18 datasets found
  1. Racially or Ethnically Concentrated Areas of Poverty (R/ECAPs)

    • hub.arcgis.com
    • data.lojic.org
    • +3more
    Updated Aug 21, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Housing and Urban Development (2023). Racially or Ethnically Concentrated Areas of Poverty (R/ECAPs) [Dataset]. https://hub.arcgis.com/datasets/HUD::racially-or-ethnically-concentrated-areas-of-poverty-r-ecaps/about
    Explore at:
    Dataset updated
    Aug 21, 2023
    Dataset provided by
    United States Department of Housing and Urban Developmenthttp://www.hud.gov/
    Authors
    Department of Housing and Urban Development
    Area covered
    Description

    To assist communities in identifying racially/ethnically-concentrated areas of poverty (R/ECAPs), HUD has developed a census tract-based definition of R/ECAPs. The definition involves a racial/ethnic concentration threshold and a poverty test. The racial/ethnic concentration threshold is straightforward: R/ECAPs must have a non-white population of 50 percent or more. Regarding the poverty threshold, Wilson (1980) defines neighborhoods of extreme poverty as census tracts with 40 percent or more of individuals living at or below the poverty line. Because overall poverty levels are substantially lower in many parts of the country, HUD supplements this with an alternate criterion. Thus, a neighborhood can be a R/ECAP if it has a poverty rate that exceeds 40% or is three or more times the average tract poverty rate for the metropolitan/micropolitan area, whichever threshold is lower. Census tracts with this extreme poverty that satisfy the racial/ethnic concentration threshold are deemed R/ECAPs. This translates into the following equation: Where i represents census tracts, () is the metropolitan/micropolitan (CBSA) mean tract poverty rate, is the ith tract poverty rate, () is the non-Hispanic white population in tract i, and Pop is the population in tract i.While this definition of R/ECAP works well for tracts in CBSAs, place outside of these geographies are unlikely to have racial or ethnic concentrations as high as 50 percent. In these areas, the racial/ethnic concentration threshold is set at 20 percent.

    Data Source: American Community Survey (ACS), 2009-2013; Decennial Census (2010); Brown Longitudinal Tract Database (LTDB) based on decennial census data, 1990, 2000 & 2010.

    Related AFFH-T Local Government, PHA Tables/Maps: Table 4, 7; Maps 1-17. Related AFFH-T State Tables/Maps: Table 4, 7; Maps 1-15, 18.

    References:Wilson, William J. (1980). The Declining Significance of Race: Blacks and Changing American Institutions. Chicago: University of Chicago Press.

    To learn more about R/ECAPs visit:https://www.hud.gov/program_offices/fair_housing_equal_opp/affh ; https://www.hud.gov/sites/dfiles/FHEO/documents/AFFH-T-Data-Documentation-AFFHT0006-July-2020.pdf, for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov. Date of Coverage: 11/2017

  2. U.S. poverty rate 1990-2024

    • statista.com
    Updated Nov 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). U.S. poverty rate 1990-2024 [Dataset]. https://www.statista.com/statistics/200463/us-poverty-rate-since-1990/
    Explore at:
    Dataset updated
    Nov 19, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In 2024, approximately 10.6 percent of the population was living below the national poverty line in the United States. This reflected a 0.5 percentage point decrease from the previous year. Most recently, poverty levels in the country peaked in 2010 at just over 15 percent. Poverty in the U.S. States The number of people living in poverty in the U.S. as well as poverty rates, vary greatly from state to state. With their large populations, California and Texas led that charts in terms of the size of their impoverished residents. On the other hand, Louisiana had the highest rates of poverty, standing at 20 percent in 2024. The state with the lowest poverty rate was New Hampshire at 5.9 percent. Vulnerable populations The poverty rate in the United States varies widely across different ethnic groups. American Indians and Alaska Natives are the ethnic group with the highest levels of poverty in 2024, with about 19 percent earning an income below the official threshold. In comparison, only about 7.5 percent of the White (non-Hispanic) and Asian populations were living below the poverty line. Children are one of the most poverty endangered population groups in the U.S. between 1990 and 2024. Child poverty peaked in 1993 with 22.7 percent of children living in poverty. Despite fluctuations, in 2024, poverty among minors reached its lowest level in decades, falling to 14.3 percent.

  3. Poverty and low-income statistics by selected demographic characteristics

    • www150.statcan.gc.ca
    • open.canada.ca
    Updated Nov 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Poverty and low-income statistics by selected demographic characteristics [Dataset]. http://doi.org/10.25318/1110009301-eng
    Explore at:
    Dataset updated
    Nov 7, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Poverty and low-income statistics by visible minority group, Indigenous group and immigration status, Canada and provinces.

  4. d

    Poverty Rate

    • data.ore.dc.gov
    Updated Aug 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Washington, DC (2024). Poverty Rate [Dataset]. https://data.ore.dc.gov/datasets/poverty-rate
    Explore at:
    Dataset updated
    Aug 28, 2024
    Dataset authored and provided by
    City of Washington, DC
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    ACS 1-year estimates are based on data collected over one calendar year, offering more current information but with a higher margin of error. ACS 5-year estimates combine five years of data, providing more reliable information but less current. Both are based on probability samples. Some racial and ethnic categories are suppressed to avoid misleading estimates when the relative standard error exceeds 30%.

    Data Source: American Community Survey (ACS) 1- & 5-Year Estimates

    Why This Matters

    Poverty threatens the overall well-being of individuals and families, limiting access to stable housing, healthy foods, health care, and educational and employment opportunities, among other basic needs.Poverty is associated with a higher risk of adverse health outcomes, including chronic physical and mental illness, lower life expectancy, developmental delays, and others.

    Racist policies and practices have contributed to racial economic inequities. Nationally, Black, Indigenous, and people of color experience poverty at higher rates than white Americans, on average.

