Facebook
Twitterhttps://www.usa.gov/government-workshttps://www.usa.gov/government-works
Effective June 28, 2023, this dataset will no longer be updated. Similar data are accessible from CDC WONDER (https://wonder.cdc.gov/mcd-icd10-provisional.html).
Deaths involving coronavirus disease 2019 (COVID-19) with a focus on ages 0-18 years in the United States.
Facebook
TwitterData for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes
Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.
Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases
Facebook
TwitterNote: Data elements were retired from HERDS on 10/6/23 and this dataset was archived.
This dataset includes the cumulative number and percent of healthcare facility-reported fatalities for patients with lab-confirmed COVID-19 disease by reporting date and age group. This dataset does not include fatalities related to COVID-19 disease that did not occur at a hospital, nursing home, or adult care facility. The primary goal of publishing this dataset is to provide users with information about healthcare facility fatalities among patients with lab-confirmed COVID-19 disease.
The information in this dataset is also updated daily on the NYS COVID-19 Tracker at https://www.ny.gov/covid-19tracker.
The data source for this dataset is the daily COVID-19 survey through the New York State Department of Health (NYSDOH) Health Electronic Response Data System (HERDS). Hospitals, nursing homes, and adult care facilities are required to complete this survey daily. The information from the survey is used for statewide surveillance, planning, resource allocation, and emergency response activities. Hospitals began reporting for the HERDS COVID-19 survey in March 2020, while Nursing Homes and Adult Care Facilities began reporting in April 2020. It is important to note that fatalities related to COVID-19 disease that occurred prior to the first publication dates are also included.
The fatality numbers in this dataset are calculated by assigning age groups to each patient based on the patient age, then summing the patient fatalities within each age group, as of each reporting date. The statewide total fatality numbers are calculated by summing the number of fatalities across all age groups, by reporting date. The fatality percentages are calculated by dividing the number of fatalities in each age group by the statewide total number of fatalities, by reporting date. The fatality numbers represent the cumulative number of fatalities that have been reported as of each reporting date.
Facebook
TwitterData for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes
Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.
Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Age-standardised mortality rates for deaths involving coronavirus (COVID-19), non-COVID-19 deaths and all deaths by vaccination status, broken down by age group.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Data on excess death during the coronavirus pandemic in young people.
Facebook
TwitterAbstract Objectives: to characterize school-aged children, adolescents, and young people’s profile and their associations with positive COVID-19 test results. Methods: an observational and descriptive study of secondary data from the COVID-19 Panel in Espírito Santo State in February to August 2020. People suspected of COVID-19, in the 0–19-years old age group, were included in order to assess clinical data and demographic and epidemiological factors associated with the disease. Results: in the study period, 27,351 COVID-19 notification were registered in children, adolescents, and young people. The highest COVID-19 test confirmation was found in Caucasians and were 5-14 years age group. It was also observed that headache was the symptom with the highest test confirmation. Infection in people with disabilities was more frequent in the confirmed cases. The confirmation of cases occurred in approximately 80% of the notified registrations and 0.3% of the confirmed cases, died. Conclusion: children with confirmed diagnosis for COVID-19 have lower mortality rates, even though many were asymptomatic. To control the chain of transmission and reduce morbidity and mortality rates, it was necessaryto conduct more comprehensive research and promote extensive testing in the population.
Facebook
Twitterhttps://www.usa.gov/government-works/https://www.usa.gov/government-works/
COVID-19 Cases and Deaths by Race/Ethnicity
COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken down by race and ethnicity. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the COVID-19 update.
The following data show the number of COVID-19 cases and associated deaths per 100,000 population by race and ethnicity. Crude rates represent the total cases or deaths per 100,000 people. Age-adjusted rates consider the age of the person at diagnosis or death when estimating the rate and use a standardized population to provide a fair comparison between population groups with different age distributions. Age-adjustment is important in Connecticut as the median age of among the non-Hispanic white population is 47 years, whereas it is 34 years among non-Hispanic blacks, and 29 years among Hispanics. Because most non-Hispanic white residents who died were over 75 years of age, the age-adjusted rates are lower than the unadjusted rates. In contrast, Hispanic residents who died tend to be younger than 75 years of age which results in higher age-adjusted rates.
The age-adjusted rates are directly standardized using the 2018 ASRH Connecticut population estimate denominators (available here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Annual-State--County-Population-with-Demographics).
Rates are standardized to the 2000 US Millions Standard population (data available here: https://seer.cancer.gov/stdpopulations/). Standardization was done using 19 age groups (0, 1-4, 5-9, 10-14, ..., 80-84, 85 years and older). More information about direct standardization for age adjustment is available here: https://www.cdc.gov/nchs/data/statnt/statnt06rv.pdf Categories are mutually exclusive. The category “multiracial” includes people who answered ‘yes’ to more than one race category. Counts may not add up to total case counts as data on race and ethnicity may be missing. Age-adjusted rates calculated only for groups with more than 20 deaths. Abbreviation: NH=Non-Hispanic.
