Attribution-NoDerivs 4.0 (CC BY-ND 4.0)https://creativecommons.org/licenses/by-nd/4.0/
License information was derived automatically
🔗 Check out my notebook here: Link
This dataset includes malnutrition indicators and some of the features that might impact malnutrition. The detailed description of the dataset is given below:
Percentage-of-underweight-children-data: Percentage of children aged 5 years or below who are underweight by country.
Prevalence of Underweight among Female Adults (Age Standardized Estimate): Percentage of female adults whos BMI is less than 18.
GDP per capita (constant 2015 US$): GDP per capita is gross domestic product divided by midyear population. GDP is the sum of gross value added by all resident producers in the economy plus any product taxes and minus any subsidies not included in the value of the products. It is calculated without making deductions for depreciation of fabricated assets or for depletion and degradation of natural resources. Data are in constant 2015 U.S. dollars.
Domestic general government health expenditure (% of GDP): Public expenditure on health from domestic sources as a share of the economy as measured by GDP.
Maternal mortality ratio (modeled estimate, per 100,000 live births): Maternal mortality ratio is the number of women who die from pregnancy-related causes while pregnant or within 42 days of pregnancy termination per 100,000 live births. The data are estimated with a regression model using information on the proportion of maternal deaths among non-AIDS deaths in women ages 15-49, fertility, birth attendants, and GDP measured using purchasing power parities (PPPs).
Mean-age-at-first-birth-of-women-aged-20-50-data: Average age at which women of age 20-50 years have their first child.
School enrollment, secondary, female (% gross): Gross enrollment ratio is the ratio of total enrollment, regardless of age, to the population of the age group that officially corresponds to the level of education shown. Secondary education completes the provision of basic education that began at the primary level, and aims at laying the foundations for lifelong learning and human development, by offering more subject- or skill-oriented instruction using more specialized teachers.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Prevalence of Wasting: Weight for Height: Female: % of Children Under 5 data was reported at 0.700 % in 2012. This records an increase from the previous number of 0.500 % for 2009. United States US: Prevalence of Wasting: Weight for Height: Female: % of Children Under 5 data is updated yearly, averaging 0.550 % from Dec 1991 (Median) to 2012, with 6 observations. The data reached an all-time high of 0.800 % in 2005 and a record low of 0.100 % in 2001. United States US: Prevalence of Wasting: Weight for Height: Female: % of Children Under 5 data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Health Statistics. Prevalence of wasting, female, is the proportion of girls under age 5 whose weight for height is more than two standard deviations below the median for the international reference population ages 0-59.; ; World Health Organization, Global Database on Child Growth and Malnutrition. Country-level data are unadjusted data from national surveys, and thus may not be comparable across countries.; Linear mixed-effect model estimates; Undernourished children have lower resistance to infection and are more likely to die from common childhood ailments such as diarrheal diseases and respiratory infections. Frequent illness saps the nutritional status of those who survive, locking them into a vicious cycle of recurring sickness and faltering growth (UNICEF, www.childinfo.org). Estimates of child malnutrition, based on prevalence of underweight and stunting, are from national survey data. The proportion of underweight children is the most common malnutrition indicator. Being even mildly underweight increases the risk of death and inhibits cognitive development in children. And it perpetuates the problem across generations, as malnourished women are more likely to have low-birth-weight babies. Stunting, or being below median height for age, is often used as a proxy for multifaceted deprivation and as an indicator of long-term changes in malnutrition.
This dataset includes birth rates for unmarried women by age group, race, and Hispanic origin in the United States since 1970. Methods for collecting information on marital status changed over the reporting period and have been documented in: • Ventura SJ, Bachrach CA. Nonmarital childbearing in the United States, 1940–99. National vital statistics reports; vol 48 no 16. Hyattsville, Maryland: National Center for Health Statistics. 2000. Available from: http://www.cdc.gov/nchs/data/nvsr/nvsr48/nvs48_16.pdf. • National Center for Health Statistics. User guide to the 2013 natality public use file. Hyattsville, Maryland: National Center for Health Statistics. 2014. Available from: http://www.cdc.gov/nchs/data_access/VitalStatsOnline.htm. National data on births by Hispanics origin exclude data for Louisiana, New Hampshire, and Oklahoma in 1989; for New Hampshire and Oklahoma in 1990; for New Hampshire in 1991 and 1992. Information on reporting Hispanic origin is detailed in the Technical Appendix for the 1999 public-use natality data file (see (ftp://ftp.cdc.gov/pub/Health_Statistics/NCHS/Dataset_Documentation/DVS/natality/Nat1999doc.pdf.) All birth data by race before 1980 are based on race of the child. Starting in 1980, birth data by race are based on race of the mother. SOURCES CDC/NCHS, National Vital Statistics System, birth data (see http://www.cdc.gov/nchs/births.htm); public-use data files (see http://www.cdc.gov/nchs/data_access/Vitalstatsonline.htm); and CDC WONDER (see http://wonder.cdc.gov/). REFERENCES Curtin SC, Ventura SJ, Martinez GM. Recent declines in nonmarital childbearing in the United States. NCHS data brief, no 162. Hyattsville, MD: National Center for Health Statistics. 