    The District's Response

    Boosting assistance programs that provide temporary cash and health benefits to help low-income residents meet their basic needs, including Medicaid, TANF For District Families, SNAP, etc.

    Housing assistance and employment and career training programs to support resident’s housing and employment security. These include the Emergency Rental Assistance Program, Permanent Supportive Housing vouchers, Career MAP, the DC Infrastructure Academy, among other programs and services.

    Creation of the DC Commission on Poverty to study poverty issues, evaluate poverty reduction initiatives, and make recommendations to the Mayor and the Council.

  5. FiveThirtyEight Hate Crimes Dataset

    • kaggle.com
    zip
    Updated Apr 26, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FiveThirtyEight (2019). FiveThirtyEight Hate Crimes Dataset [Dataset]. https://www.kaggle.com/datasets/fivethirtyeight/fivethirtyeight-hate-crimes-dataset/data
    Explore at:
    zip(3407 bytes)Available download formats
    Dataset updated
    Apr 26, 2019
    Dataset authored and provided by
    FiveThirtyEighthttps://abcnews.go.com/538
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Content

    Hate Crimes

    This folder contains data behind the story Higher Rates Of Hate Crimes Are Tied To Income Inequality.

    HeaderDefinition
    stateState name
    median_household_incomeMedian household income, 2016
    share_unemployed_seasonalShare of the population that is unemployed (seasonally adjusted), Sept. 2016
    share_population_in_metro_areasShare of the population that lives in metropolitan areas, 2015
    share_population_with_high_school_degreeShare of adults 25 and older with a high-school degree, 2009
    share_non_citizenShare of the population that are not U.S. citizens, 2015
    share_white_povertyShare of white residents who are living in poverty, 2015
    gini_indexGini Index, 2015
    share_non_whiteShare of the population that is not white, 2015
    share_voters_voted_trumpShare of 2016 U.S. presidential voters who voted for Donald Trump
    hate_crimes_per_100k_splcHate crimes per 100,000 population, Southern Poverty Law Center, Nov. 9-18, 2016
    avg_hatecrimes_per_100k_fbiAverage annual hate crimes per 100,000 population, FBI, 2010-2015

    Sources: Kaiser Family Foundation Kaiser Family Foundation Kaiser Family Foundation Census Bureau Kaiser Family Foundation Kaiser Family Foundation Census Bureau Kaiser Family Foundation United States Elections Project Southern Poverty Law Center FBI

    Correction

    Please see the following commit: https://github.com/fivethirtyeight/data/commit/fbc884a5c8d45a0636e1d6b000021632a0861986

    Context

    This is a dataset from FiveThirtyEight hosted on their GitHub. Explore FiveThirtyEight data using Kaggle and all of the data sources available through the FiveThirtyEight organization page!

    • Update Frequency: This dataset is updated daily.

    Acknowledgements

    This dataset is maintained using GitHub's API and Kaggle's API.

    This dataset is distributed under the Attribution 4.0 International (CC BY 4.0) license.

  6. d

    Data from: Highlighting health consequences of racial disparities sparks...

    • search.dataone.org
    • data.niaid.nih.gov
    • +1more
    Updated Jul 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Riana M. Brown; Pia Dietze; Maureen A. Craig (2025). Highlighting health consequences of racial disparities sparks support for action [Dataset]. http://doi.org/10.5061/dryad.cz8w9gj8t
    Explore at:
    Dataset updated
    Jul 24, 2025
    Dataset provided by
    Dryad Digital Repository
    Authors
    Riana M. Brown; Pia Dietze; Maureen A. Craig
    Time period covered
    Jan 1, 2023
    Description

    Racial disparities arise across many vital areas of American life, including employment, health, and interpersonal treatment. For example, 1 in 3 Black children live in poverty (vs. 1 in 9 White children) and on average, Black Americans live 4 fewer years than White Americans. Which disparity is more likely to spark reduction efforts? We find that highlighting disparities in health-related (vs. economic) outcomes spurs greater social media engagement and support for disparity-mitigating policy. Further, reading about racial health disparities elicits greater support for action (e.g., protesting) than economic or belonging-based disparities. This occurs, in part, because people view health disparities as violating morally-sacred values which enhances perceived injustice. This work elucidates which manifestations of racial inequality are most likely to prompt Americans to action., The data from Studies 1a, 1b, 3, 4a, and 4b were collected via online platfroms (i.e., Mturk.com, Prolific Academic, and NORC’s AmeriSpeak Panel). All analyses were run in R with the R code provided (title: Health_Disparities_Syntax.R)., , # Highlighting Health Consequences of Racial Disparities Sparks Support for Action

    There are a total of 5 datasets available (Studies 1a, 1b, 3, 4a, 4b) each collected by the researchers from online survey platforms. All data files are .sav files. We recommed using SPSS or RStudio to work with the data. We provide our code using RStudio and a codebook with the name of all variables in each dataset.

    Description of the data and file structure

    Study 1a and Study 1b utilized a within-subjects experimental design (S1a: N=191; S1b, preregistered: N=337, 50% White participants, 50% Black participants) where samples of U.S. citizens recruited from MTurk.com and Prolific Academic read nine examples of racial disparities, three each from the domains of health, economics, and belonging. After each example, participants reported whether the disparity was unjust and fair (reverse-coded; 2-items averaged to create a perceived injustice scale). Participants also indicated their agreement (1=s...

