Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of United States by race. It includes the population of United States across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of United States across relevant racial categories.
Key observations
The percent distribution of United States population by race (across all racial categories recognized by the U.S. Census Bureau): 65.88% are white, 12.47% are Black or African American, 0.84% are American Indian and Alaska Native, 5.77% are Asian, 0.19% are Native Hawaiian and other Pacific Islander, 6.05% are some other race and 8.80% are multiracial.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for United States Population by Race & Ethnicity. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
This list ranks the 51 states in the United States by Non-Hispanic White population, as estimated by the United States Census Bureau. It also highlights population changes in each states over the past five years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Facebook
TwitterNote: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve. The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj. The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 . The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 . The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed. COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken down by race and ethnicity. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the COVID-19 update. The following data show the number of COVID-19 cases and associated deaths per 100,000 population by race and ethnicity. Crude rates represent the total cases or deaths per 100,000 people. Age-adjusted rates consider the age of the person at diagnosis or death when estimating the rate and use a standardized population to provide a fair comparison between population groups with different age distributions. Age-adjustment is important in Connecticut as the median age of among the non-Hispanic white population is 47 years, whereas it is 34 years among non-Hispanic blacks, and 29 years among Hispanics. Because most non-Hispanic white residents who died were over 75 years of age, the age-adjusted rates are lower than the unadjusted rates. In contrast, Hispanic residents who died tend to be younger than 75 years of age which results in higher age-adjusted rates. The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used. Rates are standardized to the 2000 US Millions Standard population (data available here: https://seer.cancer.gov/stdpopulations/). Standardization was done using 19 age groups (0, 1-4, 5-9, 10-14, ..., 80-84, 85 years and older). More information about direct standardization for age adjustment is available here: https://www.cdc.gov/nchs/data/statnt/statnt06rv.pdf Categories are mutually exclusive. The category āmultiracialā includes people who answered āyesā to more than one race category. Counts may not add up to total case counts as data on race and ethnicity may be missing. Age adjusted rates calculated only for groups with more than 20 deaths. Abbreviation: NH=Non-Hispanic. Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset provides information on the unemployment rates for different demographic groups in the United States.
The data is sourced from the Economic Policy Instituteās State of Working America Data Library and economic research conducted by the Federal Reserve Bank of St. Louis.
The dataset contains unemployment rates for various age groups, education levels, genders, races, and more.
Don't forget to upvote this dataset if you find it useful! šš
Health Insurance Coverage in the USA
USA Hispanic-White Wage Gap Dataset
Black-White Wage Gap in the USA Dataset
| Columns | Description |
|---|---|
| date | Date of the data collection. (type: str, format: YYYY-MM-DD) |
| all | Unemployment rate for all demographics, ages 16 and older. (type: float) |
| 16-24 | Unemployment rate for the age group 16-24. (type: float) |
| 25-54 | Unemployment rate for the age group 25-54. (type: float) |
| 55-64 | Unemployment rate for the age group 55-64. (type: float) |
| 65+ | Unemployment rate for the age group 65 and older. (type: float) |
| less_than_hs | Unemployment rate for individuals with less than a high school education. (type: float) |
| high_school | Unemployment rate for individuals with a high school education. (type: float) |
| some_college | Unemployment rate for individuals with some college education. (type: float) |
| bachelor's_degree | Unemployment rate for individuals with a bachelor's degree. (type: float) |
| advanced_degree | Unemployment rate for individuals with an advanced degree. (type: float) |
| women | Unemployment rate for women of all demographics. (type: float) |
| women_16-24 | Unemployment rate for women in the age group 16-24. (type: float) |
| women_25-54 | Unemployment rate for women in the age group 25-54. (type: float) |
| women_55-64 | Unemployment rate for women in the age group 55-64. (type: float) |
| women_65+ | Unemployment rate for women in the age group 65 and older. (type: float) |