2014. Available from: http://www.cdc.gov/nchs/data/databriefs/db162.pdf. Martin JA, Hamilton BE, Osterman MJK, et al. Births: Final data for 2015. National vital statistics reports; vol 66 no 1. Hyattsville, MD: National Center for Health Statistics. 2017. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr66/nvsr66_01.pdf.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Prevalence of Underweight: Weight for Age: Female: % of Children Under 5 data was reported at 0.400 % in 2012. This records a decrease from the previous number of 0.700 % for 2009. United States US: Prevalence of Underweight: Weight for Age: Female: % of Children Under 5 data is updated yearly, averaging 0.800 % from Dec 1991 (Median) to 2012, with 6 observations. The data reached an all-time high of 1.200 % in 1991 and a record low of 0.400 % in 2012. United States US: Prevalence of Underweight: Weight for Age: Female: % of Children Under 5 data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Health Statistics. Prevalence of underweight, female, is the percentage of girls under age 5 whose weight for age is more than two standard deviations below the median for the international reference population ages 0-59 months. The data are based on the WHO's new child growth standards released in 2006.; ; World Health Organization, Global Database on Child Growth and Malnutrition. Country-level data are unadjusted data from national surveys, and thus may not be comparable across countries.; Linear mixed-effect model estimates; Undernourished children have lower resistance to infection and are more likely to die from common childhood ailments such as diarrheal diseases and respiratory infections. Frequent illness saps the nutritional status of those who survive, locking them into a vicious cycle of recurring sickness and faltering growth (UNICEF, www.childinfo.org). Estimates of child malnutrition, based on prevalence of underweight and stunting, are from national survey data. The proportion of underweight children is the most common malnutrition indicator. Being even mildly underweight increases the risk of death and inhibits cognitive development in children. And it perpetuates the problem across generations, as malnourished women are more likely to have low-birth-weight babies. Stunting, or being below median height for age, is often used as a proxy for multifaceted deprivation and as an indicator of long-term changes in malnutrition.
This dataset includes teen birth rates for females by age group, race, and Hispanic origin in the United States since 1960. Data availability varies by race and ethnicity groups. All birth data by race before 1980 are based on race of the child. Since 1980, birth data by race are based on race of the mother. For race, data are available for Black and White births since 1960, and for American Indians/Alaska Native and Asian/Pacific Islander births since 1980. Data on Hispanic origin are available since 1989. Teen birth rates for specific racial and ethnic categories are also available since 1989. From 2003 through 2015, the birth data by race were based on the “bridged” race categories (5). Starting in 2016, the race categories for reporting birth data changed; the new race and Hispanic origin categories are: Non-Hispanic, Single Race White; Non-Hispanic, Single Race Black; Non-Hispanic, Single Race American Indian/Alaska Native; Non-Hispanic, Single Race Asian; and, Non-Hispanic, Single Race Native Hawaiian/Pacific Islander (5,6). Birth data by the prior, “bridged” race (and Hispanic origin) categories are included through 2018 for comparison. National data on births by Hispanic origin exclude data for Louisiana, New Hampshire, and Oklahoma in 1989; New Hampshire and Oklahoma in 1990; and New Hampshire in 1991 and 1992. Birth and fertility rates for the Central and South American population includes other and unknown Hispanic. Information on reporting Hispanic origin is detailed in the Technical Appendix for the 1999 public-use natality data file (see ftp://ftp.cdc.gov/pub/Health_Statistics/NCHS/Dataset_Documentation/DVS/natality/Nat1999doc.pdf). SOURCES NCHS, National Vital Statistics System, birth data (see https://www.cdc.gov/nchs/births.htm); public-use data files (see https://www.cdc.gov/nchs/data_access/VitalStatsOnline.htm); and CDC WONDER (see http://wonder.cdc.gov/). REFERENCES National Office of Vital Statistics. Vital Statistics of the United States, 1950, Volume I. 1954. Available from: https://www.cdc.gov/nchs/data/vsus/vsus_1950_1.pdf. Hetzel AM. U.S. vital statistics system: major activities and developments, 1950-95. National Center for Health Statistics. 1997. Available from: https://www.cdc.gov/nchs/data/misc/usvss.pdf. National Center for Health Statistics. Vital Statistics of the United States, 1967, Volume I–Natality. 1969. Available from: https://www.cdc.gov/nchs/data/vsus/nat67_1.pdf. Martin JA, Hamilton BE, Osterman MJK, et al. Births: Final data for 2015. National vital statistics reports; vol 66 no 1. Hyattsville, MD: National Center for Health Statistics. 2017. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr66/nvsr66_01.pdf. Martin JA, Hamilton BE, Osterman MJK, Driscoll AK, Drake P. Births: Final data for 2016. National Vital Statistics Reports; vol 67 no 1. Hyattsville, MD: National Center for Health Statistics. 2018. Available from: https://www.cdc.gov/nvsr/nvsr67/nvsr67_01.pdf. Martin JA, Hamilton BE, Osterman MJK, Driscoll AK, Births: Final data for 2018. National vital statistics reports; vol 68 no 13. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_13.pdf.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