  7. d

    Demographics

    • catalog.data.gov
    • datasets.ai
    • +4more
    Updated Nov 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lake County Illinois GIS (2024). Demographics [Dataset]. https://catalog.data.gov/dataset/demographics-0be32
    Explore at:
    Dataset updated
    Nov 22, 2024
    Dataset provided by
    Lake County Illinois GIS
    Description

    Lake County, Illinois Demographic Data. Explanation of field attributes: Total Population – The entire population of Lake County. White – Individuals who are of Caucasian race. This is a percent.African American – Individuals who are of African American race. This is a percent.Asian – Individuals who are of Asian race. This is a percent. Hispanic – Individuals who are of Hispanic ethnicity. This is a percent. Does not Speak English- Individuals who speak a language other than English in their household. This is a percent. Under 5 years of age – Individuals who are under 5 years of age. This is a percent. Under 18 years of age – Individuals who are under 18 years of age. This is a percent. 18-64 years of age – Individuals who are between 18 and 64 years of age. This is a percent. 65 years of age and older – Individuals who are 65 years old or older. This is a percent. Male – Individuals who are male in gender. This is a percent. Female – Individuals who are female in gender. This is a percent. High School Degree – Individuals who have obtained a high school degree. This is a percent. Associate Degree – Individuals who have obtained an associate degree. This is a percent. Bachelor’s Degree or Higher – Individuals who have obtained a bachelor’s degree or higher. This is a percent. Utilizes Food Stamps – Households receiving food stamps/ part of SNAP (Supplemental Nutrition Assistance Program). This is a percent. Median Household Income - A median household income refers to the income level earned by a given household where half of the homes in the area earn more and half earn less. This is a dollar amount. No High School – Individuals who have not obtained a high school degree. This is a percent. Poverty – Poverty refers to families and people whose income in the past 12 months is below the poverty level. This is a percent.

  8. People without internet

    • kaggle.com
    zip
    Updated Jan 11, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GL_Li (2018). People without internet [Dataset]. https://www.kaggle.com/madaha/people-without-internet
    Explore at:
    zip(61176 bytes)Available download formats
    Dataset updated
    Jan 11, 2018
    Authors
    GL_Li
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    Every Kaggler uses internet. Internet is a necessity in our daily life and many people consider it as a utility like water, electricity and gas. But do you know how many households in the US do not have internet, who are these people, and why they do not have internet?

    The U.S. Census Bureau began asking internet use in American Community Survey (ACS) in 2013, as part of the 2008 Broadband Data Improvement Act, and has published 1-year estimate each year since 2013. The recent 2016 data shows that in many counties, over a quarter of household still do not have internet access.

    Content

    This dataset contains data for counties with population over 65000, compiled from the 2016 ACS 1-year estimate. ACS 1-year estimates only summarize data for large geographic areas over 65000 population. The 2013-2017 ACS 5-year estimate is expected to be published at the end of 2018, which has data of all geographic areas down to block group level. Before that we will use the latest 2016 1-year estimate. It provides sufficient data for us to gain insight into internet use.

    This dataset is created with totalcensus package for R programming. Here are the list of columns:

    • county: name of the county
    • state: abbreviation of the state where the county is in
    • CEOID: geographic identifier for the county
    • lon: longitude of a point inside the county
    • lat: latitude of the point
    • P_total: total population
    • P_white: population of white, single race
    • P_black: population of black, single race
    • P_asian: population of asian, single race
    • P_native: population of native Indians and Alaska natives, single race
    • P_Hawaiian: population of Hawaiian and Pacific Islanders, single race
    • P_other: population of other people, single race
    • P_below_middle_school: population with education at or below 8th grade
    • P_some_high_school: population having some years in high school but without a diploma
    • P_high_school_equivalent: population with high school diploma or equivalent
    • P_some_college: Population having associate degree or some years in college without bachelor degree
    • P_bachelor_and_above: population with bachelor, master, professional, or doctor degrees
    • P_below_poverty: population living below poverty line
    • median_age: median age of population
    • gini_index: gini index
    • median_household_income: median household income
    • median_rent_per_income: median percent of income spent on rent
    • percent_no_internet: percent of household without internet connection

    Acknowledgements

    All data come from 2016 ACS 1-year estimate.

    Inspiration

    The U.S. Census Bureau has published tons of data that are available to public. We can create datasets from these public data to address questions we are interested in.

  9. l

    Poverty Rate

    • geohub.lacity.org
    Updated Dec 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2023). Poverty Rate [Dataset]. https://geohub.lacity.org/datasets/lacounty::poverty-rate
    Explore at:
    Dataset updated
    Dec 22, 2023
    Dataset authored and provided by
    County of Los Angeles
    Area covered
    Description

    For the past several censuses, the Census Bureau has invited people to self-respond before following up in-person using census takers. The 2010 Census invited people to self-respond predominately by returning paper questionnaires in the mail. The 2020 Census allows people to self-respond in three ways: online, by phone, or by mail. The 2020 Census self-response rates are self-response rates for current census geographies. These rates are the daily and cumulative self-response rates for all housing units that received invitations to self-respond to the 2020 Census. The 2020 Census self-response rates are available for states, counties, census tracts, congressional districts, towns and townships, consolidated cities, incorporated places, tribal areas, and tribal census tracts. The Self-Response Rate of Los Angeles County is 65.1% for 2020 Census, which is slightly lower than 69.6% of California State rate. More information about these data are available in the Self-Response Rates Map Data and Technical Documentation document associated with the 2020 Self-Response Rates Map or review our FAQs. Animated Self-Response Rate 2010 vs 2020 is available at ESRI site SRR Animated Maps and can explore Census 2020 SRR data at ESRI Demographic site Census 2020 SSR Data. Following Demographic Characteristics are included in this data and web maps to visualize their relationships with Census Self-Response Rate (SRR)..1. Population Density2. Poverty Rate3. Median Household income4. Education Attainment5. English Speaking Ability6. Household without Internet Access7. Non-Hispanic White Population8. Non-Hispanic African-American Population9. Non-Hispanic Asian Population10. Hispanic Population

  10. San Francisco Flood Health Vulnerability

    • kaggle.com
    zip
    Updated Jan 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). San Francisco Flood Health Vulnerability [Dataset]. https://www.kaggle.com/datasets/thedevastator/san-francisco-flood-health-vulnerability
    Explore at:
    zip(45285 bytes)Available download formats
    Dataset updated
    Jan 23, 2023
    Authors
    The Devastator
    Area covered
    San Francisco
    Description