| women_less_than_hs | Unemployment rate for women with less than a high school education. (type: float) |
| women_high_school | Unemployment rate for women with a high school education. (type: float) |
| women_some_college | Unemployment rate for women with some college education. (type: float) |
| women_bachelor's_degree | Unemployment rate for women with a bachelor's degree. (type: float) |
| women_advanced_degree | Unemployment rate for women with an advanced degree. (type: float) |
| men | Unemployment rate for men of all demographics. (type: float) |
| men_16-24 | Unemployment rate for men in the age group 16-24. (type: float) |
| men_25-54 | Unemployment rate for men in the age group 25-54. (type: float) |
| men_55-64 | Unemployment rate for men in the age group 55-64. (type: float) |
| men_65+ | Unemployment rate for men in the age group 65 and older. (type: float) |
| men_less_than_hs | Unemployment rate for men with less than a high school education. (type: float) |
| men_high_school | Unemployment rate for men with a high school education. (type: float) |
| men_some_college | Unemployment rate for men with some college education. (type: float) |
| men_bachelor's_degree | Unemployment rate for men with a bachelor's degree. (type: float) |
| men_advanced_degree | Unemployment rate for men with an advanced degree. (type: float) |
| black | Unemployment rate for the Black/African American demographic. (type: float) |
| black_16-24 | Unemployment rate for Black/African American individuals in the age group 16-24. (type: float) |
| black_25-54 | Unemployment rate for Black/African American individuals in the age group 25-54. (type: float) |
| black_55-64 | Unemployment... |
Facebook
TwitterIn 2024, **** percent of Black people living in the United States were living below the poverty line, compared to *** percent of white people. That year, the overall poverty rate in the U.S. across all races and ethnicities was **** percent. Poverty in the United States The poverty threshold for a single person in the United States was measured at an annual income of ****** U.S. dollars in 2023. Among families of four, the poverty line increases to ****** U.S. dollars a year. Women and children are more likely to suffer from poverty. This is due to the fact that women are more likely than men to stay at home, to care for children. Furthermore, the gender-based wage gap impacts women's earning potential. Poverty data Despite being one of the wealthiest nations in the world, the United States has some of the highest poverty rates among OECD countries. While, the United States poverty rate has fluctuated since 1990, it has trended downwards since 2014. Similarly, the average median household income in the U.S. has mostly increased over the past decade, except for the covid-19 pandemic period. Among U.S. states, Louisiana had the highest poverty rate, which stood at some ** percent in 2024.
Facebook
Twitterhttps://www.icpsr.umich.edu/web/ICPSR/studies/39241/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/39241/terms
The IPUMS Contextual Determinants of Health (CDOH) data series provides access to measures of disparities, policies, and counts, by state or county, for historically marginalized populations in the United States including Black, Asian, Hispanic/Latina/o/e/x, and LGBTQ+ persons, and women. The IPUMS CDOH data are made available through ICPSR/DSDR for merging with the National Couples' Health and Time Study (NCHAT), United States, 2020-2021 (ICPSR 38417) by approved restricted data researchers. All other researchers can access the IPUMS CDOH data via the IPUMS CDOH website. Unlike other IPUMS products, the CDOH data are organized into multiple categories related to Race and Ethnicity, Sexual and Gender Minority, Gender, and Politics. The measures were created from a wide variety of data sources (e.g., IPUMS NHGIS, the Census Bureau, the Bureau of Labor Statistics, the Movement Advancement Project, and Myers Abortion Facility Database). Measures are currently available for states or counties from approximately 2015 to 2020. The Race and Ethnicity measure in this release is an indicator of income inequity which is measured using the index of concentration at the extremes (ICE). ICE is a measure of social polarization within a particular geographic unit. It shows whether people or households in a geographic unit are concentrated in privileged or deprived extremes. The privileged group in this study is the number of households with a householder identifying as White alone, not Hispanic or Latino, with an income equal to or greater than $100,000. The deprived group in this study is the number of households with a householder identifying as a different race/ethnic group (e.g., Black alone, Asian alone, Hispanic or Latino), with an income equal to or less than $25,000. To work with the IPUMS CDOH data, researchers will need to use the variable MATCH_ID to merge the data in DS1 with NCHAT surveys within the virtual data enclave (VDE).
