Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of White Earth by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for White Earth. The dataset can be utilized to understand the population distribution of White Earth by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in White Earth. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for White Earth.
Key observations
Largest age group (population): Male # 10-14 years (17) | Female # 40-44 years (13). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for White Earth Population by Gender. You can refer the same here
By Bastian Herre, Pablo Arriagada, Esteban Ortiz-Ospina, Hannah Ritchie, Joe Hasell and Max Roser.
About dataset:
Women’s rights are human rights that all women have. But in practice, these rights are often not protected to the same extent as the rights of men.
Among others, women’s rights include: physical integrity rights, such as being free from violence and making choices over their own body; social rights, such as going to school and participating in public life; economic rights, such as owning property, working a job of their choice, and being paid equally for it; and political rights, such as voting for and holding public office.
The protection of these rights allows women to live the lives they want and to thrive in them.
On this page, you can find data on how the protection of women’s rights has changed over time, and how it differs across countries.
There are 6 dataset in here.
1- Female to male ratio of time devoted to unpaid care work. 2- Share of women in top income groups atkinson casarico voitchovsky 2018. 3- Ratio of female to male labor force participation rates ilo wdi. 4- Female to male ratio of time devoted to unpaid care work. 5- Maternal mortality 6- Gender gap in average wages ilo
In each one, there are some topics and variables that we can analysis and visualize them.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Globe by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Globe. The dataset can be utilized to understand the population distribution of Globe by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Globe. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Globe.
Key observations
Largest age group (population): Male # 55-59 years (337) | Female # 50-54 years (448). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Globe Population by Gender. You can refer the same here
This dataset compiles valuable information on how different countries worldwide rank concerning conditions and opportunities for women. It aims to shed light on the status of women's rights and gender equality across the globe, making it a valuable resource for researchers, policymakers, and organizations advocating for gender equality.
This dataset contains three main columns:
1.**Rank:** This column provides the ranking of countries based on their performance or score in terms of conditions and opportunities for women. Rankings range from 1 (indicating the best country for women) to the total number of countries included in the dataset.
2.**Country:** This column lists the names of the countries under evaluation. Each row corresponds to a specific country, allowing users to identify which country the data pertains to. Examples of entries in this column include "United States," "Sweden," "India," and more.
3.**Score:** The "Score" column comprises numerical values or scores reflecting the overall assessment of each country's performance regarding conditions and opportunities for women. These scores are likely calculated based on factors such as gender equality in education, employment, healthcare, political representation, and legal rights. Higher scores generally indicate better conditions for women, while lower scores suggest room for improvement.
Use Cases:
Researchers can analyze this dataset to identify global trends in gender equality, allowing for cross-country comparisons and the identification of areas where countries excel or need improvement.
Policymakers can utilize this data to make informed decisions and track progress in achieving gender equality goals.
Advocacy groups and organizations working on women's rights can leverage this dataset to support their initiatives and promote gender equality on a global scale.
Data enthusiasts on Kaggle can explore this dataset for data visualization, machine learning, and statistical analysis projects aimed at uncovering insights and trends related to women's well-being and opportunities.
Data Source:
https://ceoworld.biz/2021/06/11/the-worlds-best-countries-for-women-2021/
Acknowledgments:
If applicable, acknowledge any individuals or organizations that contributed to collecting or compiling this dataset.
By publishing this dataset on Kaggle, you are contributing to the open data community and providing a valuable resource for data-driven insights into gender equality worldwide.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The 2015 Global Nutrition Report Dataset contains data for all the indicators that were used in Global Nutrition Report 2015: Actions and Accountability to Advance Nutrition & Sustainable Development. The data are compiled from secondary sources including United Nations Children's Fund (UNICEF), World Health Organization (WHO), and the World Bank (WB) among many others. The dataset broadly contains information on adult and child nutrition, economic demography, nutrition intervention coverage, and policy legislation in the nutrition sector.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
Context : The ICC Women's T20 World Cup is a (generally) bi-annual cricket tournament for women's international teams. This dataset looks at the editions in 2014, 2016, 2018, 2020 and 2023, in which 10 teams have competed. This dataset contains both match overview data and ball by ball data, as well as a players list.
