https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Not in Labor Force (LNS15000000) from Jan 1975 to Feb 2025 about 16 years +, labor force, labor, household survey, and USA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Employment Rate in the United States decreased to 59.90 percent in February from 60.10 percent in January of 2025. This dataset provides - United States Employment Rate- actual values, historical data, forecast, chart, statistics, economic calendar and news.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Multiple Jobholders as a Percent of Employed (LNS12026620) from Jan 1994 to Feb 2025 about multiple jobholders, 16 years +, percent, household survey, employment, and USA.
https://www.icpsr.umich.edu/web/ICPSR/studies/36312/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/36312/terms
The Quarterly Census of Employment and Wages (QCEW) program is a cooperative program involving the Bureau of Labor Statistics (BLS) of the United States Department of Labor and the State Employment Security Agencies (SESAs). The QCEW program produces a comprehensive tabulation of employment and wage information for workers covered by State unemployment insurance (UI) laws and Federal workers covered by the Unemployment Compensation for Federal Employees (UCFE) program. Publicly available data files include information on the number of establishments, monthly employment, and quarterly wages, by NAICS industry, by county, by ownership sector, for the entire United States. These data are aggregated to annual levels, to higher industry levels (NAICS industry groups, sectors, and supersectors), and to higher geographic levels (national, State, and Metropolitan Statistical Area (MSA)). To download and analyze QCEW data, users can begin on the QCEW Databases page. Downloadable data are available in formats such as text and CSV. Data for the QCEW program that are classified using the North American Industry Classification System (NAICS) are available from 1990 forward, and on a more limited basis from 1975 to 1989. These data provide employment and wage information for arts-related NAICS industries, such as: Arts, entertainment, and recreation (NAICS Code 71) Performing arts and spectator sports Museums, historical sites, zoos, and parks Amusements, gambling, and recreation Professional, scientific, and technical services (NAICS Code 54) Architectural services Graphic design services Photographic services Retail trade (NAICS Code 44-45) Sporting goods, hobby, book and music stores Book, periodical, and music stores Art dealers For years 1975-2000, data for the QCEW program provide employment and wage information for arts-related industries are based on the Standard Industrial Classification (SIC) system. These arts-related SIC industries include the following: Book stores (SIC 5942) Commercial photography (SIC Code 7335) Commercial art and graphic design (SIC Code 7336) Museums, Botanical, Zoological Gardens (SIC Code 84) Dance studios, schools, and halls (SIC Code 7911) Theatrical producers and services (SIC Code 7922) Sports clubs, managers, & promoters (SIC Code 7941) Motion Picture Services (SIC Code 78) The QCEW program serves as a near census of monthly employment and quarterly wage information by 6-digit NAICS industry at the national, state, and county levels. At the national level, the QCEW program provides employment and wage data for almost every NAICS industry. At the State and area level, the QCEW program provides employment and wage data down to the 6-digit NAICS industry level, if disclosure restrictions are met. Employment data under the QCEW program represent the number of covered workers who worked during, or received pay for, the pay period including the 12th of the month. Excluded are members of the armed forces, the self-employed, proprietors, domestic workers, unpaid family workers, and railroad workers covered by the railroad unemployment insurance system. Wages represent total compensation paid during the calendar quarter, regardless of when services were performed. Included in wages are pay for vacation and other paid leave, bonuses, stock options, tips, the cash value of meals and lodging, and in some States, contributions to deferred compensation plans (such as 401(k) plans). The QCEW program does provide partial information on agricultural industries and employees in private households. Data from the QCEW program serve as an important source for many BLS programs. The QCEW data are used as the benchmark source for employment by the Current Employment Statistics program and the Occupational Employment Statistics program. The UI administrative records collected under the QCEW program serve as a sampling frame for BLS establishment surveys. In addition, data from the QCEW program serve as a source to other Federal and State programs. The Bureau of Economic Analysis (BEA) of the Department of Commerce uses QCEW data as the base for developing the wage and salary component of personal income. The Employment and Training Administration (ETA) of the Department of Labor and the SESAs use QCEW data to administer the employment security program. The QCEW data accurately reflect the ex
In 2019 there were 81,491 thousand people employed in the U.S. coal mining industry, of which only nine percent were women. By 2023, U.S. coal employment shrank by approximately 13,000 jobs, to 68,623. The share of women employees in U.S. coal mining amounted to seven percent in 2023.