In 1986, the Congress enacted Public Laws 99-500 and 99-591, requiring a biennial report on the Special Supplemental Nutrition Program for Women, Infants, and Children (WIC). In response to these requirements, FNS developed a prototype system that allowed for the routine acquisition of information on WIC participants from WIC State Agencies. Since 1992, State Agencies have provided electronic copies of these data to FNS on a biennial basis. FNS and the National WIC Association (formerly National Association of WIC Directors) agreed on a set of data elements for the transfer of information. In addition, FNS established a minimum standard dataset for reporting participation data. For each biennial reporting cycle, each State Agency is required to submit a participant-level dataset containing standardized information on persons enrolled at local agencies for the reference month of April. The 2018 Participant and Program Characteristics (PC2018) is the fourteenth data submission to be completed using the WIC PC reporting system. In April 2018, there were 90 State agencies: the 50 States, American Samoa, the District of Columbia, Guam, the Northern Mariana Islands, Puerto Rico, the American Virgin Islands, and 34 Indian tribal organizations. Processing methods and equipment used Specifications on formats (“Guidance for States Providing Participant Data”) were provided to all State agencies in January 2018. This guide specified 20 minimum dataset (MDS) elements and 11 supplemental dataset (SDS) elements to be reported on each WIC participant. Each State Agency was required to submit all 20 MDS items and any SDS items collected by the State agency. Study date(s) and duration The information for each participant was from the participants’ most current WIC certification as of April 2018. Study spatial scale (size of replicates and spatial scale of study area) In April 2018, there were 90 State agencies: the 50 States, American Samoa, the District of Columbia, Guam, the Northern Mariana Islands, Puerto Rico, the American Virgin Islands, and 34 Indian tribal organizations. Level of true replication Unknown Sampling precision (within-replicate sampling or pseudoreplication) State Agency Data Submissions. PC2018 is a participant dataset consisting of 7,837,672 active records. The records, submitted to USDA by the State Agencies, comprise a census of all WIC enrollees, so there is no sampling involved in the collection of this data. PII Analytic Datasets. State agency files were combined to create a national census participant file of approximately 7.8 million records. The census dataset contains potentially personally identifiable information (PII) and is therefore not made available to the public. National Sample Dataset. The public use SAS analytic dataset made available to the public has been constructed from a nationally representative sample drawn from the census of WIC participants, selected by participant category. The national sample consists of 1 percent of the total number of participants, or 78,365 records. The distribution by category is 6,825 pregnant women, 6,189 breastfeeding women, 5,134 postpartum women, 18,552 infants, and 41,665 children. Level of subsampling (number and repeat or within-replicate sampling) The proportionate (or self-weighting) sample was drawn by WIC participant category: pregnant women, breastfeeding women, postpartum women, infants, and children. In this type of sample design, each WIC participant has the same probability of selection across all strata. Sampling weights are not needed when the data are analyzed. In a proportionate stratified sample, the largest stratum accounts for the highest percentage of the analytic sample. Study design (before–after, control–impacts, time series, before–after-control–impacts) None – Non-experimental Description of any data manipulation, modeling, or statistical analysis undertaken Each entry in the dataset contains all MDS and SDS information submitted by the State agency on the sampled WIC participant. In addition, the file contains constructed variables used for analytic purposes. To protect individual privacy, the public use file does not include State agency, local agency, or case identification numbers. Description of any gaps in the data or other limiting factors All State agencies except New Mexico provided data on a census of their WIC participants. Resources in this dataset:Resource Title: WIC Participant and Program Characteristics 2018 Data. File Name: wicpc.wicpc2018_public_use.csvResource Title: WIC Participant and Program Characteristics 2018 Dataset Codebook. File Name: PC2018 National Sample File Public Use Codebook updated.docxResource Description: The 2018 Participant and Program Characteristics (PC2018) is the fourteenth data submission to be completed using the WIC PC reporting system. In April 2018, there were 90 State agencies: the 50 States, American Samoa, the District of Columbia, Guam, the Northern Mariana Islands, Puerto Rico, the American Virgin Islands, and 34 Indian tribal organizations.Resource Title: WIC Participant and Program Characteristics 2018 Datasets SAS STATA SPSS. File Name: wicpc2018_agdatacoomonsupload.zipResource Description: The 2018 Participant and Program Characteristics (PC2018) is the fourteenth data submission to be completed using the WIC PC reporting system. In April 2018, there were 90 State agencies: the 50 States, American Samoa, the District of Columbia, Guam, the Northern Mariana Islands, Puerto Rico, the American Virgin Islands, and 34 Indian tribal organizations.