A handful of matches are missing from the source data (as far as I'm aware, the 2nd, 6th, 9th and 11th games from the 2014 world cup). Runs/Wickets additions contain the wickets taken and runs scored by each player in these missing matches, but this information is not in any of the main files.
Notebooks - To see some charts based on this data go to - Match overview : https://www.kaggle.com/code/acidbear55/women-s-t20-world-cups-data-visualisation - Ball by Ball : https://www.kaggle.com/code/acidbear55/women-s-icc-t20-world-cup-ball-by-ball/notebook
Sources - All this data was taken from https://cricsheet.org/downloads/ , under BY EVENT, and from 'ICC Women's T20 World Cup'. Originally the data came as one json file per match, which has now been combined into a single CSV file.
Python code used to clean and create the csv files can be found at : https://github.com/annaFlett/T20WCData
Any feedback is much appreciated :)
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This table contains 30 series, with data for years 1961 - 1971 (not all combinations necessarily have data for all years). This table contains data described by the following dimensions (Not all combinations are available): Unit of measure (1 items: Persons ...) Geography (1 items: Canada ...) Children born to ever-married women (10 items: Number of children born to ever-married women 15 years of age and over; total; Number of children born to ever-married women aged 15-19 years; Number of children born to ever-married women aged 20-24 years; Number of children born to ever-married women aged 25-29 years ...) Type of area (3 items: Total urban and rural areas; Rural; Urban ...).
Women's Business Centers (WBCs) represent a national network of nearly 100 educational centers throughout the United States and its territories, which are designed to assist women in starting and growing small businesses. WBCs seek to "level the playing field" for women entrepreneurs, who still face unique obstacles in the business world. SBA’s Office of Women’s Business Ownership (OWBO) oversees the WBC network, which provides entrepreneurs (especially women who are economically or socially disadvantaged) comprehensive training and counseling on a variety of topics in several languages
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Earth by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Earth. The dataset can be utilized to understand the population distribution of Earth by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Earth. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Earth.
Key observations
Largest age group (population): Male # 65-69 years (51) | Female # 10-14 years (76). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Earth Population by Gender. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for RETIREMENT AGE WOMEN reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Blue Earth County by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Blue Earth County. The dataset can be utilized to understand the population distribution of Blue Earth County by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Blue Earth County. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Blue Earth County.
Key observations
Largest age group (population): Male # 20-24 years (5,400) | Female # 20-24 years (5,130). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Blue Earth County Population by Gender. You can refer the same here
Series Name: Proportion of women aged 20-24 years who were married or in a union before age 15 (percent)Series Code: SP_DYN_MRBF15Release Version: 2020.Q2.G.03This dataset is the part of the Global SDG Indicator Database compiled through the UN System in preparation for the Secretary-General's annual report on Progress towards the Sustainable Development Goals.Indicator 5.3.1: Proportion of women aged 20–24 years who were married or in a union before age 15 and before age 18Target 5.3: Eliminate all harmful practices, such as child, early and forced marriage and female genital mutilationGoal 5: Achieve gender equality and empower all women and girlsFor more information on the compilation methodology of this dataset, see https://unstats.un.org/sdgs/metadata/