    San Francisco Flood Health Vulnerability

    Socioeconomic, Demographic, Health, and Housing Indicators

    By City of San Francisco [source]

    About this dataset

    This dataset provides a comprehensive composite index that captures the relative vulnerability of San Francisco communities to the health impacts of flooding and extreme storms. Predominantly sourced from local governmental health, housing, and public data sources, this index is constructed from an array of socio-economic factors, exposure indices,Health indicators and housing attributes. Used as a valuable planning tool for both health and climate adaptation initiatives throughout San Francisco, this dataset helps to identify vulnerable populations within the city such as areas with high concentrations of children or elderly individuals. Data points included in this index include: census blockgroup numbers; the percentage of population under 18 years old; percentage of population above 65; percentage non-white; poverty levels; education level; yearly precipitation estimates; diabetes prevalence rate; mental health issues reported in the area; asthma cases by geographic location;; disability rates within each block group measure as well as housing quality metrics. All these components provide a broader understanding on how best to tackle issues faced within SF arising from any form of climate change related weather event such as floods or extreme storms

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This dataset can be used to analyze the vulnerability of the population in San Francisco to the health impacts of floods and storms. This dataset includes a number of important indicators such as poverty, education, demographic, exposure and health-related information. These indicators can be useful for developing effective strategies for health and climate adaptation in an urban area.

    To get started with this dataset: First, review the data dictionary provided in the attachments section of this metadata to understand each variable that you plan on using in your analysis. Second, see if there are any null or missing values in your columns by checking out ‘Null Value’ column provided in this metadata sheet and look at how they will affect your analysis - use appropriate methods to handle those values based on your goals and objectives. Thirdly begin exploring relationships between different variables using visualizations like pandas scatter_matrix() & pandas .corr() . These tools can help you identify potential strong correlations between certain variables that you may have not seen otherwise through simple inspection of the data.

    Lastly if needed use modelling techniques like regression analysis or other quantitative methods like ANOVA’s etc., for further elaboration on understanding relationships between different parameters involved as per need basis

    Research Ideas

    • Developing targeted public health interventions focused on high-risk areas/populations as identified in the vulnerability index.
    • Establishing criteria for insurance premiums and policies within high-risk areas/populations to incentivize adaption to climate change.
    • Visual mapping of individual indicators in order to identify trends and correlations between flood risk and socioeconomic indicators, resource availability, and/or healthcare provision levels at a granular level

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    See the dataset description for more information.

    Columns

    File: san-francisco-flood-health-vulnerability-1.csv | Column name | Description | |:---------------------------|:----------------------------------------------------------------------------------------| | Census Blockgroup | Unique numerical identifier for each block in the city. (Integer) | | Children | Percentage of population under 18 years of age. (Float) | | Children_wNULLvalues | Percentage of population under 18 years of age with null values. (Float) | | Elderly | Percentage of population over 65 years of age. (Float) | | Elderly_wNULLvalues | Percentage of population over 65 years of age with null values. (Float) | | NonWhite | Percentage of non-white population. (Float) ...

  11. g

    Strategic Measure EOA.B.3 Number and percentage of Census tracts meeting...

    • gimi9.com
    Updated Sep 26, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). Strategic Measure EOA.B.3 Number and percentage of Census tracts meeting criteria for R/ECAP | gimi9.com [Dataset]. https://gimi9.com/dataset/data-gov_strategic-measure-eoa-b-2-number-and-percentage-of-census-tracts-meeting-criteria-for-r-ec/
    Explore at:
    Dataset updated
    Sep 26, 2020
    Description

    This is a historical measure from Strategic Direction 2023. Racially/Ethnically Concentrated Areas of Poverty (R/ECAPs) must have a non-white population of 50 percent or more. Regarding the poverty threshold, neighborhoods of extreme poverty are census tracts with 40 percent or more of individuals living at or below the poverty line. Calculation involved totaling the number and percentage of tracts that are meet criteria for RECAP. Learn more about the HUD RECAP calculation process here: http://hudgis-hud.opendata.arcgis.com/datasets/56de4edea8264fe5a344da9811ef5d6e_0. Data collected from the HUD portal View more details and insights related to this measure on the story page: https://data.austintexas.gov/stories/s/qn7g-mcec

  12. Urban Institute Racial and Economic Indexes

    • kaggle.com
    zip
    Updated Nov 29, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ben_White (2020). Urban Institute Racial and Economic Indexes [Dataset]. https://www.kaggle.com/benwhite/urban-institute-racial-and-economic-indexes
    Explore at:
    zip(5583 bytes)Available download formats
    Dataset updated
    Nov 29, 2020
    Authors
    Ben_White
    Description

    Urban Institute racial and economic inclusion indexes for 2016; extracted from source: https://apps.urban.org/features/inclusion/?topic=map.

    The racial inclusion index is made up of five measures: racial segregation (white/person of color dissimilarity index), homeownership gap, educational attainment gap, poverty rate gap, and share of people of color. All racial gap measures calculate the disparity between white non-Hispanic residents and residents of color. For this analysis, we define people of color as any person identifying in US Census Bureau records as Black or African American, American Indian or Alaska Native, Asian, Native Hawaiian or other Pacific Islander, other race, two or more races, or Hispanic or Latino white. We recognize the issues that arise with placing all these groups under one umbrella—both in defining identity in comparison with whiteness and in papering over differences in how different groups experience state-sanctioned, institutionalized, systemic, and individual forms of racism. This broad racial disparity measure allows us to compare cities with differing demographic patterns while limiting the size of sampling error for groups within cities that have small populations.

    The economic inclusion index is made up of four measures: income segregation (rank-order information theory index), rent burden, share of 16- to 19-year-olds who are not in school and have not graduated, and working poor. The overall inclusion index is the composite of the racial and economic inclusion indices. The economic health index is made up of four indicators: percentage change in employed people period over period, median family income, unemployment rate, and housing vacancy rate.