Hybrid models of working are on the rise in the United States according to survey data covering worker habits between 2019 and 2024. In the second quarter of 2024, 53 percent of U.S. workers reported working in a hybrid manner. The emergence of the COVID-19 pandemic saw a record number of people working remotely to help curb the spread of the virus. Since then, many workers have found a new shape to their home and working lives, finding that a hybrid model of working is more flexible than always being required to work on-site.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Quarterly Census of Employment and Wages (QCEW) Program is a Federal-State cooperative program between the U.S. Department of Labor’s Bureau of Labor Statistics (BLS) and the California EDD’s Labor Market Information Division (LMID). The QCEW program produces a comprehensive tabulation of employment and wage information for workers covered by California Unemployment Insurance (UI) laws and Federal workers covered by the Unemployment Compensation for Federal Employees (UCFE) program.
The QCEW program serves as a near census of monthly employment and quarterly wage information by 6-digit industry codes from the North American Industry Classification System (NAICS) at the national, state, and county levels. At the national level, the QCEW program publishes employment and wage data for nearly every NAICS industry. At the state and local area level, the QCEW program publishes employment and wage data down to the 6-digit NAICS industry level, if disclosure restrictions are met. In accordance with the BLS policy, data provided to the Bureau in confidence are used only for specified statistical purposes and are not published. The BLS withholds publication of Unemployment Insurance law-covered employment and wage data for any industry level when necessary to protect the identity of cooperating employers.
Data from the QCEW program serve as an important input to many BLS programs. The Current Employment Statistics and the Occupational Employment Statistics programs use the QCEW data as the benchmark source for employment. The UI administrative records collected under the QCEW program serve as a sampling frame for the BLS establishment surveys.
In addition, the data serve as an input to other federal and state programs. The Bureau of Economic Analysis (BEA) of the Department of Commerce uses the QCEW data as the base for developing the wage and salary component of personal income.
The U.S. Department of Labor’s Employment and Training Administration (ETA) and California's EDD use the QCEW data to administer the Unemployment Insurance program. The QCEW data accurately reflect the extent of coverage of California’s UI laws and are used to measure UI revenues; national, state and local area employment; and total and UI taxable wage trends.
The U.S. Department of Labor’s Bureau of Labor Statistics publishes new QCEW data in its County Employment and Wages news release on a quarterly basis. The BLS also publishes a subset of its quarterly data through the Create Customized Tables system, and full quarterly industry detail data at all geographic levels.
In 2023, it was estimated that over 161 million Americans were in some form of employment, while 3.64 percent of the total workforce was unemployed. This was the lowest unemployment rate since the 1950s, although these figures are expected to rise in 2023 and beyond. 1980s-2010s Since the 1980s, the total United States labor force has generally risen as the population has grown, however, the annual average unemployment rate has fluctuated significantly, usually increasing in times of crisis, before falling more slowly during periods of recovery and economic stability. For example, unemployment peaked at 9.7 percent during the early 1980s recession, which was largely caused by the ripple effects of the Iranian Revolution on global oil prices and inflation. Other notable spikes came during the early 1990s; again, largely due to inflation caused by another oil shock, and during the early 2000s recession. The Great Recession then saw the U.S. unemployment rate soar to 9.6 percent, following the collapse of the U.S. housing market and its impact on the banking sector, and it was not until 2016 that unemployment returned to pre-recession levels. 2020s 2019 had marked a decade-long low in unemployment, before the economic impact of the Covid-19 pandemic saw the sharpest year-on-year increase in unemployment since the Great Depression, and the total number of workers fell by almost 10 million people. Despite the continuation of the pandemic in the years that followed, alongside the associated supply-chain issues and onset of the inflation crisis, unemployment reached just 3.67 percent in 2022 - current projections are for this figure to rise in 2023 and the years that follow, although these forecasts are subject to change if recent years are anything to go by.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Elizabeth. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Elizabeth, while the Census reported a median income of $12,250 for all female workers aged 15 years and older, data for males in the same category was unavailable due to an insufficient number of sample observations.
Because income data for males was not available from the Census Bureau, conducting a comprehensive analysis of gender-based pay disparity in the town of Elizabeth was not possible.