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Benin BJ: Women Business and the Law Index Score: scale 1-100 data was reported at 83.750 NA in 2023. This stayed constant from the previous number of 83.750 NA for 2022. Benin BJ: Women Business and the Law Index Score: scale 1-100 data is updated yearly, averaging 40.000 NA from Dec 1970 (Median) to 2023, with 54 observations. The data reached an all-time high of 83.750 NA in 2023 and a record low of 28.125 NA in 1972. Benin BJ: Women Business and the Law Index Score: scale 1-100 data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Benin – Table BJ.World Bank.WDI: Governance: Policy and Institutions. The index measures how laws and regulations affect women’s economic opportunity. Overall scores are calculated by taking the average score of each index (Mobility, Workplace, Pay, Marriage, Parenthood, Entrepreneurship, Assets and Pension), with 100 representing the highest possible score.;World Bank: Women, Business and the Law. https://wbl.worldbank.org/;;1. For the reference period, WDI and Gender Databases take the data coverage years instead of reporting years used in WBL (https://wbl.worldbank.org/). For example, the data for YR2020 in WBL (report year) corresponds to data for YR2019 in WDI and Gender Databases. 2. The 2024 Women, Business and the Law (WBL) report has introduced two distinct datasets, labeled as 1.0 and 2.0. The WBL data in the Gender database is based on the dataset 1.0. This dataset maintains consistency with the indicators used in previous WBL reports from 2020 to 2023. In contrast, the WBL 2.0 dataset includes new areas of childcare and safety. For those interested in exploring the WBL 2.0 dataset, it is available on the WBL website at https://wbl.worldbank.org.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The study used an explanatory sequential mixed method design. This method is appropriate for examining the employment status of STEM graduates in terms of gender as well as the time it takes for graduates to secure their first job after graduating. The method is also employed to look at how staff in higher education supports female graduates in their search for employment after graduation. By design, this study collects data in a sequential fashion, starting with quantitative data and moving on to qualitative data that provide context for the quantitative data.Both primary and secondary sources of data were employed in the study (See Figure A). While information from secondary sources was gathered using Eric, Scopus, and Google search engines, information from primary sources was gathered through questionnaires and interviews. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) was used to conduct the analysis. Using the keywords employment status, duration of job search, and gender-responsive support of higher education, the first 221 articles were collected. Only 15 articles were chosen when PRISMA used the inclusion and exclusion criteria to filter out publications gathered between 2012 and 2024. The information gathered from secondary sources was utilized to triangulate the findings of the primary data sources. The following figure shows the data sources.Figure A: Data sources for the study (see the Description Word Doc. in the dataset)Based on the explanatory sequential mixed method design, quantitative data analysis was first carried out. In order to determine whether there were statistical differences in the employment status and the time it took for male and female STEM engineering graduates to find jobs, the chi square test was employed. An analysis of the degree to which higher education institutions assist female graduates in their job search was also done using an independent samples t-test. The viewpoints of academics from these related universities and prospective employers of STEM graduates were captured through the use of qualitative data.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Kosovo KS: Women Business and the Law Index Score: scale 1-100 data was reported at 91.875 NA in 2023. This stayed constant from the previous number of 91.875 NA for 2022. Kosovo KS: Women Business and the Law Index Score: scale 1-100 data is updated yearly, averaging 69.063 NA from Dec 1970 (Median) to 2023, with 54 observations. The data reached an all-time high of 91.875 NA in 2023 and a record low of 67.500 NA in 1996. Kosovo KS: Women Business and the Law Index Score: scale 1-100 data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Kosovo – Table KS.World Bank.WDI: Governance: Policy and Institutions. The index measures how laws and regulations affect women’s economic opportunity. Overall scores are calculated by taking the average score of each index (Mobility, Workplace, Pay, Marriage, Parenthood, Entrepreneurship, Assets and Pension), with 100 representing the highest possible score.;World Bank: Women, Business and the Law. https://wbl.worldbank.org/;;1. For the reference period, WDI and Gender Databases take the data coverage years instead of reporting years used in WBL (https://wbl.worldbank.org/). For example, the data for YR2020 in WBL (report year) corresponds to data for YR2019 in WDI and Gender Databases. 2. The 2024 Women, Business and the Law (WBL) report has introduced two distinct datasets, labeled as 1.0 and 2.0. The WBL data in the Gender database is based on the dataset 1.0. This dataset maintains consistency with the indicators used in previous WBL reports from 2020 to 2023. In contrast, the WBL 2.0 dataset includes new areas of childcare and safety. For those interested in exploring the WBL 2.0 dataset, it is available on the WBL website at https://wbl.worldbank.org.