Facebook
TwitterIn 2023, the FBI reported that there were 9,284 Black murder victims in the United States and 7,289 white murder victims. In comparison, there were 554 murder victims of unknown race and 586 victims of another race. Victims of inequality? In recent years, the role of racial inequality in violent crimes such as robberies, assaults, and homicides has gained public attention. In particular, the issue of police brutality has led to increasing attention following the murder of George Floyd, an African American who was killed by a Minneapolis police officer. Studies show that the rate of fatal police shootings for Black Americans was more than double the rate reported of other races. Crime reporting National crime data in the United States is based off the Federal Bureau of Investigationās new crime reporting system, which requires law enforcement agencies to self-report their data in detail. Due to the recent implementation of this system, less crime data has been reported, with some states such as Delaware and Pennsylvania declining to report any data to the FBI at all in the last few years, suggesting that the Bureau's data may not fully reflect accurate information on crime in the United States.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Key Table Information.Table Title.Annual Business Survey: Statistics for Employer Firms by Race for the U.S.: 2023.Table ID.ABSCS2023.AB00MYCSA01C.Survey/Program.Economic Surveys.Year.2023.Dataset.ECNSVY Annual Business Survey Company Summary.Source.U.S. Census Bureau, 2023 Economic Surveys, Annual Business Survey.Release Date.2025-11-20.Release Schedule.The Annual Business Survey (ABS) occurs every year, beginning in reference year 2017.For more information about ABS planned data product releases, see Tentative ABS Schedule..Dataset Universe.The dataset universe consists of employer firms that are in operation for at least some part of the reference year, are located in one of the 50 U.S. states, associated offshore areas, or the District of Columbia, have paid employees and annual receipts of $1,000 or more, and are classified in one of nineteen in-scope sectors defined by the 2022 North American Industry Classification System (NAICS), except for NAICS 111, 112, 482, 491, 521, 525, 813, 814, and 92 which are not covered..Sponsor.National Center for Science and Engineering Statistics, U.S. National Science Foundation.Methodology.Data Items and Other Identifying Records.Number of employer firms (firms with paid employees)Sales and receipts of employer firms (reported in $1,000s of dollars)Number of employees (during the March 12 pay period)Annual payroll (reported in $1,000s of dollars)These data are aggregated by the following demographic classifications of firm for:All firms Classifiable (firms classifiable by sex, ethnicity, race, and veteran status) Race White Black or African American American Indian and Alaska Native Asian Native Hawaiian and Other Pacific Islander Minority (Firms classified as any race and ethnicity combination other than non-Hispanic and White) Equally minority/nonminority Nonminority (Firms classified as non-Hispanic and White) Unclassifiable (firms not classifiable by sex, ethnicity, race, and veteran status) Definitions can be found by clicking on the column header in the table or by accessing the Economic Census Glossary..Unit(s) of Observation.The reporting units for the ABS are employer companies or firms rather than establishments. A company or firm is comprised of one or more in-scope establishments that operate under the ownership or control of a single organization..Geography Coverage.The data are shown for the U.S. only.For information about geographies, see Geographies..Industry Coverage.The data are shown for the total of all sectors ("00") NAICS code. Sector "00" is not an official NAICS sector but is rather a way to indicate a total for multiple sectors. Note: Other programs outside of ABS may use sector 00 to indicate when multiple NAICS sectors are being displayed within the same table and/or dataset.The following are excluded from the total of all sectors:Crop and Animal Production (NAICS 111 and 112)Rail Transportation (NAICS 482)Postal Service (NAICS 491)Monetary Authorities-Central Bank (NAICS 521)Funds, Trusts, and Other Financial Vehicles (NAICS 525)Office of Notaries (NAICS 541120)Religious, Grantmaking, Civic, Professional, and Similar Organizations (NAICS 813)Private Households (NAICS 814)Public Administration (NAICS 92)For information about NAICS, see North American Industry Classification System..Sampling.The ABS sample includes firms that are selected with certainty if they have known research and development activities, were included in the 2023 BERD sample, or have high receipts, payroll, or employment. Total sample size is 330,000 firms. The universe is stratified by state, industry group, and expected demographic group. Firms selected to the sample receive a questionnaire. For all data on this table, firms not selected into the sample are represented with administrative, 2022 Economic Census, or other economic surveys records.For more information about the sample design, see Annual Business Survey Methodology..Confidentiality.The Census Bureau has reviewed this data product to ensure appropriate access, use, and disclosure avoidance protection of the confidential source data (Project No. P-7504866, Disclosure Review Board (DRB) approval numbers: CBDRB-FY25-0115 and CBDRB-FY25-0410).To protect confidentiality, the U.S. Census Bureau suppresses cell values to minimize the risk of identifying a particular business' data or identity.To comply with data quality standards, data rows with high relative standard errors (RSE) are not presented. Additionally, firm counts are suppressed when other select statistics in the same row are suppressed. More information on disclosure avoidance is available in the Annual Business Survey Methodology..Technical Documentation/Methodology.For detailed information about the methods used to collect data and produce statistics, survey questionnaires, Primary Business Activity/NAICS codes, and more, see Technical Documentation..Weights.For more information about weighting, see Annual Business Survey Methodology..Table Inf...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Non-Hispanic population of United States by race. It includes the distribution of the Non-Hispanic population of United States across various race categories as identified by the Census Bureau. The dataset can be utilized to understand the Non-Hispanic population distribution of United States across relevant racial categories.
Key observations
Of the Non-Hispanic population in United States, the largest racial group is White alone with a population of 194.89 million (72.36% of the total Non-Hispanic population).