- Full-time workers, aged 15 years and older: In Elizabeth, among full-time, year-round workers aged 15 years and older, males earned a median income of $94,667, while females earned $56,250, leading to a 41% gender pay gap among full-time workers. This illustrates that women earn 59 cents for each dollar earned by men in full-time roles. This level of income gap emphasizes the urgency to address and rectify this ongoing disparity, where women, despite working full-time, face a more significant wage discrepancy compared to men in the same employment roles.When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Elizabeth median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Productivity in the United States increased to 115.66 points in the fourth quarter of 2024 from 115.23 points in the third quarter of 2024. This dataset provides - United States Productivity - actual values, historical data, forecast, chart, statistics, economic calendar and news.
https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Infra-Annual Labor Statistics: Working-Age Population Total: From 15 to 64 Years for United States (LFWA64TTUSM647S) from Jan 1977 to Feb 2025 about working-age, 15 to 64 years, population, and USA.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for All Employees, Government (USGOVT) from Jan 1939 to Feb 2025 about establishment survey, government, employment, and USA.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Employed, Usually Work Full Time (LNS12500000) from Jan 1968 to Feb 2025 about full-time, 16 years +, household survey, employment, and USA.
Dataset, GDB, and Online Map created by Renee Haley, NMCDC, May 2023 DATA ACQUISITION PROCESS
Scope and purpose of project: New Mexico is struggling to maintain its healthcare workforce, particularly in Rural areas. This project was undertaken with the intent of looking at flows of healthcare workers into and out of New Mexico at the most granular geographic level possible. This dataset, in combination with others (such as housing cost and availability data) may help us understand where our healthcare workforce is relocating and why.
The most relevant and detailed data on workforce indicators in the United States is housed by the Census Bureau's Longitudinal Employer-Household Dynamics, LEHD, System. Information on this system is available here:
The Job-to-Job flows explorer within this system was used to download the data. Information on the J2J explorer can ve found here:
https://j2jexplorer.ces.census.gov/explore.html#1432012
The dataset was built from data queried with the LED Extraction Tool, which allows for the query of more intersectional and detailed data than the explorer. This is a link to the LED extraction tool:
https://ledextract.ces.census.gov/
The geographies used are US Metro areas as determined by the Census, (N=389). The shapefile is named lehd_shp_gb.zip, and can be downloaded under this section of the following webpage: 5.5. Job-to-Job Flow Geographies, 5.5.1. Metropolitan (Complete). A link to the download site is available below:
https://lehd.ces.census.gov/data/schema/j2j_latest/lehd_shapefiles.html
DATA CLEANING PROCESS
This dataset was built from 8 non intersectional datasets downloaded from the LED Extraction Tool.
Separate datasets were downloaded in order to obtain detailed information on the race, ethnicity, and educational attainment levels of healthcare workers and where they are migrating.
Datasets included information for the four separate quarters of 2021. It was not possible to download annual data, only quarterly. Quarterly data was summed in a later step to derive annual totals for 2021.
4 datasets for healthcare workers moving OUT OF New Mexico, with details on race, ethnicity, and educational attainment, were downloaded. 1 contained information on educational attainment, 2 contained information on 7 racial categories identifying as non- Hispanic, 3 contained information on those same 7 categories also identifying as Hispanic, and 4 contained information for workers identifying as white and Hispanic.
4 datasets for healthcare worker moving INTO New Mexico, with details on race, ethnicity, and educational attainment, were downloaded with the same details outlined above.
Each dataset was cleaned according to Data Template which kept key attributes and discarded excess information. Within each dataset, the J2J Indicators reflecting 6 different types of job migration were totaled in order to simplify analysis, as this information was not needed in detail.
After cleaning, each set of 4 datasets for workers moving INTO New Mexico were joined. The process was repeated for workers moving OUT OF New Mexico. This resulted 2 main datasets.
These 2 main datasets still listed all of the variables by each quarter of 2021. Because of this the data was split in JMP, so that attributes of educational attainment, race and ethnicity, of workers migrating by quarter were moved from rows to columns. After this, summary columns for the year of 2021 were derived. This resulted in totals columns for workers identifying as: 6 separate races and all ethnicities, all races and Hispanic, white-Hispanic, and workers of 6 different education levels, reflecting how many workers of each indicator migrated to and from metro areas in New Mexico in 2021.
The data split transposed duplicate rows reflecting differing worker attributes within the same metro area, resulting in one row for each metro area and reflecting the attributes in columns, thus resulting in a mappable dataset.