Series Name: Proportion of women who make their own informed decisions regarding sexual relations contraceptive use and reproductive health care (percent of women aged 15-49 years)Series Code: SH_FPL_INFMRelease Version: 2020.Q2.G.03This dataset is the part of the Global SDG Indicator Database compiled through the UN System in preparation for the Secretary-General's annual report on Progress towards the Sustainable Development Goals.Indicator 5.6.1: Proportion of women aged 15–49 years who make their own informed decisions regarding sexual relations, contraceptive use and reproductive health careTarget 5.6: Ensure universal access to sexual and reproductive health and reproductive rights as agreed in accordance with the Programme of Action of the International Conference on Population and Development and the Beijing Platform for Action and the outcome documents of their review conferencesGoal 5: Achieve gender equality and empower all women and girlsFor more information on the compilation methodology of this dataset, see https://unstats.un.org/sdgs/metadata/
Despite the steady rise in literacy rates over the past 50 years, there are still 750 million illiterate adults around the world, most of whom are women. These numbers produced by the UIS are a stark reminder of the work ahead to meet the Sustainable Development Goals (SDGs), especially Target 4.6 to ensure that all youth and most adults achieve literacy and numeracy by 2030. Current literacy data are generally collected through population censuses or household surveys in which the respondent or head of the household declares whether they can read and write with understanding a short, simple statement about one's everyday life in any written language. Some surveys require respondents to take a quick test in which they are asked to read a simple passage or write a sentence, yet clearly literacy is a far more complex issue that requires more information. For the UIS, the existing dataset serves as a placeholder for a new generation of indicators being developed with countries and partners under the umbrella of the Global Alliance to Monitor Learning (GAML). GAML is developing the methodologies needed to gather more nuanced data and the tools required for their standardisation. In particular, the Alliance is finding ways to link existing large-scale assessments to produce comparable data to monitor the literacy skills of children, youth and adults. This involves close collaboration with a wide range of partners.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Description of the experiment setting: location, influential climatic conditions, controlled conditions (e.g. temperature, light cycle) In 1986, the Congress enacted Public Laws 99-500 and 99-591, requiring a biennial report on the Special Supplemental Nutrition Program for Women, Infants, and Children (WIC). In response to these requirements, FNS developed a prototype system that allowed for the routine acquisition of information on WIC participants from WIC State Agencies. Since 1992, State Agencies have provided electronic copies of these data to FNS on a biennial basis. FNS and the National WIC Association (formerly National Association of WIC Directors) agreed on a set of data elements for the transfer of information. In addition, FNS established a minimum standard dataset for reporting participation data. For each biennial reporting cycle, each State Agency is required to submit a participant-level dataset containing standardized information on persons enrolled at local agencies for the reference month of April. The 2016 Participant and Program Characteristics (PC2016) is the thirteenth data submission to be completed using the WIC PC reporting system. In April 2016, there were 90 State agencies: the 50 States, American Samoa, the District of Columbia, Guam, the Northern Mariana Islands, Puerto Rico, the American Virgin Islands, and 34 Indian tribal organizations. Processing methods and equipment used Specifications on formats (“Guidance for States Providing Participant Data”) were provided to all State agencies in January 2016. This guide specified 20 minimum dataset (MDS) elements and 11 supplemental dataset (SDS) elements to be reported on each WIC participant. Each State Agency was required to submit all 20 MDS items and any SDS items collected by the State agency. Study date(s) and duration The information for each participant was from the participants’ most current WIC certification as of April 2016. Due to management information constraints, Connecticut provided data for a month other than April 2016, specifically August 16 – September 15, 2016. Study spatial scale (size of replicates and spatial scale of study area) In April 2016, there were 90 State agencies: the 50 States, American Samoa, the District of Columbia, Guam, the Northern Mariana Islands, Puerto Rico, the American Virgin Islands, and 34 Indian tribal organizations. Level of true replication Unknown Sampling precision (within-replicate sampling or pseudoreplication) State Agency Data Submissions. PC2016 is a participant dataset consisting of 8,815,472 active records. The records, submitted to USDA by the State Agencies, comprise a census of all WIC enrollees, so there is no sampling involved in the collection of this data. PII Analytic Datasets. State agency files were combined to create a national census participant file of approximately 8.8 million records. The census dataset contains potentially personally identifiable information (PII) and is therefore not made available to the public. National Sample Dataset. The public use SAS analytic dataset made available to the public has been constructed from a nationally representative sample drawn from the census of WIC participants, selected by participant category. The nationally representative sample