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for United States Population by Race & Ethnicity. You can refer the same here
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
We provide datasets that that estimate the racial distributions associated with first, middle, and last names in the United States. The datasets cover five racial categories: White, Black, Hispanic, Asian, and Other. The provided data are computed from the voter files of six Southern states -- Alabama, Florida, Georgia, Louisiana, North Carolina, and South Carolina -- that collect race and ethnicity data upon registration. We include seven voter files per state, sourced between 2018 and 2021 from L2, Inc. Together, these states have approximately 36MM individuals who provide self-reported race and ethnicity. The last name datasets includes 338K surnames, while the middle name dictionaries contains 126K middle names and the first name datasets includes 136K first names. For each type of name, we provide a dataset of P(race | name) probabilities and P(name | race) probabilities. We include only names that appear at least 25 times across the 42 (= 7 voter files * 6 states) voter files in our dataset. These data are closely related to the the dataset: "Name Dictionaries for "wru" R Package", https://doi.org/10.7910/DVN/7TRYAC. These are the probabilities used in the latest iteration of the "WRU" package (Khanna et al., 2022) to make probabilistic predictions about the race of individuals, given their names and geolocations.
Facebook
TwitterIn 2024, there were 301,623 cases filed by the National Crime Information Center (NCIC) where the race of the reported missing person was white. In the same year, 17,097 people whose race was unknown were also reported missing in the United States. What is the NCIC? The National Crime Information Center (NCIC) is a digital database that stores crime data for the United States, so criminal justice agencies can access it. As a part of the FBI, it helps criminal justice professionals find criminals, missing people, stolen property, and terrorists. The NCIC database is broken down into 21 files. Seven files belong to stolen property and items, and 14 belong to persons, including the National Sex Offender Register, Missing Person, and Identify Theft. It works alongside federal, tribal, state, and local agencies. The NCICās goal is to maintain a centralized information system between local branches and offices, so information is easily accessible nationwide. Missing people in the United States A person is considered missing when they have disappeared and their location is unknown. A person who is considered missing might have left voluntarily, but that is not always the case. The number of the NCIC unidentified person files in the United States has fluctuated since 1990, and in 2022, there were slightly more NCIC missing person files for males as compared to females. Fortunately, the number of NCIC missing person files has been mostly decreasing since 1998.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Key Table Information.Table Title.Annual Business Survey: Statistics for Employer Firms by Race for the U.S.: 2022.Table ID.ABSCS2022.AB00MYCSA01C.Survey/Program.Economic Surveys.Year.2022.Dataset.ECNSVY Annual Business Survey Company Summary.Release Date.2024-12-19.Release Schedule.The Annual Business Survey (ABS) occurs every year, beginning in reference year 2017.For more information about ABS planned data product releases, see Tentative ABS Schedule..Dataset Universe.The dataset universe consists of employer firms that are in operation for at least some part of the reference year, are located in one of the 50 U.S. states, associated offshore areas, or the District of Columbia, have paid employees and annual receipts of $1,000 or more, and are classified in one of nineteen in-scope sectors defined by the 2022 North American Industry Classification System (NAICS), except for NAICS 111, 112, 482, 491, 521, 525, 813, 814, and 92 which are not covered..Sponsor.National Center for Science and Engineering Statistics, U.S. National Science Foundation.Methodology.Data Items and Other Identifying Records.Number of employer firms (firms with paid employees)Sales and receipts of employer firms (reported in $1,000s of dollars)Number of employees (during the March 12 pay period)Annual payroll (reported in $1,000s of dollars)These data are aggregated by the following demographic classifications of firm for:All firms Classifiable (firms classifiable by sex, ethnicity, race, and veteran status) Race White Black or African American American Indian and Alaska Native Asian Asian Indian Chinese Filipino Japanese Korean Vietnamese Other Asian Native Hawaiian and Other Pacific Islander Native Hawaiian Guamanian or Chamorro Samoan Other Pacific Islander Minority (Firms classified as any race and ethnicity combination other than non-Hispanic and White) Equally minority/nonminority Nonminority (Firms classified as non-Hispanic and White) Unclassifiable (firms not classifiable by sex, ethnicity, race, and veteran status) Definitions can be found by clicking on the column header in the table or by accessing the Economic Census Glossary..Unit(s) of Observation.The reporting units for the ABS are employer companies or firms rather than establishments. A company or firm is comprised of one or more in-scope establishments that operate under the ownership or control of a single organization..Geography Coverage.The data are shown for the U.S. only.For information about geographies, see Geographies..Industry Coverage.The data are shown for the total of all sectors ("00") NAICS code. Sector "00" is not an official NAICS sector but is rather a way to indicate a total for multiple sectors. Note: Other programs outside of ABS may use sector 00 to indicate when multiple NAICS sectors are being displayed within the same table and/or dataset.The following are excluded from the total of all sectors:Crop and Animal Production (NAICS 111 and 112)Rail Transportation (NAICS 482)Postal Service (NAICS 491)Monetary Authorities-Central Bank (NAICS 521)Funds, Trusts, and Other Financial Vehicles (NAICS 525)Office of Notaries (NAICS 541120)Religious, Grantmaking, Civic, Professional, and Similar Organizations (NAICS 813)Private Households (NAICS 814)Public Administration (NAICS 92)For information about NAICS, see North American Industry Classification System..Sampling.The ABS sample includes firms that are selected with certainty if they have known research and development activities, were included in the 2022 BERD sample, or have high receipts, payroll, or employment. Total sample size is 850,000 firms. The universe is stratified by state, industry group, and expected demographic group. Firms selected to the sample receive a questionnaire. For all data on this table, firms not selected into the sample are represented with administrative, 2022 Economic Census, or other economic surveys records.For more information about the sample design, see Annual Business Survey Methodology..Confidentiality.The Census Bureau has reviewed this data product to ensure appropriate access, use, and disclosure avoidance protection of the confidential source data (Project No. P-7504866, Disclosure Review Board (DRB) approval number: CBDRB-FY24-0351).To protect confidentiality, the U.S. Census Bureau suppresses cell values to minimize the risk of identifying a particular business' data or identity.To comply with data quality standards, data rows with high relative standard errors (RSE) are not presented. Additionally, firm counts are suppressed when other select statistics in the same row are suppressed. More information on disclosure avoidance is available in the Annual Business Survey Methodology..Technical Documentation/Methodology.For detailed information about the methods used to collect data and produce statistics, survey questionnaires, Primary Business Activity/NAICS codes, and more, see Technical Documentation..Weights.For more information about weighting, see An...