The 2 datasets were joined (on Metro Area) resulting in one master file containing information on healthcare workers entering and leaving New Mexico.
Rows (N=389) reflect all of the metro areas across the US, and each state. Rows include the 5 metro areas within New Mexico, and New Mexico State.
Columns (N=99) contain information on worker race, ethnicity and educational attainment, specific to each metro area in New Mexico.
78 of these rows reflect workers of specific attributes moving OUT OF the 5 specific Metro Areas in New Mexico and totals for NM State. This level of detail is intended for analyzing who is leaving what area of New Mexico, where they are going to, and why.
13 Columns reflect each worker attribute for healthcare workers moving INTO New Mexico by race, ethnicity and education level. Because all 5 metro areas and New Mexico state are contained in the rows, this information for incoming workers is available by metro area and at the state level - there is less possability for mapping these attributes since it was not realistic or possible to create a dataset reflecting all of these variables for every healthcare worker from every metro area in the US also coming into New Mexico (that dataset would have over 1,000 columns and be unmappable). Therefore this dataset is easier to utilize in looking at why workers are leaving the state but also includes detailed information on who is coming in.
The remaining 8 columns contain geographic information.
GIS AND MAPPING PROCESS
The master file was opened in Arc GIS Pro and the Shapefile of US Metro Areas was also imported
The excel file was joined to the shapefile by Metro Area Name as they matched exactly
The resulting layer was exported as a GDB in order to retain null values which would turn to zeros if exported as a shapefile.
This GDB was uploaded to Arc GIS Online, Aliases were inserted as column header names, and the layer was visualized as desired.
SYSTEMS USED
MS Excel was used for data cleaning, summing NM state totals, and summing quarterly to annual data.
JMP was used to transpose, join, and split data.
ARC GIS Desktop was used to create the shapefile uploaded to NMCDC's online platform.
VARIABLE AND RECODING NOTES
Summary of variables selected for datasets downloaded focused on educational attainment:
J2J Flows by Educational Attainment
Summary of variables selected for datasets downloaded focused on race and ethnicity:
J2J Flows by Race and Ethnicity
Note: Variables in Datasets 1 through 4 downloaded twice, once for workers coming into New Mexico and once for those leaving NM. VARIABLE: LEHD VARIABLE DEFINITION LEHD VARIABLE NOTES DETAILS OR URL FOR RAW DATA DOWNLOAD
Geography Type - State Origin and Destination State
Data downloaded for worker migration into and out of all US States
Geography Type - Metropolitan Areas Origin and Dest Metro Area
Data downloaded for worker migration into and out of all US Metro Areas
NAICS sectors North American Industry Classification System Under Firm Characteristics Only downloaded for Healthcare and Social Assistance Sectors
Other Firm Characteristics No Firm Age / Size Detail Under Firm Characteristics Downloaded data on all firm ages, sizes, and other details.
Worker Characteristics Education, Race, Ethnicity
Non Intersectional data aside from Race / Ethnicity data.
Sex Gender
0 - All Sexes Selected
Age Age
A00 All Ages (14-99)
Education Education Level E0, E1, E2, E3, 34, E5 E0 - All Education Categories, E1 - Less than high school, E2 - High school or equivalent, no college, E3 - Some college or Associate’s degree, E4 - Bachelor's degree or advanced degree, E5 - Educational attainment not available (workers aged 24 or younger)
Dataset 1 All Education Levels, E1, E2, E3, E4, and E5
RACE
A0, A1, A2, A3, A4, A5 OPTIONS: A0 All Races, A1 White Alone, A2 Black or African American Alone, A3 American Indian or Alaska Native Alone, A4 Asian Alone, A5 Native Hawaiian or Other Pacific Islander Alone, SDA7 Two or More Race Groups
ETHNICITY
A0, A1, A2 OPTIONS: A0 All Ethnicities, A1 Not Hispanic or Latino, A2 Hispanic or Latino
Dataset 2 All Races (A0) and All Ethnicities (A0)
Dataset 3 6 Races (A1 through A5) and All Ethnicities (A0)
Dataset 4 White (A1) and Hispanic or Latino (A1)
Quarter Quarter and Year
Data from all quarters of 2021 to sum into annual numbers; yearly data was not available
Employer type Sector: Private or Governmental
Query included all healthcare sector workflows from all employer types and firm sizes from every quarter of 2021
J2J indicator categories Detailed types of job migration
All options were selected for all datasets and totaled: AQHire, AQHireS, EE, EES, J2J, J2JS. Counts were selected vs. earnings, and data was not seasonally adjusted (unavailable).