  13. w

    Concentrations of Protected Classes from Analysis of Impediments

    • data.wu.ac.at
    application/excel +5
    Updated Sep 22, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lauren (2017). Concentrations of Protected Classes from Analysis of Impediments [Dataset]. https://data.wu.ac.at/odso/data_austintexas_gov/NjkyYi14c2l0
    Explore at:
    xlsx, csv, json, application/excel, xml, application/xml+rdfAvailable download formats
    Dataset updated
    Sep 22, 2017
    Dataset provided by
    Lauren
    Description

    A new component of fair housing studies is an analysis of the opportunities residents are afforded in “racially or ethnically concentrated areas of poverty,” also called RCAPs or ECAPs. An RCAP or ECAP is a neighborhood with significant concentrations of extreme poverty and minority populations. HUD’s definition of an RCAP/ECAP is: • A Census tract that has a non‐white population of 50 percent or more AND a poverty rate of 40 percent or more; OR • A Census tract that has a non‐white population of 50 percent or more AND the poverty rate is three times the average tract poverty rate for the metro/micro area, whichever is lower.

    Why the 40 percent threshold? The RCAP/ECAP definition is not meant to suggest that a slightly‐lower‐than‐40 percent poverty rate is ideal or acceptable. The threshold was borne out of research that concluded a 40 percent poverty rate was the point at which a neighborhood became significantly socially and economically challenged. Conversely, research has shown that areas with up to 14 percent of poverty have no noticeable effect on community opportunity. (See Section II in City of Austin’s 2015 Analysis of Impediments to Fair Housing Choice: http://www.austintexas.gov/sites/default/files/files/NHCD/Reports_Publications/1Analysis_Impediments_for_web.pdf)

    This dataset provides socioeconomic data on protected classes from the 2008-2012 American Community Survey on census tracts in Austin’s city limits and designates which of those tracts are considered RCAPs or ECAPs based on these socioeconomic characteristics. A map of the census tracts designated as RCAPs or ECAPs is attached to this dataset and downloadable as a pdf (see below).

  14. t

    Tucson Equity Priority Index (TEPI): Ward 1 Census Block Groups

    • teds.tucsonaz.gov
    Updated Feb 4, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tucson (2025). Tucson Equity Priority Index (TEPI): Ward 1 Census Block Groups [Dataset]. https://teds.tucsonaz.gov/datasets/tucson-equity-priority-index-tepi-ward-1-census-block-groups/explore
    Explore at:
    Dataset updated
    Feb 4, 2025
    Dataset authored and provided by
    City of Tucson
    Area covered
    Description

    For detailed information, visit the Tucson Equity Priority Index StoryMap.Download the Data DictionaryWhat is the Tucson Equity Priority Index (TEPI)?The Tucson Equity Priority Index (TEPI) is a tool that describes the distribution of socially vulnerable demographics. It categorizes the dataset into 5 classes that represent the differing prioritization needs based on the presence of social vulnerability: Low (0-20), Low-Moderate (20-40), Moderate (40-60), Moderate-High (60-80) High (80-100). Each class represents 20% of the dataset’s features in order of their values. The features within the Low (0-20) classification represent the areas that, when compared to all other locations in the study area, have the lowest need for prioritization, as they tend to have less socially vulnerable demographics. The features that fall into the High (80-100) classification represent the 20% of locations in the dataset that have the greatest need for prioritization, as they tend to have the highest proportions of socially vulnerable demographics. How is social vulnerability measured?The Tucson Equity Priority Index (TEPI) examines the proportion of vulnerability per feature using 11 demographic indicators:Income Below Poverty: Households with income at or below the federal poverty level (FPL), which in 2023 was $14,500 for an individual and $30,000 for a family of fourUnemployment: Measured as the percentage of unemployed persons in the civilian labor forceHousing Cost Burdened: Homeowners who spend more than 30% of their income on housing expenses, including mortgage, maintenance, and taxesRenter Cost Burdened: Renters who spend more than 30% of their income on rentNo Health Insurance: Those without private health insurance, Medicare, Medicaid, or any other plan or programNo Vehicle Access: Households without automobile, van, or truck accessHigh School Education or Less: Those highest level of educational attainment is a High School diploma, equivalency, or lessLimited English Ability: Those whose ability to speak English is "Less Than Well."People of Color: Those who identify as anything other than Non-Hispanic White Disability: Households with one or more physical or cognitive disabilities Age: Groups that tend to have higher levels of vulnerability, including children (those below 18), and seniors (those 65 and older)An overall percentile value is calculated for each feature based on the total proportion of the above indicators in each area. How are the variables combined?These indicators are divided into two main categories that we call Thematic Indices: Economic and Personal Characteristics. The two thematic indices are further divided into five sub-indices called Tier-2 Sub-Indices. Each Tier-2 Sub-Index contains 2-3 indicators. Indicators are the datasets used to measure vulnerability within each sub-index. The variables for each feature are re-scaled using the percentile normalization method, which converts them to the same scale using values between 0 to 100. The variables are then combined first into each of the five Tier-2 Sub-Indices, then the Thematic Indices, then the overall TEPI using the mean aggregation method and equal weighting. The resulting dataset is then divided into the five classes, where:High Vulnerability (80-100%): Representing the top classification, this category includes the highest 20% of regions that are the most socially vulnerable. These areas require the most focused attention. Moderate-High Vulnerability (60-80%): This upper-middle classification includes areas with higher levels of vulnerability compared to the median. While not the highest, these areas are more vulnerable than a majority of the dataset and should be considered for targeted interventions. Moderate Vulnerability (40-60%): Representing the middle or median quintile, this category includes areas of average vulnerability. These areas may show a balanced mix of high and low vulnerability. Detailed examination of specific indicators is recommended to understand the nuanced needs of these areas. Low-Moderate Vulnerability (20-40%): Falling into the lower-middle classification, this range includes areas that are less vulnerable than most but may still exhibit certain vulnerable characteristics. These areas typically have a mix of lower and higher indicators, with the lower values predominating. Low Vulnerability (0-20%): This category represents the bottom classification, encompassing the lowest 20% of data points. Areas in this range are the least vulnerable, making them the most resilient compared to all other features in the dataset.

