, and Kwandebele. The 1985 South African census excluded the areas of the Transkei, Bophutatswana, Ciskei, and Venda.
The 1985 Census dataset contains 9 data files. These refer to Development Regions demarcated by the South African Government according to their socio-economic conditions and development needs. These Development Regions are labeled A to J (there is no Region I, presumably because Statistics SA felt an "I" could be confused with the number 1). The 9 data files in the 1985 Census dataset refer to the following areas:
DEV REGION AREA COVERED A Western Cape Province including Walvis Bay B Northern Cape C Orange Free State and Qwaqwa D Eastern Cape/Border E Natal and Kwazulu F Eastern Transvaal, KaNgwane and part of the Simdlangentsha district of Kwazulu G Northern Transvaal, Lebowa and Gazankulu H PWV area, Moutse and KwaNdebele J Western Transvaal
The units of analysis under observation in the South African census 1985 are households and individuals
The South African census 1985 census covered the provinces of the Cape, the Orange Free State, Transvaal, and Nata and the so-called National States of KwaZulu, Kangwane, Gazankulu, Lebowa, Qwaqwa, and Kwandebele. The 1985 South African census excluded the areas of the Transkei, Bophutatswana, Ciskei, and Venda.
Census/enumeration data [cen]
Although the census was meant to cover all residents of the so called white areas of South Africa, in 88 areas door-to-door surveys were not possible and the population in these areas was enumerated by means of a sample survey conducted by the Human Sciences Research Council.
Face-to-face [f2f]
The1985 population census questionnaire was administered to each household and collected information on household and area type, and information on household members, including relationship within household, sex, age, marital status, population group, birthplace, country of citizenship, level of education, occupation, identity of employer and the nature of economic activities
UNDER-ENUMERATION:
The following under-enumeration figures have been calculated for the 1985 census.
Estimated percentage distribution of undercount by race according to the HSRC:
Percent undercount
Whites 7.6%
Blacks in the “RSA” 20.4%
Blacks in the “National States” 15.1%
Coloureds 1.0%
Asians 4.6%
The 1980 South African Population Census was a count of all persons present on Republic of South African territory during census night (i.e. at midnight between 6 and 7 May 1980). The purpose of the population census was to collect detailed statistics on population size, composition and distribution at small area level. The 1980 South African Population Census contains data collected on HOUSEHOLDS: household goods and dwelling characteristics as well as employment of domestic workers; INDIVIDUALS: population group, citizenship/nationality, marital status, fertility and infant mortality, education, employment, religion, language and disabilities, as well as mode of transport used and participation in sport and other recreational activities
The 1980 census covered the so-called white areas of South Africa, i.e. the areas in the former four provinces of the Cape, the Orange Free State, Transvaal, and Natal. It also covered areas in the so-called National States of Ciskei, KwaZulu, Gazankulu, Lebowa, Qwaqwa, Kangwane, and Kwandebele. The 1980 South African census excluded the "independent states" of Bophuthatswana, Transkei, and Venda. A census data file for Bophuthatswana was released with the final South African Census 1980 dataset.
Households and individuals
The 1980 South African census covered all household members (usual residents).
The 1980 South African Population Census was enumerated on a de facto basis, that is, according to the place where persons were located during the census. All persons who were present on Republic of South African territory during census night (i.e. at midnight between 6 and 7 May 1980) were enumerated and included in the data. Visitors from abroad who were present in the RSA on holiday or business on the night of the census, as well as foreigners (and their families) who were studying or economically active, were not enumerated and included in the figures. Likewise, members of the Diplomatic and Consular Corps of foreign countries were not included. However, the South African personnel linked to the foreign missions including domestic workers were enumerated. Crews and passengers of ships were also not enumerated, unless they were normally resident in the Republic of South Africa. Residents of the RSA who were absent from the night were as far as possible enumerated on their return and included in the region where they normally resided. Personnel of the South African Government stationed abroad and their families were, however enumerated. Such persons were included in the Transvaal (Pretoria).
Census enumeration data
Face-to-face [f2f]
The 1980 Population Census questionnaire was administered to all household members and covered household goods and dwelling characteristics, and employment of domestic workers. Questions concerning individuals included those on citizenship/nationality, marital status, fertility and infant mortality, education, employment, religion, language and disabilities, as well as mode of transport used and participation in sport and other recreational activities.