NOTES AND RESOURCES
The following resources and documentation were used to navigate the LEHD and J2J Worker Flows system and to answer questions about variables:
https://lehd.ces.census.gov/data/schema/j2j_latest/lehd_public_use_schema.html
https://www.census.gov/history/www/programs/geography/metropolitan_areas.html
https://lehd.ces.census.gov/data/schema/j2j_latest/lehd_csv_naming.html
Statewide (New
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Fort Supply. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Fort Supply, while the Census reported a median income of $50,833 for all male workers aged 15 years and older, data for females in the same category was unavailable due to an insufficient number of sample observations.
Given the absence of income data for females from the Census Bureau, conducting a thorough analysis of gender-based pay disparity in the town of Fort Supply was not possible.
- Full-time workers, aged 15 years and older: In Fort Supply, among full-time, year-round workers aged 15 years and older, males earned a median income of $60,208, while females earned $55,625, resulting in a 8% gender pay gap among full-time workers. This illustrates that women earn 92 cents for each dollar earned by men in full-time positions. While this gap shows a trend where women are inching closer to wage parity with men, it also exhibits a noticeable income difference for women working full-time in the town of Fort Supply.When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Fort Supply median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Mead. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Mead, while the Census reported a median income of $53,750 for all male workers aged 15 years and older, data for females in the same category was unavailable due to an insufficient number of sample observations.
Given the absence of income data for females from the Census Bureau, conducting a thorough analysis of gender-based pay disparity in the town of Mead was not possible.
- Full-time workers, aged 15 years and older: In Mead, among full-time, year-round workers aged 15 years and older, males earned a median income of $55,417, while females earned $49,038, resulting in a 12% gender pay gap among full-time workers. This illustrates that women earn 88 cents for each dollar earned by men in full-time positions. While this gap shows a trend where women are inching closer to wage parity with men, it also exhibits a noticeable income difference for women working full-time in the town of Mead.When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Mead median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Manderson. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Manderson, the median income for all workers aged 15 years and older, regardless of work hours, was $28,125 for males and $33,977 for females.
Contrary to expectations, women in Manderson, women, regardless of work hours, earn a higher income than men, earning 1.21 dollars for every dollar earned by men. This analysis indicates a significant shift in income dynamics favoring females.
- Full-time workers, aged 15 years and older: In Manderson, among full-time, year-round workers aged 15 years and older, males earned a median income of $68,000, while females earned $34,886, leading to a 49% gender pay gap among full-time workers. This illustrates that women earn 51 cents for each dollar earned by men in full-time roles. This level of income gap emphasizes the urgency to address and rectify this ongoing disparity, where women, despite working full-time, face a more significant wage discrepancy compared to men in the same employment roles.Surprisingly, across all roles (including non-full-time employment), women had a higher median income compared to men in Manderson. This might indicate a more advantageous income scenario for female workers across different employment patterns within the town of Manderson, particularly in non-full-time positions.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Manderson median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Decker. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Decker, the median income for all workers aged 15 years and older, regardless of work hours, was $33,750 for males and $40,000 for females.
Contrary to expectations, women in Decker, women, regardless of work hours, earn a higher income than men, earning 1.19 dollars for every dollar earned by men. This analysis indicates a significant shift in income dynamics favoring females.
- Full-time workers, aged 15 years and older: In Decker, among full-time, year-round workers aged 15 years and older, males earned a median income of $50,417, while females earned $48,750, resulting in a 3% gender pay gap among full-time workers. This illustrates that women earn 97 cents for each dollar earned by men in full-time positions. While this gap shows a trend where women are inching closer to wage parity with men, it also exhibits a noticeable income difference for women working full-time in the town of Decker.Surprisingly, across all roles (including non-full-time employment), women had a higher median income compared to men in Decker. This might indicate a more favorable income scenario for female workers across different employment patterns within the town of Decker, especially in non-full-time positions.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Decker median household income by race. You can refer the same here
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for All Employees, Federal (CES9091000001) from Jan 1939 to Feb 2025 about establishment survey, federal, government, employment, and USA.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Not in Labor Force (LNS15000000) from Jan 1975 to Feb 2025 about 16 years +, labor force, labor, household survey, and USA.