Families of tax filers; Census families with children by age of children and children by age groups (final T1 Family File; T1FF).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Fertility Rate: Total: Births per Woman data was reported at 1.800 Ratio in 2016. This records a decrease from the previous number of 1.843 Ratio for 2015. United States US: Fertility Rate: Total: Births per Woman data is updated yearly, averaging 2.002 Ratio from Dec 1960 (Median) to 2016, with 57 observations. The data reached an all-time high of 3.654 Ratio in 1960 and a record low of 1.738 Ratio in 1976. United States US: Fertility Rate: Total: Births per Woman data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Health Statistics. Total fertility rate represents the number of children that would be born to a woman if she were to live to the end of her childbearing years and bear children in accordance with age-specific fertility rates of the specified year.; ; (1) United Nations Population Division. World Population Prospects: 2017 Revision. (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Reprot (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme.; Weighted average; Relevance to gender indicator: it can indicate the status of women within households and a woman’s decision about the number and spacing of children.
This layer shows age and sex demographics. Data is from US Census American Community Survey (ACS) 5-year estimates.This layer is symbolized to the percent of the population ages 18 to 24 years old. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right (in ArcGIS Online). To view only the census tracts that are predominantly in Tempe, add the expression City is Tempe in the filter settings. Layer includes:Key demographicsTotal populationMale total populationFemale total populationPercent male total population (calculated)Percent female total population (calculated)Age and other indicatorsTotal population by AGE (various ranges)Total population by SELECTED AGE CATEGORIES (various ranges)Total population by SUMMARY INDICATORS (including median age, sex ratio, age dependency ratio, old age dependency ratio, child dependency ratio)Percent total population by AGE (various ranges)Percent total population by SELECTED AGE CATEGORIES (various ranges)Male by ageMale total population by AGE (various ranges)Male total population by SELECTED AGE CATEGORIES (various ranges)Male total population Median age (years)Percent male total population by AGE (various ranges)Percent male total population by SELECTED AGE CATEGORIES (various ranges)Female by ageFemale total population by AGE (various ranges)Female total population by SELECTED AGE CATEGORIES (various ranges)Female total population Median age (years)Percent female total population by AGE (various ranges)Percent female total population by SELECTED AGE CATEGORIES (various ranges)A ‘Null’ entry in the estimate indicates that data for this geographic area cannot be displayed because the number of sample cases is too small (per the U.S. Census).Current Vintage: 2018-2022ACS Table(s): S0101 (Not all lines of this ACS table are available in this feature layer.)Data downloaded from: Census Bureau's API for American Community SurveyDate of Census update: Dec 15, 2023Data Preparation: Data table downloaded and joined with Census Tract boundaries that are within or adjacent to the City of Tempe boundaryNational Figures: data.census.gov
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Cervical Cancer Risk Factors for Biopsy: This Dataset is Obtained from UCI Repository and kindly acknowledged! This file contains a List of Risk Factors for Cervical Cancer leading to a Biopsy Examination! About 11,000 new cases of invasive cervical cancer are diagnosed each year in the U.S. However, the number of new cervical cancer cases has been declining steadily over the past decades. Although it is the most preventable type of cancer, each year cervical cancer kills about 4,000 women in the U.S. and about 300,000 women worldwide. In the United States, cervical cancer mortality rates plunged by 74% from 1955 - 1992 thanks to increased screening and early detection with the Pap test. AGE Fifty percent of cervical cancer diagnoses occur in women ages 35 - 54, and about 20% occur in women over 65 years of age. The median age of diagnosis is 48 years. About 15% of women develop cervical cancer between the ages of 20 - 30. Cervical cancer is extremely rare in women younger than age 20. However, many young women become infected with multiple types of human papilloma virus, which then can increase their risk of getting cervical cancer in the future. Young women with early abnormal changes who do not have regular examinations are at high risk for localized cancer by the time they are age 40, and for invasive cancer by age 50. SOCIOECONOMIC AND ETHNIC FACTORS Although the rate of cervical cancer has declined among both Caucasian and African-American women over the past decades, it remains much more prevalent in African-Americans -- whose death rates are twice as high as Caucasian women. Hispanic American women have more than twice the risk of invasive cervical cancer as Caucasian women, also due to a lower rate of screening. These differences, however, are almost certainly due to social and economic differences. Numerous studies report that high poverty levels are linked with low screening rates. In addition, lack of health insurance, limited transportation, and language difficulties hinder a poor woman’s access to screening services. HIGH SEXUAL ACTIVITY Human papilloma virus (HPV) is the main risk factor for cervical cancer. In adults, the most important risk factor for HPV is sexual activity with an infected person. Women most at risk for cervical cancer