is composed of 60,003 records. The distribution by category is 5,449 pregnant women, 4,661 breastfeeding women, 3,904 postpartum women, 13,999 infants, and 31,990 children. Level of subsampling (number and repeat or within-replicate sampling) The proportionate (or self-weighting) sample was drawn by WIC participant category: pregnant women, breastfeeding women, postpartum women, infants, and children. In this type of sample design, each WIC participant has the same probability of selection across all strata. Sampling weights are not needed when the data are analyzed. In a proportionate stratified sample, the largest stratum accounts for the highest percentage of the analytic sample. Study design (before–after, control–impacts, time series, before–after-control–impacts) None – Non-experimental Description of any data manipulation, modeling, or statistical analysis undertaken Each entry in the dataset contains all MDS and SDS information submitted by the State agency on the sampled WIC participant. In addition, the file contains constructed variables used for analytic purposes. To protect individual privacy, the public use file does not include State agency, local agency, or case identification numbers. Description of any gaps in the data or other limiting factors Due to management information constraints, Connecticut provided data for a month other than April 2016, specifically August 16 – September 15, 2016. Outcome measurement methods and equipment used None Resources in this dataset:Resource Title: WIC Participant and Program Characteristics 2016. File Name: wicpc_2016_public.csvResource Description: The 2016 Participant and Program Characteristics (PC2016) is the thirteenth data submission to be completed using the WIC PC reporting system. In April 2016, there were 90 State agencies: the 50 States, American Samoa, the District of Columbia, Guam, the Northern Mariana Islands, Puerto Rico, the American Virgin Islands, and 34 Indian tribal organizations.Resource Software Recommended: SAS, version 9.4,url: https://www.sas.com/en_us/software/sas9.html Resource Title: WIC Participant and Program Characteristics 2016 Codebook. File Name: WICPC2016_PUBLIC_CODEBOOK.xlsxResource Software Recommended: SAS, version 9.4,url: https://www.sas.com/en_us/software/sas9.html Resource Title: WIC Participant and Program Characteristics 2016 - Zip File with SAS, SPSS and STATA data. File Name: WIC_PC_2016_SAS_SPSS_STATA_Files.zipResource Description: WIC Participant and Program Characteristics 2016 - Zip File with SAS, SPSS and STATA data
https://www.worldbank.org/en/about/legal/terms-of-use-for-datasetshttps://www.worldbank.org/en/about/legal/terms-of-use-for-datasets
Women roughly occupy half of the world's population but when it comes to the total workforce of a country, the percentage of male and female workers are rarely similar. This is even more prominent for the developing and underdeveloped countries. While several reasons such as the insufficient access to education, religious superstitions, lack of adequate infrastrucutres are responsible for this discrepancy, it goes way beyond these. One significant factor is the fertility rate of women which is a count for the total number of births per an individual woman. And to show its effects on the participation of women in the total workforce, percentage of female workers in the labor force has been considered. Using simple linear regression model, the relationship between these two factors can be analyzed.
The datasets span over 23 years (from 1995 to 2017). Data has been collected separately from two surveys carried out by the World Bank for both the fertility rate and the percentage of female in the total workforce of Bangladesh. These two datasets were compiled into one dataset and it corresponds to the 23 data points for these two variables ("fertility rate" and "worker percent").
Linear model as well as other statistical methods can be applied on this dataset to analyze if there is any viable relationship between these two variables.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
The WTA (Women's Tennis Association) is the principal organizing body of women's professional tennis, it governs its own tour worldwide. On its website, it provides a lot of data about the players as individuals as well the tour matches with results and the current rank during it.
Luckily for us, Jeff Sackmann scraped the website and collected everything from there and put in a nice way into easily consumable datasets.
On Jeff's GitHub account you can find a lot more data about tennis!
The dataset present here is directly downloaded from the source, no alteration on the data was made, the files were only placed in subdirectories so one can easily locate them.
It covers statistics of players registered on the WTA, the matches that happened on each tour by year, with results, as well some qualifying matches for the tours.
As a reminder, you may not find all data of the matches prior to 2006, so be warned when working with those sets.
Thanks to Jeff Sackmann for maintaining such collection and making it public!
Also, a thank you for WTA for collecting those stats and making them accessible to anyone on their site.
Here are some things to start:
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of White Earth by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for White Earth. The dataset can be utilized to understand the population distribution of White Earth by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in White Earth. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for White Earth.
Key observations
Largest age group (population): Male # 10-14 years (17) | Female # 40-44 years (13). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for White Earth Population by Gender. You can refer the same here