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset provides valuable insights into the median and average hourly wages in the United States from 1973 to 2022.
The data is sourced from the Economic Policy Institute's (EPI) State of Working America Data Library, a trusted and reliable source for economic data.
If you find this dataset valuable, consider showing your appreciation by upvoting it! šš
Clash of Clans Clans Dataset 2023 (3.5M Clans)
USA Unemployment Rates by Demographics & Race
Productivity and Hourly Compensation
USA Hispanic-White Wage Gap Dataset
Photo by John McArthur on Unsplash
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Under what circumstances do White Americans receive better representation than racial and ethnic minorities? To answer this fundamental question, we examine how well national policy outcomes match the preferences of 520,000 Black, Latino, Asian American, and White citizens from 2006 to 2022. Average racial gaps in responsiveness are small regardless of issue area. However, White voters are significantly advantaged when Republicans control government. Respondentsā class, age, and ideology do not explain these patterns. Respondentsā partisanship explains some, but not all, of them. To further investigate these disparities, we analyze roll-call votes in Congress, focusing on the Senateāthe pivotal lawmaking institution. Similar patterns emerge: Republican Senators better represent White (versus Black or Latino) constituents. Moreover, Black-White disparities are larger in states where Black Americans comprise more of the population, suggesting that party-based racial disparities might reflect White racial attitudes. Indeed, we find that state-level White resentment predicts Black-White representational disparities. For replication notes and instructions, see: README.txt For codebook for primary analysis datasets, see: cooebook.txt Dataverse includes code and raw datafiles use to create final datasets.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the median household income across different racial categories in United States. It portrays the median household income of the head of household across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to gain insights into economic disparities and trends and explore the variations in median houshold income for diverse racial categories.
Key observations
Based on our analysis of the distribution of United States population by race & ethnicity, the population is predominantly White. This particular racial category constitutes the majority, accounting for 68.17% of the total residents in United States. Notably, the median household income for White households is $79,933. Interestingly, despite the White population being the most populous, it is worth noting that Asian households actually reports the highest median household income, with a median income of $106,954. This reveals that, while Whites may be the most numerous in United States, Asian households experience greater economic prosperity in terms of median household income.