are those with a history of multiple sexual partners, sexual intercourse at age 17 years or younger, or both. A woman who has never been sexually active has a very low risk for developing cervical cancer. Sexual activity with multiple partners increases the likelihood of many other sexually transmitted infections (chlamydia, gonorrhea, syphilis).Studies have found an association between chlamydia and cervical cancer risk, including the possibility that chlamydia may prolong HPV infection. FAMILY HISTORY Women have a higher risk of cervical cancer if they have a first-degree relative (mother, sister) who has had cervical cancer. USE OF ORAL CONTRACEPTIVES Studies have reported a strong association between cervical cancer and long-term use of oral contraception (OC). Women who take birth control pills for more than 5 - 10 years appear to have a much higher risk HPV infection (up to four times higher) than those who do not use OCs. (Women taking OCs for fewer than 5 years do not have a significantly higher risk.) The reasons for this risk from OC use are not entirely clear. Women who use OCs may be less likely to use a diaphragm, condoms, or other methods that offer some protection against sexual transmitted diseases, including HPV. Some research also suggests that the hormones in OCs might help the virus enter the genetic material of cervical cells. HAVING MANY CHILDREN Studies indicate that having many children increases the risk for developing cervical cancer, particularly in women infected with HPV. SMOKING Smoking is associated with a higher risk for precancerous changes (dysplasia) in the cervix and for progression to invasive cervical cancer, especially for women infected with HPV. IMMUNOSUPPRESSION Women with weak immune systems, (such as those with HIV / AIDS), are more susceptible to acquiring HPV. Immunocompromised patients are also at higher risk for having cervical precancer develop rapidly into invasive cancer. DIETHYLSTILBESTROL (DES) From 1938 - 1971, diethylstilbestrol (DES), an estrogen-related drug, was widely prescribed to pregnant women to help prevent miscarriages. The daughters of these women face a higher risk for cervical cancer. DES is no longer prsecribed.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Prevalence of Overweight: Weight for Height: Female: % of Children Under 5 data was reported at 6.900 % in 2012. This records an increase from the previous number of 6.400 % for 2009. United States US: Prevalence of Overweight: Weight for Height: Female: % of Children Under 5 data is updated yearly, averaging 6.900 % from Dec 1991 (Median) to 2012, with 6 observations. The data reached an all-time high of 8.700 % in 2005 and a record low of 5.100 % in 1991. United States US: Prevalence of Overweight: Weight for Height: Female: % of Children Under 5 data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Health Statistics. Prevalence of overweight, female, is the percentage of girls under age 5 whose weight for height is more than two standard deviations above the median for the international reference population of the corresponding age as established by the WHO's new child growth standards released in 2006.; ; World Health Organization, Global Database on Child Growth and Malnutrition. Country-level data are unadjusted data from national surveys, and thus may not be comparable across countries.; Linear mixed-effect model estimates; Estimates of overweight children are also from national survey data. Once considered only a high-income economy problem, overweight children have become a growing concern in developing countries. Research shows an association between childhood obesity and a high prevalence of diabetes, respiratory disease, high blood pressure, and psychosocial and orthopedic disorders (de Onis and Blössner 2003). Childhood obesity is associated with a higher chance of obesity, premature death, and disability in adulthood. In addition to increased future risks, obese children experience breathing difficulties and increased risk of fractures, hypertension, early markers of cardiovascular disease, insulin resistance, and psychological effects. Children in low- and middle-income countries are more vulnerable to inadequate nutrition before birth and in infancy and early childhood. Many of these children are exposed to high-fat, high-sugar, high-salt, calorie-dense, micronutrient-poor foods, which tend be lower in cost than more nutritious foods. These dietary patterns, in conjunction with low levels of physical activity, result in sharp increases in childhood obesity, while under-nutrition continues
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Perth population by age. The dataset can be utilized to understand the age distribution and demographics of Perth.
The dataset constitues the following three datasets
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
In 2022, there were 313,017 cases filed by the NCIC where the race of the reported missing was White. In the same year, 18,928 people were missing whose race was unknown.
What is the NCIC?
The National Crime Information Center (NCIC) is a digital database that stores crime data for the United States, so criminal justice agencies can access it. As a part of the FBI, it helps criminal justice professionals find criminals, missing people, stolen property, and terrorists. The NCIC database is broken down into 21 files. Seven files belong to stolen property and items, and 14 belong to persons, including the National Sex Offender Register, Missing Person, and Identify Theft. It works alongside federal, tribal, state, and local agencies. The NCIC’s goal is to maintain a centralized information system between local branches and offices, so information is easily accessible nationwide.