  15. f

    Data from: Understanding Racial HIV/STI Disparities in Black and White Men...

    • datasetcatalog.nlm.nih.gov
    • plos.figshare.com
    Updated Mar 7, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    del Rio, Carlos; Mulligan, Mark; Rosenberg, Eli S.; Salazar, Laura F.; Peterson, John; Sanchez, Travis H.; Kelley, Colleen F.; Sullivan, Patrick S.; Wingood, Gina; Vaughan, Adam; DiClemente, Ralph; Cooper, Hannah; Frew, Paula (2014). Understanding Racial HIV/STI Disparities in Black and White Men Who Have Sex with Men: A Multilevel Approach [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001191532
    Explore at:
    Dataset updated
    Mar 7, 2014
    Authors
    del Rio, Carlos; Mulligan, Mark; Rosenberg, Eli S.; Salazar, Laura F.; Peterson, John; Sanchez, Travis H.; Kelley, Colleen F.; Sullivan, Patrick S.; Wingood, Gina; Vaughan, Adam; DiClemente, Ralph; Cooper, Hannah; Frew, Paula
    Description

    BackgroundThe reasons for black/white disparities in HIV epidemics among men who have sex with men have puzzled researchers for decades. Understanding reasons for these disparities requires looking beyond individual-level behavioral risk to a more comprehensive framework.Methods and FindingsFrom July 2010-Decemeber 2012, 803 men (454 black, 349 white) were recruited through venue-based and online sampling; consenting men were provided HIV and STI testing, completed a behavioral survey and a sex partner inventory, and provided place of residence for geocoding. HIV prevalence was higher among black (43%) versus white (13% MSM (prevalence ratio (PR) 3.3, 95% confidence interval (CI): 2.5–4.4). Among HIV-positive men, the median CD4 count was significantly lower for black (490 cells/µL) than white (577 cells/µL) MSM; there was no difference in the HIV RNA viral load by race. Black men were younger, more likely to be bisexual and unemployed, had less educational attainment, and reported fewer male sex partners, fewer unprotected anal sex partners, and less non-injection drug use. Black MSM were significantly more likely than white MSM to have rectal chlamydia and gonorrhea, were more likely to have racially concordant partnerships, more likely to have casual (one-time) partners, and less likely to discuss serostatus with partners. The census tracts where black MSM lived had higher rates of poverty and unemployment, and lower median income. They also had lower proportions of male-male households, lower male to female sex ratios, and lower HIV diagnosis rates.ConclusionsAmong black and white MSM in Atlanta, disparities in HIV and STI prevalence by race are comparable to those observed nationally. We identified differences between black and white MSM at the individual, dyadic/sexual network, and community levels. The reasons for black/white disparities in HIV prevalence in Atlanta are complex, and will likely require a multilevel framework to understand comprehensively.

  16. t

    Tucson Equity Priority Index (TEPI): Pima County Block Groups

    • teds.tucsonaz.gov
    Updated Jul 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tucson (2024). Tucson Equity Priority Index (TEPI): Pima County Block Groups [Dataset]. https://teds.tucsonaz.gov/maps/cotgis::tucson-equity-priority-index-tepi-pima-county-block-groups
    Explore at:
    Dataset updated
    Jul 23, 2024
    Dataset authored and provided by
    City of Tucson
    Area covered
    Description

    For detailed information, visit the Tucson Equity Priority Index StoryMap.Download the Data DictionaryWhat is the Tucson Equity Priority Index (TEPI)?The Tucson Equity Priority Index (TEPI) is a tool that describes the distribution of socially vulnerable demographics. It categorizes the dataset into 5 classes that represent the differing prioritization needs based on the presence of social vulnerability: Low (0-20), Low-Moderate (20-40), Moderate (40-60), Moderate-High (60-80) High (80-100). Each class represents 20% of the dataset’s features in order of their values. The features within the Low (0-20) classification represent the areas that, when compared to all other locations in the study area, have the lowest need for prioritization, as they tend to have less socially vulnerable demographics. The features that fall into the High (80-100) classification represent the 20% of locations in the dataset that have the greatest need for prioritization, as they tend to have the highest proportions of socially vulnerable demographics. How is social vulnerability measured?The Tucson Equity Priority Index (TEPI) examines the proportion of vulnerability per feature using 11 demographic indicators:Income Below Poverty: Households with income at or below the federal poverty level (FPL), which in 2023 was $14,500 for an individual and $30,000 for a family of fourUnemployment: Measured as the percentage of unemployed persons in the civilian labor forceHousing Cost Burdened: Homeowners who spend more than 30% of their income on housing expenses, including mortgage, maintenance, and taxesRenter Cost Burdened: Renters who spend more than 30% of their income on rentNo Health Insurance: Those without private health insurance, Medicare, Medicaid, or any other plan or programNo Vehicle Access: Households without automobile, van, or truck accessHigh School Education or Less: Those highest level of educational attainment is a High School diploma, equivalency, or lessLimited English Ability: Those whose ability to speak English is "Less Than Well."People of Color: Those who identify as anything other than Non-Hispanic White Disability: Households with one or more physical or cognitive disabilities Age: Groups that tend to have higher levels of vulnerability, including children (those below 18), and seniors (those 65 and older)An overall percentile value is calculated for each feature based on the total proportion of the above indicators in each area. How are the variables combined?These indicators are divided into two main categories that we call Thematic Indices: Economic and Personal Characteristics. The two thematic indices are further divided into five sub-indices called Tier-2 Sub-Indices. Each Tier-2 Sub-Index contains 2-3 indicators. Indicators are the datasets used to measure vulnerability within each sub-index. The variables for each feature are re-scaled using the percentile normalization method, which converts them to the same scale using values between 0 to 100. The variables are then combined first into each of the five Tier-2 Sub-Indices, then the Thematic Indices, then the overall TEPI using the mean aggregation method and equal weighting. The resulting dataset is then divided into the five classes, where:High Vulnerability (80-100%): Representing the top classification, this category includes the highest 20% of regions that are the most socially vulnerable. These areas require the most focused attention. Moderate-High Vulnerability (60-80%): This upper-middle classification includes areas with higher levels of vulnerability compared to the median. While not the highest, these areas are more vulnerable than a majority of the dataset and should be considered for targeted interventions. Moderate Vulnerability (40-60%): Representing the middle or median quintile, this category includes areas of average vulnerability. These areas may show a balanced mix of high and low vulnerability. Detailed examination of specific indicators is recommended to understand the nuanced needs of these areas. Low-Moderate Vulnerability (20-40%): Falling into the lower-middle classification, this range includes areas that are less vulnerable than most but may still exhibit certain vulnerable characteristics. These areas typically have a mix of lower and higher indicators, with the lower values predominating. Low Vulnerability (0-20%): This category represents the bottom classification, encompassing the lowest 20% of data points. Areas in this range are the least vulnerable, making them the most resilient compared to all other features in the dataset.