https://i.neilsberg.com/ch/united-states-median-household-income-by-race.jpeg" alt="United States median household income diversity across racial categories">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2022 1-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for United States median household income by race. You can refer the same here
Facebook
TwitterRace is a social and historical construct, and the racial categories counted by the census change over time so the process of constructing stable racial categories for these 50 years out of census data required complex and imperfect decisions. Here we have used historical research on early 20th century southern California to construct historic racial categories from the IPUMS full count data, which allows us to track groups that were not formally classified as racial groups in some census decades like Mexican, but which were important racial categories in southern California. Detailed explanation of how we constructed these categories and the rationale we used for the decisions we made can be found here. Layers are symbolized to show the percentage of each of the following groups from 1900-1940:AmericanIndian Not-Hispanic, AmericanIndian Hispanic, Black non-Hispanic, Black-Hispanic, Chinese, Korean, Filipino and Japanese, Mexican, Hispanic Not-Mexican, white non-Hispanic. The IPUMS Census data is messy and includes some errors and undercounts, making it hard to map some smaller populations, like Asian Indians (in census called Hindu in 1920) and creating a possible undercount of Native American populations. The race data mapped here also includes categories that may not have been socially meaningful at the time like Black-Hispanic, which generally would represent people from Mexico who the census enumerator classified as Black because of their dark skin, but who were likely simply part of Mexican communities at the time. We have included maps of the Hispanic not-Mexican category which shows very small numbers of non-Mexican Hispanic population, and American Indian Hispanic, which often captures people who would have been listed as Indian in the census, probably because of skin color, but had ancestry from Mexico (or another Hispanic country). This category may include some indigenous Californians who married into or assimilated into Mexican American communities in the early 20th century. If you are interested in mapping some of the other racial or ethnic groups in the early 20th century, you can explore and map the full range of variables we have created in the People's History of the IE IE_ED1900-1940 Race Hispanic Marriage and Age Feature layer.Suggested Citation: Tilton, Jennifer. People's History Race Ethnicity Dot Density Map 1900-1940. A People's History of the Inland Empire Census Project 1900-1940 using IPUMS Ancestry Full Count Data. Program in Race and Ethnic Studies University of Redlands, Center for Spatial Studies University of Redlands, UCR Public History. 2023. 2025Feature Layer CitationTilton, Jennifer, Tessa VanRy & Lisa Benvenuti. Race and Demographic Data 1900-1940. A People's History of the Inland Empire Census Project 1900-1940 using IPUMS Ancestry Full Count Data. Program in Race and Ethnic Studies University of Redlands, Center for Spatial Studies University of Redlands, UCR Public History. 2023. Additional contributing authors: Mackenzie Nelson, Will Blach & Andy Garcia Funding provided by: Peopleās History of the IE: Storyscapes of Race, Place, and Queer Space in Southern California with funding from NEH-SSRC Grant 2022-2023 & California State Parks grant to Relevancy & History. Source for Census Data 1900- 1940 Ruggles, Steven, Catherine A. Fitch, Ronald Goeken, J. David Hacker, Matt A. Nelson, Evan Roberts, Megan Schouweiler, and Matthew Sobek. IPUMS Ancestry Full Count Data: Version 3.0 [dataset]. Minneapolis, MN: IPUMS, 2021. Primary Sources for Enumeration District Linework 1900-1940 Steve Morse provided the full list of transcribed EDs for all 5 decades "United States Enumeration District Maps for the Twelfth through the Sixteenth US Censuses, 1900-1940." Images. FamilySearch. https://FamilySearch.org: 9 February 2023. Citing NARA microfilm publication A3378. Washington, D.C.: National Archives and Records Administration, 2003. BLM PLSS Map Additional Historical Sources consulted include: San Bernardino City Annexation GIS Map Redlands City Charter Proposed with Ward boundaries (Not passed) 1902. Courtesy of Redlands City Clerk. Redlands Election Code Precincts 1908, City Ordinances of the City of Redlands, p. 19-22. Courtesy of Redlands City Clerk Riverside City Charter 1907 (for 1910 linework) courtesy of Riverside City Clerk. 1900-1940 Raw Census files for specific EDs, to confirm boundaries when needed, accessed through Family Search. If you have additional questions or comments, please contact jennifer_tilton@redlands.edu.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States Total Fertility Rate: White data was reported at 1,532.500 % in 2023. This records a decrease from the previous number of 1,568.000 % for 2022. United States Total Fertility Rate: White data is updated yearly, averaging 1,947.500 % from Dec 1985 (Median) to 2023, with 39 observations. The data reached an all-time high of 2,137.000 % in 2007 and a record low of 21.000 % in 2009. United States Total Fertility Rate: White data remains active status in CEIC and is reported by Centers for Disease Control and Prevention. The data is categorized under Global Databaseās United States ā Table US.G013: Fertility Rate.