Missing people in the United States
A person is considered missing when they have disappeared and their location is unknown. A person who is considered missing might have left voluntarily, but that is not always the case. The number of the NCIC unidentified person files in the United States has fluctuated since 1990, and in 2022, there were slightly more NCIC missing person files for males as compared to females. Fortunately, the number of NCIC missing person files has been mostly decreasing since 1998.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This report offers updated estimates of the number of people eligible for WIC benefits in 2011, including (1) estimates by participant category (including children by single year of age) and coverage rates; (2) updated estimates in U.S. territories; and (3) confidence intervals. The national estimates presented in this report are based on a methodology developed in 2003 by the Committee on National Statistics of the National Research Council (CNSTAT). The report’s State-level estimates use a methodology developed by the Urban Institute that apportions the national figures using data from the American Community Survey
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Prevalence of Stunting: Height for Age: Male: % of Children Under 5 data was reported at 3.000 % in 2012. This records a decrease from the previous number of 3.200 % for 2009. United States US: Prevalence of Stunting: Height for Age: Male: % of Children Under 5 data is updated yearly, averaging 3.600 % from Dec 1991 (Median) to 2012, with 6 observations. The data reached an all-time high of 4.500 % in 2002 and a record low of 3.000 % in 2012. United States US: Prevalence of Stunting: Height for Age: Male: % of Children Under 5 data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Health Statistics. Prevalence of stunting, male, is the percentage of boys under age 5 whose height for age is more than two standard deviations below the median for the international reference population ages 0-59 months. For children up to two years old height is measured by recumbent length. For older children height is measured by stature while standing. The data are based on the WHO's new child growth standards released in 2006.; ; World Health Organization, Global Database on Child Growth and Malnutrition. Country-level data are unadjusted data from national surveys, and thus may not be comparable across countries.; Linear mixed-effect model estimates; Undernourished children have lower resistance to infection and are more likely to die from common childhood ailments such as diarrheal diseases and respiratory infections. Frequent illness saps the nutritional status of those who survive, locking them into a vicious cycle of recurring sickness and faltering growth (UNICEF, www.childinfo.org). Estimates of child malnutrition, based on prevalence of underweight and stunting, are from national survey data. The proportion of underweight children is the most common malnutrition indicator. Being even mildly underweight increases the risk of death and inhibits cognitive development in children. And it perpetuates the problem across generations, as malnourished women are more likely to have low-birth-weight babies. Stunting, or being below median height for age, is often used as a proxy for multifaceted deprivation and as an indicator of long-term changes in malnutrition.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Jamaica JM: Fertility Rate: Total: Births per Woman data was reported at 2.009 Ratio in 2016. This records a decrease from the previous number of 2.026 Ratio for 2015. Jamaica JM: Fertility Rate: Total: Births per Woman data is updated yearly, averaging 3.069 Ratio from Dec 1960 (Median) to 2016, with 57 observations. The data reached an all-time high of 5.821 Ratio in 1966 and a record low of 2.009 Ratio in 2016. Jamaica JM: Fertility Rate: Total: Births per Woman data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Jamaica – Table JM.World Bank: Health Statistics. Total fertility rate represents the number of children that would be born to a woman if she were to live to the end of her childbearing years and bear children in accordance with age-specific fertility rates of the specified year.; ; (1) United Nations Population Division. World Population Prospects: 2017 Revision. (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Reprot (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme.; Weighted average; Relevance to gender indicator: it can indicate the status of women within households and a woman’s decision about the number and spacing of children.
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
Explore the Saudi Arabia World Development Indicators dataset , including key indicators such as Access to clean fuels, Adjusted net enrollment rate, CO2 emissions, and more. Find valuable insights and trends for Saudi Arabia, Bahrain, Kuwait, Oman, Qatar, China, and India.
Indicator, Access to clean fuels and technologies for cooking, rural (% of rural population), Access to electricity (% of population), Adjusted net enrollment rate, primary, female (% of primary school age children), Adjusted net national income (annual % growth), Adjusted savings: education expenditure (% of GNI), Adjusted savings: mineral depletion (current US$), Adjusted savings: natural resources depletion (% of GNI), Adjusted savings: net national savings (current US$), Adolescents out of school (% of lower secondary school age), Adolescents out of school, female (% of female lower secondary school age), Age dependency ratio (% of working-age population), Agricultural methane emissions (% of total), Agriculture, forestry, and fishing, value added (current US$), Agriculture, forestry, and fishing, value added per worker (constant 2015 US$), Alternative and nuclear energy (% of total energy use), Annualized average growth rate in per capita real survey mean consumption or income, total population (%), Arms exports (SIPRI trend indicator values), Arms imports (SIPRI trend indicator values), Average working hours of children, working only, ages 7-14 (hours per week), Average working hours of children, working only, male, ages 7-14 (hours per week), Cause of death, by injury (% of total), Cereal yield (kg per hectare), Changes in inventories (current US$), Chemicals (% of value added in manufacturing), Child employment in agriculture (% of economically active children ages 7-14), Child employment in manufacturing, female (% of female economically active children ages 7-14), Child employment in manufacturing, male (% of male economically active children ages 7-14), Child employment in services (% of economically active children ages 7-14), Child