This dataset will be updated on a daily basis. Data are subject to future revision as reporting changes.
Starting in July 2020, this dataset will be updated every weekday.
Additional notes: A delay in the data pull schedule occurred on 06/23/2020. Data from 06/22/2020 was processed on 06/23/2020 at 3:30 PM. The normal data cycle resumed with the data for 06/23/2020.
A network outage on 05/19/2020 resulted in a change in the data pull schedule. Data from 5/19/2020 was processed on 05/20/2020 at 12:00 PM. Data from 5/20/2020 was processed on 5/20/2020 8:30 PM. The normal data cycle resumed on 05/20/2020 with the 8:30 PM data pull. As a result of the network outage, the timestamp on the datasets on the Open Data Portal differs from the timestamp in DPH's daily PDF reports.
Thanks to catalog.data.gov.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
People experiencing homelessness have historically had high mortality rates compared to housed individuals in Canada, a trend believed to have become exacerbated during the COVID-19 pandemic. In this matched cohort study conducted in Toronto, Canada, we investigated all-cause mortality over a one-year period by following a random sample of people experiencing homelessness (n = 640) alongside matched housed (n = 6,400) and low-income housed (n = 6,400) individuals. Matching criteria included age, sex-assigned-at-birth, and Charlson comorbidity index. Data were sourced from the Ku-gaa-gii pimitizi-win cohort study and administrative databases from ICES. People experiencing homelessness had 2.7 deaths/100 person-years, compared to 0.7/100 person-years in both matched unexposed groups, representing an all-cause mortality unadjusted hazard ratio (uHR) of 3.7 (95% CI, 2.1–6.5). Younger homeless individuals had much higher uHRs than older groups (ages 25–44 years uHR 16.8 [95% CI 4.0–70.2]; ages 45–64 uHR 6.8 [95% CI 3.0–15.1]; ages 65+ uHR 0.35 [95% CI 0.1–2.6]). Homeless participants who died were, on average, 17 years younger than unexposed individuals. After adjusting for number of comorbidities and presence of mental health or substance use disorder, people experiencing homelessness still had more than twice the hazard of death (aHR 2.2 [95% CI 1.2–4.0]). Homelessness is an important risk factor for mortality; interventions to address this health disparity, such as increased focus on homelessness prevention, are urgently needed.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Provisional counts of the number of deaths registered in England and Wales, by age, sex, region and Index of Multiple Deprivation (IMD), in the latest weeks for which data are available.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Examples of the different approaches to mitigate transmission of COVID-19 and provide information to children about COVID-19 (coronavirus) within the participating countries during the time of the study.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundDespite children and young people (CYP) having a low risk for severe coronavirus disease 2019 (COVID-19) outcomes, there is still a degree of uncertainty related to their risk in the context of immunodeficiency or immunosuppression, primarily due to significant reporting bias in most studies, as CYP characteristically experience milder or asymptomatic COVID-19 infection and the severe outcomes tend to be overestimated.MethodsA comprehensive systematic review to identify globally relevant studies in immunosuppressed CYP and CYP in general population (defined as younger than 25 years of age) up to 31 October 2021 (to exclude vaccinated populations) was performed. Studies were included if they reported the two primary outcomes of our study, admission to intensive therapy unit (ITU) and mortality, while data on other outcomes, such as hospitalization and need for mechanical ventilation were also collected. A meta-analysis estimated the pooled proportion for each severe COVID-19 outcome, using the inverse variance method. Random effects models were used to account for interstudy heterogeneity.FindingsThe systematic review identified 30 eligible studies for each of the two populations investigated: immunosuppressed CYP (n = 793) and CYP in general population (n = 102,022). Our meta-analysis found higher estimated prevalence for hospitalization (46% vs. 16%), ITU admission (12% vs. 2%), mechanical ventilation (8% vs. 1%), and increased mortality due to severe COVID-19 infection (6.5% vs. 0.2%) in immunocompromised CYP compared with CYP in general population. This shows an overall trend for more severe outcomes of COVID-19 infection in immunocompromised CYP, similar to adult studies.InterpretationThis is the only up-to-date meta-analysis in immunocompromised CYP with high global relevance, which excluded reports from hospitalized cohorts alone and included 35% studies from low- and middle-income countries. Future research is required to characterize individual subgroups of immunocompromised patients, as well as impact of vaccination on severe COVID-19 outcomes.Systematic Review RegistrationPROSPERO identifier, CRD42021278598.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Estimates of the risk of all-cause and cardiac death in the 12 weeks after vaccination or positive SARS-CoV-2 test compared with subsequent weeks for people aged 12 to 29 years in England using two sources of mortality data: ONS death registrations and deaths recorded in Hospital Episode Statistics. 8 December 2020 to 25 May 2022. Experimental Statistics.