The following questions appear in the questionnaire but the corresponding data has not been included in the data set: PART C: PARTICULARS OF DWELLING: 2. How many separate families (i) Number of families (ii) Number of non-family persons (iii) total number of occupants [i.e. persons in families shown against (i) plus persons shown against 3. Persons employed by household Full-time, Part-time (a) How many persons employed as domestics (b) Total cash wages paid to above –mentioned persons for April 1980 4. Ownership – Do not answer this question if your dwelling is on a farm. (i) Own dwelling – (Including hire-purchase, sectional title property or property of wife): (a) Is the dwelling Fully paid Partly paid-off (b) If partly paid-off, state monthly repayment (include housing subsidy, but exclude insurance. (ii) Rented or occupied free dwelling : (a) Is the dwelling occupied free, rented furnished, rented unfurnished (b) If rented, state monthly rent (c) Is the dwelling owned by the employer? (d) Does it belong to the state, SA Railways, a provincial administration, a divisional council, or a municipality or other local authority? PART D: PARTICULARS OF THE FAMILY 1. Number of members in the family 2. Occupation. (Nature of work done) (a) Head of family (b) Wife 3. Annual income of head of family and wife. Annual income of: Head, Wife (if applicable)
Linked databases of research records of primary documents in named archive collections. Some 30 major collections have been worked on, producing a dataset of over 47,000 records of letters in family and related collections, with the dataset consisting of these 30 interrelated databases. A purpose-designed Virtual Research Environment (VRE) manages the epistolary data and provides tools to assist its analysis. Research questions include: In what ways was whiteness and its ‘others’ re/configured over time? How did people represent such things over time in their letter writing? What resistances and accommodations occurred in different areas of the country and from what people and networks? An important meta-concern is, how can long-term social change best be investigated and what are the problems and possibilities of letter writing in this. In addition to scholarly publications arising from the WWW research, the complete dataset with an extensive editorial apparatus is provided for secondary analysis purposes, published through HRI Online at the University of Sheffield, the U.K.'s leading publisher of primary research materials in the humanities and social sciences (see Related Resources).
Whites Writing Whiteness investigates how ideas about ‘race’ in South Africa changed from the 1770s to the 1970s and the role of whiteness in this. It is a qualitative longitudinal research project and its primary data is letter-writing within multi-generational family networks, located in South African archive collections. Such collections are the focus because a supremely serial form of data, consequently enabling detailed investigation of change as it unfolded over the long period the research interrogates. They represent different ethnic origins, language groups, economic circumstances and areas of the country and their contents are not seen in a referential way, as sources of true or distorted facts, but as inscribing a complex representational order.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Zambia and South African dataset (CODA)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In 1913, South Africa’s Land Act set aside 87% of the country’s land for exclusive use and ownership by white people, helping to divide the nation into a relatively prosperous white heartland and a cluster of increasingly impoverished black reserves on the periphery and within cities (Walker, 2017). More than a century later, South Africa is still struggling to redress this historical injustice and the inequality it continues to foster. In December 2017, the ruling African National Congress (ANC) resolved to move ahead with land expropriation without compensation to speed up its land-reform program, although a multitude of policy details remain hotly contested (Grootes, 2018). The National Assembly has adopted a motion by the opposition Economic Freedom Fighters (EFF) endorsing this approach despite warnings of economic meltdown from the opposition Democratic Alliance (DA) (Goba, 2018). While the public debate rages on, Parliament’s Joint Constitutional Review Committee has been reviewing comments and submissions on the issue and is expected to announce its recommendation in November regarding a possible constitutional amendment (Parliamentary Monitoring Group, 2018). How do average citizens view land reform? Findings from the 2018 Afrobarometer survey show that South Africans want the government to prioritize redistributing land taken during forced removals of Black South Africans half a century ago, followed by agricultural land and vacant land in cities. But the survey also shows majority support for the government’s “willing seller-willing buyer” policy and for the right of farmers to retain ownership of land tenanted by laborers.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
These data comprise locations and individual metadata from 34 white sharks (Carcharodon carcharias) instrumented March-May 2012 with telemetry devices along the coast of South Africa. These devices were SPOT5 transmitters (SPOT-257, SPOT-258; Wildlife Computers) which transmit locations via ARGOS CLS. All research methods were approved and conducted under the South African Department of Environmental Affairs: Oceans and Coasts permitting authority.
This dataset is linked to the manuscript Kock et al. 2021 "Sex and size influence the spatiotemporal distribution of white sharks, with implications for interactions with fisheries and spatial management in the southwest Indian Ocean".
The data are structured in long format, so that each row in the dataset represents an observation. The columns in the data are as follows.
DeployID: This a factor variable identifying each individual shark. It has 34 levels.
SPOT: This is a numeric variable identifying the tag number unique to each shark.
Date: This is a date variable (POSIXct) that gives the date and time of a geographic location record in UTC time.
Type: This is a character variable identifying the type of location record.
Quality: This is a character variable made up of numbers and letters giving the location error associated with each location as provided by ARGOS.