employment in services, female (% of female economically active children ages 7-14), Children (ages 0-14) newly infected with HIV, Children in employment, study and work (% of children in employment, ages 7-14), Children in employment, unpaid family workers (% of children in employment, ages 7-14), Children in employment, wage workers (% of children in employment, ages 7-14), Children out of school, primary, Children out of school, primary, male, Claims on other sectors of the domestic economy (annual growth as % of broad money), CO2 emissions (kg per 2015 US$ of GDP), CO2 emissions (kt), CO2 emissions from other sectors, excluding residential buildings and commercial and public services (% of total fuel combustion), CO2 emissions from transport (% of total fuel combustion), Communications, computer, etc. (% of service exports, BoP), Condom use, population ages 15-24, female (% of females ages 15-24), Container port traffic (TEU: 20 foot equivalent units), Contraceptive prevalence, any method (% of married women ages 15-49), Control of Corruption: Estimate, Control of Corruption: Percentile Rank, Upper Bound of 90% Confidence Interval, Control of Corruption: Standard Error, Coverage of social insurance programs in 4th quintile (% of population), CPIA building human resources rating (1=low to 6=high), CPIA debt policy rating (1=low to 6=high), CPIA policies for social inclusion/equity cluster average (1=low to 6=high), CPIA public sector management and institutions cluster average (1=low to 6=high), CPIA quality of budgetary and financial management rating (1=low to 6=high), CPIA transparency, accountability, and corruption in the public sector rating (1=low to 6=high), Current education expenditure, secondary (% of total expenditure in secondary public institutions), DEC alternative conversion factor (LCU per US$), Deposit interest rate (%), Depth of credit information index (0=low to 8=high), Diarrhea treatment (% of children under 5 who received ORS packet), Discrepancy in expenditure estimate of GDP (current LCU), Domestic private health expenditure per capita, PPP (current international $), Droughts, floods, extreme temperatures (% of population, average 1990-2009), Educational attainment, at least Bachelor's or equivalent, population 25+, female (%) (cumulative), Educational attainment, at least Bachelor's or equivalent, population 25+, male (%) (cumulative), Educational attainment, at least completed lower secondary, population 25+, female (%) (cumulative), Educational attainment, at least completed primary, population 25+ years, total (%) (cumulative), Educational attainment, at least Master's or equivalent, population 25+, male (%) (cumulative), Educational attainment, at least Master's or equivalent, population 25+, total (%) (cumulative), Electricity production from coal sources (% of total), Electricity production from nuclear sources (% of total), Employers, total (% of total employment) (modeled ILO estimate), Employment in industry (% of total employment) (modeled ILO estimate), Employment in services, female (% of female employment) (modeled ILO estimate), Employment to population ratio, 15+, male (%) (modeled ILO estimate), Employment to population ratio, ages 15-24, total (%) (national estimate), Energy use (kg of oil equivalent per capita), Export unit value index (2015 = 100), Exports of goods and services (% of GDP), Exports of goods, services and primary income (BoP, current US$), External debt stocks (% of GNI), External health expenditure (% of current health expenditure), Female primary school age children out-of-school (%), Female share of employment in senior and middle management (%), Final consumption expenditure (constant 2015 US$), Firms expected to give gifts in meetings with tax officials (% of firms), Firms experiencing losses due to theft and vandalism (% of firms), Firms formally registered when operations started (% of firms), Fixed broadband subscriptions, Fixed telephone subscriptions (per 100 people), Foreign direct investment, net outflows (% of GDP), Forest area (% of land area), Forest area (sq. km), Forest rents (% of GDP), GDP growth (annual %), GDP per capita (constant LCU), GDP per unit of energy use (PPP $ per kg of oil equivalent), GDP, PPP (constant 2017 international $), General government final consumption expenditure (current LCU), GHG net emissions/removals by LUCF (Mt of CO2 equivalent), GNI growth (annual %), GNI per capita (constant LCU), GNI, PPP (current international $), Goods and services expense (current LCU), Government Effectiveness: Percentile Rank, Government Effectiveness: Percentile Rank, Lower Bound of 90% Confidence Interval, Government Effectiveness: Standard Error, Gross capital formation (annual % growth), Gross capital formation (constant 2015 US$), Gross capital formation (current LCU), Gross fixed capital formation, private sector (% of GDP), Gross intake ratio in first grade of primary education, male (% of relevant age group), Gross intake ratio in first grade of primary education, total (% of relevant age group), Gross national expenditure (current LCU), Gross national expenditure (current US$), Households and NPISHs Final consumption expenditure (constant LCU), Households and NPISHs Final consumption expenditure (current US$), Households and NPISHs Final consumption expenditure, PPP (constant 2017 international $), Households and NPISHs final consumption expenditure: linked series (current LCU), Human capital index (HCI) (scale 0-1), Human capital index (HCI), male (scale 0-1), Immunization, DPT (% of children ages 12-23 months), Import value index (2015 = 100), Imports of goods and services (% of GDP), Incidence of HIV, ages 15-24 (per 1,000 uninfected population ages 15-24), Incidence of HIV, all (per 1,000 uninfected population), Income share held by highest 20%, Income share held by lowest 20%, Income share held by third 20%, Individuals using the Internet (% of population), Industry (including construction), value added (constant LCU), Informal payments to public officials (% of firms), Intentional homicides, male (per 100,000 male), Interest payments (% of expense), Interest rate spread (lending rate minus deposit rate, %), Internally displaced persons, new displacement associated with conflict and violence (number of cases), International tourism, expenditures for passenger transport items (current US$), International tourism, expenditures for travel items (current US$), Investment in energy with private participation (current US$), Labor force participation rate for ages 15-24, female (%) (modeled ILO estimate), Development
Saudi Arabia, Bahrain, Kuwait, Oman, Qatar, China, India Follow data.kapsarc.org for timely data to advance energy economics research..