Facebook
TwitterTabular data of population by age groups, race and gender, and the poverty by race is attached to the split tract geography to create this split tract with population and poverty data. Split tract data is the product of 2020 census tracts split by 2022 incorporated city boundaries and unincorporated community/countywide statistical areas (CSA) boundaries. The census tract boundaries have been altered and aligned where necessary with legal city boundaries and unincorporated areas, including shoreline/coastal areas. Census Tract:Every 10 years the Census Bureau counts the population of the United States as mandated by Constitution. The Census Bureau (https://www.census.gov/) released 2020 geographic boundaries data including census tracts for the analysis and mapping of demographic information across the United States. City Boundary:City Boundary data is the base map information for the County of Los Angeles. These City Boundaries are based on the Los Angeles County Seamless Cadastral Landbase. The Landbase is jointly maintained by the Los Angeles County Assessor and the Los Angeles County Department of Public Works (DPW). This layer represents current city boundaries within Los Angeles County. The DPW provides the most current shapefiles representing city boundaries and city annexations. True, legal boundaries are only determined on the ground by surveyors licensed in the State of California.Countywide Statistical Areas (CSA): The countywide Statistical Area (CSA) was defined to provide a common geographic boundary for reporting departmental statistics for unincorporated areas and incorporated Los Angeles city to the Board of Supervisors. The CSA boundary and CSA names are established by the CIO and the LA County Enterprise GIS group worked with the Los Angeles County Board of Supervisors Unincorporated Area and Field Deputies that reflect as best as possible the general name preferences of residents and historical names of areas. This data is primarily focused on broad statistics and reporting, not mapping of communities. This data is not designed to perfectly represent communities, nor jurisdictional boundaries such as Angeles National Forest. CSA represent board approved geographies comprised of Census block groups split by cities.Data Field:CT20: 2020 Census tractFIP22: 2022 City FIP CodeCITY: City name for incorporated cities and āUnincorporatedā for unincorporated areas (as of July 1, 2022) CSA: Countywide Statistical Area (CSA) - Unincorporated area community names and LA City neighborhood names.CT20FIP22CSA: 2020 census tract with 2022 city FIPs for incorporated cities and unincorporated areas and LA neighborhoods. SPA22: 2022 Service Planning Area (SPA) number.SPA_NAME: Service Planning Area name.HD22: 2022 Health District (HD) number: HD_NAME: Health District name.POP22_AGE_0_4: 2022 population 0 to 4 years oldPOP22_AGE_5_9: 2022 population 5 to 9 years old POP22_AGE_10_14: 2022 population 10 to 14 years old POP22_AGE_15_17: 2022 population 15 to 17 years old POP22_AGE_18_19: 2022 population 18 to 19 years old POP22_AGE_20_44: 2022 population 20 to 24 years old POP22_AGE_25_29: 2022 population 25 to 29 years old POP22_AGE_30_34: 2022 population 30 to 34 years old POP22_AGE_35_44: 2022 population 35 to 44 years old POP22_AGE_45_54: 2022 population 45 to 54 years old POP22_AGE_55_64: 2022 population 55 to 64 years old POP22_AGE_65_74: 2022 population 65 to 74 years old POP22_AGE_75_84: 2022 population 75 to 84 years old POP22_AGE_85_100: 2022 population 85 years and older POP22_WHITE: 2022 Non-Hispanic White POP22_BLACK: 2022 Non-Hispanic African AmericanPOP22_AIAN: 2022 Non-Hispanic American Indian or Alaska NativePOP22_ASIAN: 2022 Non-Hispanic Asian POP22_HNPI: 2022 Non-Hispanic Hawaiian Native or Pacific IslanderPOP22_HISPANIC: 2022 HispanicPOP22_MALE: 2022 Male POP22_FEMALE: 2022 Female POV22_WHITE: 2022 Non-Hispanic White below 100% Federal Poverty Level POV22_BLACK: 2022 Non-Hispanic African American below 100% Federal Poverty Level POV22_AIAN: 2022 Non-Hispanic American Indian or Alaska Native below 100% Federal Poverty Level POV22_ASIAN: 2022 Non-Hispanic Asian below 100% Federal Poverty Level POV22_HNPI: 2022 Non-Hispanic Hawaiian Native or Pacific Islander below 100% Federal Poverty Level POV22_HISPANIC: 2022 Hispanic below 100% Federal Poverty Level POV22_TOTAL: 2022 Total population below 100% Federal Poverty Level POP22_TOTAL: 2022 Total PopulationAREA_SQMil: Area in square mile.POP22_DENSITY: Population per square mile.POV22_PERCENT: Poverty rate/percentage.How this data created?The tabular data of population by age groups, by ethnic groups and by gender, and the poverty by ethnic groups is attributed to the split tract geography to create this data. Split tract polygon data is created by intersecting 2020 census tract polygons, LA Country City Boundary polygons and Countywide Statistical Areas (CSA) polygon data. The resulting polygon boundary aligned and matched with the legal city boundary whenever possible. Note:1. Population and poverty data estimated as of July 1, 2022. 2. 2010 Census tract and 2020 census tracts are not the same. Similarly, city and community boundary are not the same because boundary is reviewed and updated annually.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2018-2022 American Community Survey 5-Year Estimates.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..The Hispanic origin and race codes were updated in 2020. For more information on the Hispanic origin and race code changes, please visit the American Community Survey Technical Documentation website..The 2018-2022 American Community Survey (ACS) data generally reflect the March 2020 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas. In certain instances, the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineation lists due to differences in the effective dates of the geographic entities..