  17. Gallup/Newsweek Poll: Race Relations, 1988

    • archive.ciser.cornell.edu
    Updated Jan 3, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Newsweek, inc. (2020). Gallup/Newsweek Poll: Race Relations, 1988 [Dataset]. http://doi.org/10.6077/5zt4-aa15
    Explore at:
    Dataset updated
    Jan 3, 2020
    Dataset provided by
    Newsweek Inchttp://investing.businessweek.com/research/stocks/private/snapshot.asp?privcapId=759911
    Authors
    Newsweek, inc.
    Variables measured
    Individual
    Description

    This public opinion poll was conducted on February 19-22, 1988 via telephone with a sample size of 937 (632 white adults, 305 black adults). The topics covered include: family standard of living compared to 5 years prior, whites' attitude towards blacks, relationship between blacks and whites, the cause of poverty among blacks, government's involvement in helping blacks, perception of black leaders, and the actions of blacks to improve this situation.

    Please Note: This dataset is part of the historical CISER Data Archive Collection and is also available at the Roper Center for Public Opinion Research at https://doi.org/10.25940/ROPER-31089410. We highly recommend using the Roper Center version as they made this dataset available in multiple data formats.

  18. a

    2018 ACS Demographic & Socio-Economic Data Of USA At Census Tract Level

    • one-health-data-hub-osu-geog.hub.arcgis.com
    Updated May 22, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    snakka_OSU_GEOG (2024). 2018 ACS Demographic & Socio-Economic Data Of USA At Census Tract Level [Dataset]. https://one-health-data-hub-osu-geog.hub.arcgis.com/datasets/5b67f243e6584ef1986f815932020034
    Explore at:
    Dataset updated
    May 22, 2024
    Dataset authored and provided by
    snakka_OSU_GEOG
    Area covered
    Description