Latitude: This is a numeric variable and gives the latitude of the shark at the time of each record.
Longitude: This is a numeric variable and gives the longitude of the shark at the time of each record.
Area_tagged: This is a character variable that gives the area where the shark was tagged.
Sex: This is a character variable identifying the sex of the shark, either "F" or "M" for female and male.
TL: This is a numeric variable giving the total length of the shark in centimetres.
Maturity: This is a character variable giving the maturity of the shark based on its total length following Malcolm et al. 2001: juveniles (male and female: 175-300 cm TL), sub-adults (male: >300-360 cm TL; females: >300-480 cm TL) and adults (male: >360 cm TL; female: >480 cm TL).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Youth Unemployment Rate in South Africa increased to 62.40 percent in the first quarter of 2025 from 59.60 percent in the fourth quarter of 2024. This dataset provides - South Africa Youth Unemployment Rate- actual values, historical data, forecast, chart, statistics, economic calendar and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Tobacco use and oral sex (OS) are important risk factors for oral and oropharyngeal Human papillomavirus (HPV) infection. Little is known about the prevalence of OS practice in South Africa. This study aimed to determine the prevalence of OS practice and tobacco use in a South African patient population. This cross-sectional study used a structured questionnaire to collect socio-demographic characteristics, tobacco use, betel nut use and OS practice data from consenting adults (≥18 years; n = 850). Oral sex practices were recorded for patients 18–45 years-old (n = 514). Data analysis included chi-square and multiple logistic regression analyses. Of the study population, 55.2% (n = 468) were female, 88% (n = 748) self-identified as black Africans and 45.1% (n = 383) were unemployed. Furthermore, 19.7% (n = 167), 6.4% (n = 54) and 2.1% (n = 18) were current smokers, snuff users and betel nut users, respectively. Out of the 514 who answered the questionnaire in relation to OS, 22.8% (n = 115) reported to practice it. Oral sex practice in the age group 18–45 years was most common among the self-identified white participants (41.9%); and among tobacco users than among non-tobacco users (30.9% vs. 20.5%; p = 0.022). A multivariable-adjusted regression model showed that white South Africans were more likely to use tobacco than black Africans (OR = 5.25; 95% CI = 2.21–12.47). The practice of OS was more likely among those 18–35 years-old (OR = 1.67; 95% CI = 1.01–2.74), but had no significant association with tobacco use (OR = 1.06; 95% CI = 0.62–1.83). The observed age and ethnic differences in both risk behaviours suggest a need for targeted population intervention in order to reduce the risk for oral HPV infection.
The Filled Land Surface Albedo Product for Southern Africa, which is generated from MOD43B3 Product (the official Terra/MODIS-derived Land Surface Albedo - http://geography.bu.edu/brdf/userguide/albedo.html ), is a subset of the global data set of spatially complete albedo maps computed for both white-sky and black-sky at 10 wavelengths. The data spatial extent is from approximately 5 degrees N to -30 degrees S latitude and 5 minutes E to 60 degrees E longitude and covers 7 sixteen day periods starting on July 11 through October 15, 2000.Map Products, containing spatially complete land surface albedo data, are generated at 1-minute resolution on an equal-angle grid. The maps are stored in separate HDF files for each wavelength, each 16-day period and each albedo type (white- and black-sky). Data belonging to black sky and white sky albedo have been zipped separately. This format allows the user to have flexibility to download and store only the data absolutely needed.The One-Minute Land Ecosystem Classification Product is a global (static map) data set of the International Geosphere-Biosphere Programme (IGBP) classification scheme stored on an equal-angle rectangular grid at 1-minute resolution. The dataset is generated from the official MODIS land ecosystem classification dataset, MOD12Q1 for year 2000, day 289 data (October 15, 2000). This dataset is used in generating the spatially complete albedo maps, but is also a stand-alone product designed for use by the user community. The Land Ecosystem Classification Map File product file is stored in Hierarchical Data Format (HDF).
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the median household incomes over the past decade across various racial categories identified by the U.S. Census Bureau in South Gorin. It portrays the median household income of the head of household across racial categories (excluding ethnicity) as identified by the Census Bureau. It also showcases the annual income trends, between 2011 and 2021, providing insights into the economic shifts within diverse racial communities.The dataset can be utilized to gain insights into income disparities and variations across racial categories, aiding in data analysis and decision-making..
Key observations
https://i.neilsberg.com/ch/south-gorin-mo-median-household-income-by-race-trends.jpeg" alt="South Gorin, MO median household income trends across races (2011-2021, in 2022 inflation-adjusted dollars)">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for South Gorin median household income by race. You can refer the same here