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Key Table Information.Table Title.Nonemployer Statistics by Demographics series (NES-D): Statistics for Employer and Nonemployer Firms by Industry and Race for the U.S., States, Metro Areas, Counties, and Places: 2023.Table ID.ABSNESD2023.AB00MYNESD01C.Survey/Program.Economic Surveys.Year.2023.Dataset.ECNSVY Nonemployer Statistics by Demographics Company Summary.Source.U.S. Census Bureau, 2023 Economic Surveys, Nonemployer Statistics by Demographics.Release Date.2025-11-20.Release Schedule.The Nonemployer Statistics by Demographics (NES-D) is released yearly, beginning in 2017..Sponsor.National Center for Science and Engineering Statistics, U.S. National Science Foundation.Table Universe.Data in this table combines estimates from the Annual Business Survey (employer firms) and the Nonemployer Statistics by Demographics (nonemployer firms).Includes U.S. firms with no paid employment or payroll, annual receipts of $1,000 or more ($1 or more in the construction industries) and filing Internal Revenue Service (IRS) tax forms for sole proprietorships (Form 1040, Schedule C), partnerships (Form 1065), or corporations (the Form 1120 series).Includes U.S. employer firms estimates of business ownership by sex, ethnicity, race, and veteran status from the 2024 Annual Business Survey (ABS) collection. The employer business dataset universe consists of employer firms that are in operation for at least some part of the reference year, are located in one of the 50 U.S. states, associated offshore areas, or the District of Columbia, have paid employees and annual receipts of $1,000 or more, and are classified in one of nineteen in-scope sectors defined by the 2022 North American Industry Classification System (NAICS), except for NAICS 111, 112, 482, 491, 521, 525, 813, 814, and 92 which are not covered.Data are also obtained from administrative records, the 2022 Economic Census, and other economic surveys. Note: For employer data only, the collection year is the year in which the data are collected. A reference year is the year that is referenced in the questions on the survey and in which the statistics are tabulated. For example, the 2024 ABS collection year produces statistics for the 2023 reference year. The "Year" column in the table is the reference year..Methodology.Data Items and Other Identifying Records.Total number of employer and nonemployer firmsTotal sales, value of shipments, or revenue of employer and nonemployer firms ($1,000)Number of nonemployer firmsSales, value of shipments, or revenue of nonemployer firms ($1,000)Number of employer firmsSales, value of shipments, or revenue of employer firms ($1,000)Number of employeesAnnual payroll ($1,000)These data are aggregated by the following demographic classifications of firm for:All firms Classifiable (firms classifiable by sex, ethnicity, race, and veteran status) Race White Black or African American American Indian and Alaska Native Asian Native Hawaiian and Other Pacific Islander Minority (Firms classified as any race and ethnicity combination other than non-Hispanic and White) Equally minority/nonminority Nonminority (Firms classified as non-Hispanic and White) Unclassifiable (firms not classifiable by sex, ethnicity, race, and veteran status) Definitions can be found by clicking on the column header in the table or by accessing the Economic Census Glossary..Unit(s) of Observation.The reporting units for the NES-D and the ABS are companies or firms rather than establishments. A company or firm is comprised of one or more in-scope establishments that operate under the ownership or control of a single organization..Geography Coverage.The 2023 data are shown for the total of all sectors (00) and the 2- to 6-digit NAICS code levels for:United StatesStates and the District of ColumbiaIn addition, the total of all sectors (00) NAICS and the 2-digit NAICS code levels for:Metropolitan Statistical AreasMicropolitan Statistical AreasMetropolitan DivisionsCombined Statistical AreasCountiesEconomic PlacesFor information about geographies, see Geographies..Industry Coverage.The data are shown for the total of all sectors ("00"), and at the 2- through 6-digit NAICS code levels depending on geography. Sector "00" is not an official NAICS sector but is rather a way to indicate a total for multiple sectors. Note: Other programs outside of ABS may use sector 00 to indicate when multiple NAICS sectors are being displayed within the same table and/or dataset.The following are excluded from the total of all sectors:Crop and Animal Production (NAICS 111 and 112)Rail Transportation (NAICS 482)Postal Service (NAICS 491)Monetary Authorities-Central Bank (NAICS 521)Funds, Trusts, and Other Financial Vehicles (NAICS 525)Office of Notaries (NAICS 541120)Religious, Grantmaking, Civic, Professional, and Similar Organizations (NAICS 813)Private Households (NAICS 814)Public Administration (NAICS 92)For information about NAICS, see North American Industry Classification System..Sa...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of United States by race. It includes the population of United States across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of United States across relevant racial categories.
Key observations
The percent distribution of United States population by race (across all racial categories recognized by the U.S. Census Bureau): 65.88% are white, 12.47% are Black or African American, 0.84% are American Indian and Alaska Native, 5.77% are Asian, 0.19% are Native Hawaiian and other Pacific Islander, 6.05% are some other race and 8.80% are multiracial.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for United States Population by Race & Ethnicity. You can refer the same here