    Data SourcesAmerican Community Survey (ACS):Conducted by: U.S. Census BureauDescription: The ACS is an ongoing survey that provides detailed demographic and socio-economic data on the population and housing characteristics of the United States.Content: The survey collects information on various topics such as income, education, employment, health insurance coverage, and housing costs and conditions.Frequency: The ACS offers more frequent and up-to-date information compared to the decennial census, with annual estimates produced based on a rolling sample of households.Purpose: ACS data is essential for policymakers, researchers, and communities to make informed decisions and address the evolving needs of the population.CDC/ATSDR Social Vulnerability Index (SVI):Created by: ATSDR’s Geospatial Research, Analysis & Services Program (GRASP)Utilized by: CDCDescription: The SVI is designed to identify and map communities that are most likely to need support before, during, and after hazardous events.Content: SVI ranks U.S. Census tracts based on 15 social factors, including unemployment, minority status, and disability, and groups them into four related themes. Each tract receives rankings for each Census variable and for each theme, as well as an overall ranking, indicating its relative vulnerability.Purpose: SVI data provides insights into the social vulnerability of communities at the census tract level, helping public health officials and emergency response planners allocate resources effectively.Utilization and IntegrationBy integrating data from both the ACS and the SVI, this dataset enables an in-depth analysis and understanding of various socio-economic and demographic indicators at the census tract level. This integrated data is valuable for research, policymaking, and community planning purposes, allowing for a comprehensive understanding of social and economic dynamics across different geographical areas in the United States.ApplicationsLocalized Interventions: Facilitates the development of localized interventions to address the needs of vulnerable populations within specific census tracts.Resource Allocation: Assists emergency response planners in allocating resources more effectively based on community vulnerability at the census tract level.Research: Provides a detailed dataset for academic and applied research in socio-economic and demographic studies at a granular census tract level.Community Planning: Supports the planning and development of community programs and initiatives aimed at improving living conditions and reducing vulnerabilities within specific census tract areas.Note: Due to limitations in the data environment, variable names may be truncated. Refer to the provided table for a clear understanding of the variables.CSV Variable NameShapefile Variable NameDescriptionStateNameStateNameName of the stateStateFipsStateFipsState-level FIPS codeState nameStateNameName of the stateCountyNameCountyNameName of the countyCensusFipsCensusFipsCounty-level FIPS codeState abbreviationStateFipsState abbreviationCountyFipsCountyFipsCounty-level FIPS codeCensusFipsCensusFipsCounty-level FIPS codeCounty nameCountyNameName of the countyAREA_SQMIAREA_SQMITract area in square milesE_TOTPOPE_TOTPOPPopulation estimates, 2014-2018 ACSEP_POVEP_POVPercentage of persons below poverty estimateEP_UNEMPEP_UNEMPUnemployment Rate estimateEP_HBURDEP_HBURDHousing cost burdened occupied housing units with annual income less than $75,000EP_UNINSUREP_UNINSURUninsured in the total civilian noninstitutionalized population estimate, 2014-2018 ACSEP_PCIEP_PCIPer capita income estimate, 2014-2018 ACSEP_DISABLEP_DISABLPercentage of civilian noninstitutionalized population with a disability estimate, 2014-2018 ACSEP_SNGPNTEP_SNGPNTPercentage of single parent households with children under 18 estimate, 2014-2018 ACSEP_MINRTYEP_MINRTYPercentage minority (all persons except white, non-Hispanic) estimate, 2014-2018 ACSEP_LIMENGEP_LIMENGPercentage of persons (age 5+) who speak English "less than well" estimate, 2014-2018 ACSEP_MUNITEP_MUNITPercentage of housing in structures with 10 or more units estimateEP_MOBILEEP_MOBILEPercentage of mobile homes estimateEP_CROWDEP_CROWDPercentage of occupied housing units with more people than rooms estimateEP_NOVEHEP_NOVEHPercentage of households with no vehicle available estimateEP_GROUPQEP_GROUPQPercentage of persons in group quarters estimate, 2014-2018 ACSBelow_5_yrBelow_5_yrUnder 5 years: Percentage of Total populationBelow_18_yrBelow_18_yrUnder 18 years: Percentage of Total population18-39_yr18_39_yr18-39 years: Percentage of Total population40-64_yr40_64_yr40-64 years: Percentage of Total populationAbove_65_yrAbove_65_yrAbove 65 years: Percentage of Total populationPop_malePop_malePercentage of total population malePop_femalePop_femalePercentage of total population femaleWhitewhitePercentage population of white aloneBlackblackPercentage population of black or African American aloneAmerican_indianamerican_iPercentage population of American Indian and Alaska native aloneAsianasianPercentage population of Asian aloneHawaiian_pacific_islanderhawaiian_pPercentage population of Native Hawaiian and Other Pacific Islander aloneSome_othersome_otherPercentage population of some other race aloneMedian_tot_householdsmedian_totMedian household income in the past 12 months (in 2019 inflation-adjusted dollars) by household size – total householdsLess_than_high_schoolLess_than_Percentage of Educational attainment for the population less than 9th grades and 9th to 12th grade, no diploma estimateHigh_schoolHigh_schooPercentage of Educational attainment for the population of High school graduate (includes equivalency)Some_collegeSome_collePercentage of Educational attainment for the population of Some college, no degreeAssociates_degreeAssociatesPercentage of Educational attainment for the population of associate degreeBachelor’s_degreeBachelor_sPercentage of Educational attainment for the population of Bachelor’s degreeMaster’s_degreeMaster_s_dPercentage of Educational attainment for the population of Graduate or professional degreecomp_devicescomp_devicPercentage of Household having one or more types of computing devicesInternetInternetPercentage of Household with an Internet subscriptionBroadbandBroadbandPercentage of Household having Broadband of any typeSatelite_internetSatelite_iPercentage of Household having Satellite Internet serviceNo_internetNo_internePercentage of Household having No Internet accessNo_computerNo_computePercentage of Household having No computer

  19. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Department of Housing and Urban Development (2023). Racially or Ethnically Concentrated Areas of Poverty (R/ECAPs) [Dataset]. https://hub.arcgis.com/datasets/HUD::racially-or-ethnically-concentrated-areas-of-poverty-r-ecaps/about
Organization logo

Racially or Ethnically Concentrated Areas of Poverty (R/ECAPs)

Explore at:
10 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Aug 21, 2023
Dataset provided by
United States Department of Housing and Urban Developmenthttp://www.hud.gov/
Authors
Department of Housing and Urban Development
Area covered
Description

To assist communities in identifying racially/ethnically-concentrated areas of poverty (R/ECAPs), HUD has developed a census tract-based definition of R/ECAPs. The definition involves a racial/ethnic concentration threshold and a poverty test. The racial/ethnic concentration threshold is straightforward: R/ECAPs must have a non-white population of 50 percent or more. Regarding the poverty threshold, Wilson (1980) defines neighborhoods of extreme poverty as census tracts with 40 percent or more of individuals living at or below the poverty line. Because overall poverty levels are substantially lower in many parts of the country, HUD supplements this with an alternate criterion. Thus, a neighborhood can be a R/ECAP if it has a poverty rate that exceeds 40% or is three or more times the average tract poverty rate for the metropolitan/micropolitan area, whichever threshold is lower. Census tracts with this extreme poverty that satisfy the racial/ethnic concentration threshold are deemed R/ECAPs. This translates into the following equation: Where i represents census tracts, () is the metropolitan/micropolitan (CBSA) mean tract poverty rate, is the ith tract poverty rate, () is the non-Hispanic white population in tract i, and Pop is the population in tract i.While this definition of R/ECAP works well for tracts in CBSAs, place outside of these geographies are unlikely to have racial or ethnic concentrations as high as 50 percent. In these areas, the racial/ethnic concentration threshold is set at 20 percent.

Data Source: American Community Survey (ACS), 2009-2013; Decennial Census (2010); Brown Longitudinal Tract Database (LTDB) based on decennial census data, 1990, 2000 & 2010.

Related AFFH-T Local Government, PHA Tables/Maps: Table 4, 7; Maps 1-17. Related AFFH-T State Tables/Maps: Table 4, 7; Maps 1-15, 18.

References:Wilson, William J. (1980). The Declining Significance of Race: Blacks and Changing American Institutions. Chicago: University of Chicago Press.

To learn more about R/ECAPs visit:https://www.hud.gov/program_offices/fair_housing_equal_opp/affh ; https://www.hud.gov/sites/dfiles/FHEO/documents/AFFH-T-Data-Documentation-AFFHT0006-July-2020.pdf, for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov. Date of Coverage: 11/2017

Search
Clear search
Close search
Google apps
Main menu