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Iran IR: Fertility Rate: Total: Births per Woman data was reported at 1.661 Ratio in 2016. This records a decrease from the previous number of 1.686 Ratio for 2015. Iran IR: Fertility Rate: Total: Births per Woman data is updated yearly, averaging 5.467 Ratio from Dec 1960 (Median) to 2016, with 57 observations. The data reached an all-time high of 6.927 Ratio in 1960 and a record low of 1.661 Ratio in 2016. Iran IR: Fertility Rate: Total: Births per Woman data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Iran – Table IR.World Bank: Health Statistics. Total fertility rate represents the number of children that would be born to a woman if she were to live to the end of her childbearing years and bear children in accordance with age-specific fertility rates of the specified year.; ; (1) United Nations Population Division. World Population Prospects: 2017 Revision. (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Reprot (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme.; Weighted average; Relevance to gender indicator: it can indicate the status of women within households and a woman’s decision about the number and spacing of children.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The 2011 Bangladesh Demographic and Health Survey (BDHS) is the sixth DHS undertaken in Bangladesh, following those implemented in 1993-94, 1996-97, 1999-2000, 2004, and 2007. The main objectives of the 2011 BDHS are to: • Provide information to meet the monitoring and evaluation needs of health and family planning programs, and • Provide program managers and policy makers involved in these programs with the information they need to plan and implement future interventions. The specific objectives of the 2011 BDHS were as follows: • To provide up-to-date data on demographic rates, particularly fertility and infant mortality rates, at the national and subnational level; • To analyze the direct and indirect factors that determine the level of and trends in fertility and mortality; • To measure the level of contraceptive use of currently married women; • To provide data on knowledge and attitudes of women and men about sexually transmitted infections and HIV/AIDS; • To assess the nutritional status of children (under age 5), women, and men by means of anthropometric measurements (weight and height), and to assess infant and child feeding practices; • To provide data on maternal and child health, including antenatal care, assistance at delivery, breastfeeding, immunizations, and prevalence and treatment of diarrhea and other diseases among children under age 5; • To measure biomarkers, such as hemoglobin level for women and children, and blood pressure, and blood glucose for women and men 35 years and older; • To measure key education indicators, including school attendance ratios and primary school grade repetition and dropout rates; • To provide information on the causes of death among children under age 5; • To provide community-level data on accessibility and availability of health and family planning services; • To measure food security. The 2011 BDHS was conducted under the authority of the National Institute of Population Research and Training (NIPORT) of the Ministry of Health and Family Welfare. The survey was implemented by Mitra and Associates, a Bangladeshi research firm located in Dhaka. ICF International of Calverton, Maryland, USA, provided technical assistance to the project as part of its international Demographic and Health Surveys program (MEASURE DHS). Financial support was provided by the U.S. Agency for International Development (USAID).
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
The State of Early Education and Care in Boston: Supply, Demand, Affordability, and Quality, is the first in what is planned as a recurrent landscape survey of early childhood, preschool and childcare programs in every neighborhood of Boston. It focuses on potential supply, demand and gaps in child-care seats (availability, quality and affordability). This report’s estimates set a baseline understanding to help focus and track investments and policy changes for early childhood in the city.
This publication is a culmination of efforts by a diverse data committee representing providers, parents, funding agencies, policymakers, advocates, and researchers. The report includes data from several sources, such as American Community Survey, Massachusetts Department of Early Education and Care, Massachusetts Department of Elementary & Secondary Education, Boston Public Health Commission, City of Boston, among others. For detailed information on methodology, findings and recommendations, please access the full report here
The first dataset contains all Census data used in the publication. Data is presented by neighborhoods:
The Boston Planning & Development Agency Research Division analyzed 2013-2017 American Community Survey data to estimate numbers by ZIP-Code. The Boston Opportunity Agenda combined that data by the approximate neighborhoods and estimated cost of care and affordability.
Attribution-NoDerivs 4.0 (CC BY-ND 4.0)https://creativecommons.org/licenses/by-nd/4.0/
License information was derived automatically
🔗 Check out my notebook here: Link
This dataset includes malnutrition indicators and some of the features that might impact malnutrition. The detailed description of the dataset is given below:
Percentage-of-underweight-children-data: Percentage of children aged 5 years or below who are underweight by country.
Prevalence of Underweight among Female Adults (Age Standardized Estimate): Percentage of female adults whos BMI is less than 18.
GDP per capita (constant 2015 US$): GDP per capita is gross domestic product divided by midyear population. GDP is the sum of gross value added by all resident producers in the economy plus any product taxes and minus any subsidies not included in the value of the products. It is calculated without making deductions for depreciation of fabricated assets or for depletion and degradation of natural resources. Data are in constant 2015 U.S. dollars.
Domestic general government health expenditure (% of GDP): Public expenditure on health from domestic sources as a share of the economy as measured by GDP.
Maternal mortality ratio (modeled estimate, per 100,000 live births): Maternal mortality ratio is the number of women who die from pregnancy-related causes while pregnant or within 42 days of pregnancy termination per 100,000 live births. The data are estimated with a regression model using information on the proportion of maternal deaths among non-AIDS deaths in women ages 15-49, fertility, birth attendants, and GDP measured using purchasing power parities (PPPs).
Mean-age-at-first-birth-of-women-aged-20-50-data: Average age at which women of age 20-50 years have their first child.
School enrollment, secondary, female (% gross): Gross enrollment ratio is the ratio of total enrollment, regardless of age, to the population of the age group that officially corresponds to the level of education shown. Secondary education completes the provision of basic education that began at the primary level, and aims at laying the foundations for lifelong learning and human development, by offering more subject- or skill-oriented instruction using more specialized teachers.