Facebook
TwitterRECOVERY is a randomised trial investigating whether treatment with Lopinavir-Ritonavir, Hydroxychloroquine, Corticosteroids, Azithromycin, Colchicine, IV Immunoglobulin (children only), Convalescent plasma, Casirivimab+Imdevimab, Tocilizumab, Aspirin, Baricitinib, Infliximab, Empagliflozin, Sotrovimab, Molnupiravir, Paxlovid or Anakinra (children only) prevents death in patients with COVID-19.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abstract Objectives: to describe epidemiological characteristics and deaths in children with cancer and COVID-19 at a reference hospital in Recife, Brazil. Methods: cohort involving children under the age of 19 underwent cancer treatment during April to July 2020. During the pandemic, real-time reverse transcriptase polymerase chain reaction assay (RT-PCR) for severe acute respiratory syndrome coronavirus 2 (SARS -CoV-2) in nasal / oropharyngeal swab were collected in symptomatic patients or before hospitalization. Those with detectable results were included in this cohort study. The outcomes were delayed on cancer treatment and death. Descriptive analysis was performed and presented in preliminary results. Results: 48 children participated in the cohort, mostly with hematological neoplasms (66.6%.),69% were male, median age was 5.5 years. The most frequent symptoms were fever (58.3%) and coughing (27.7%);72.9% required hospitalization, 20% had support in ICU and 10.5% on invasive ventilatory assistance.66.6% of the patients had their oncological treatment postponed, 16.6% died within 60 days after confirmation of SARS-CoV-2 infection. Conclusions: COVID-19 led a delay in the oncological treatment for children with cancer and a higher mortality frequency when compared to the historical series of the service. It would be important to analyze the risk factors to determine the survival impact.
Facebook
TwitterEMSIndicators:The number of individual patients administered naloxone by EMSThe number of naloxone administrations by EMSThe rate of EMS calls involving naloxone administrations per 10,000 residentsData Source:The Vermont Statewide Incident Reporting Network (SIREN) is a comprehensive electronic prehospital patient care data collection, analysis, and reporting system. EMS reporting serves several important functions, including legal documentation, quality improvement initiatives, billing, and evaluation of individual and agency performance measures.Law Enforcement Indicators:The Number of law enforcement responses to accidental opioid-related non-fatal overdosesData Source:The Drug Monitoring Initiative (DMI) was established by the Vermont Intelligence Center (VIC) in an effort to combat the opioid epidemic in Vermont. It serves as a repository of drug data for Vermont and manages overdose and seizure databases. Notes:Overdose data provided in this dashboard are derived from multiple sources and should be considered preliminary and therefore subject to change. Overdoses included are those that Vermont law enforcement responded to. Law enforcement personnel do not respond to every overdose, and therefore, the numbers in this report are not representative of all overdoses in the state. The overdoses included are limited to those that are suspected to have been caused, at least in part, by opioids. Inclusion is based on law enforcement's perception and representation in Records Management Systems (RMS). All Vermont law enforcement agencies are represented, with the exception of Norwich Police Department, Hartford Police Department, and Windsor Police Department, due to RMS access. Questions regarding this dataset can be directed to the Vermont Intelligence Center at dps.vicdrugs@vermont.gov.Overdoses Indicators:The number of accidental and undetermined opioid-related deathsThe number of accidental and undetermined opioid-related deaths with cocaine involvementThe percent of accidental and undetermined opioid-related deaths with cocaine involvementThe rate of accidental and undetermined opioid-related deathsThe rate of heroin nonfatal overdose per 10,000 ED visitsThe rate of opioid nonfatal overdose per 10,000 ED visitsThe rate of stimulant nonfatal overdose per 10,000 ED visitsData Source:Vermont requires towns to report all births, marriages, and deaths. These records, particularly birth and death records are used to study and monitor the health of a population. Deaths are reported via the Electronic Death Registration System. Vermont publishes annual Vital Statistics reports.The Electronic Surveillance System for the Early Notification of Community-based Epidemics (ESSENCE) captures and analyzes recent Emergency Department visit data for trends and signals of abnormal activity that may indicate the occurrence of significant public health events.Population Health Indicators:The percent of adolescents in grades 6-8 who used marijuana in the past 30 daysThe percent of adolescents in grades 9-12 who used marijuana in the past 30 daysThe percent of adolescents in grades 9-12 who drank any alcohol in the past 30 daysThe percent of adolescents in grades 9-12 who binge drank in the past 30 daysThe percent of adolescents in grades 9-12 who misused any prescription medications in the past 30 daysThe percent of adults who consumed alcohol in the past 30 daysThe percent of adults who binge drank in the past 30 daysThe percent of adults who used marijuana in the past 30 daysData Sources:The Vermont Youth Risk Behavior Survey (YRBS) is part of a national school-based surveillance system conducted by the Centers for Disease Control and Prevention (CDC). The YRBS monitors health risk behaviors that contribute to the leading causes of death and disability among youth and young adults.The Behavioral Risk Factor Surveillance System (BRFSS) is a telephone survey conducted annually among adults 18 and older. The Vermont BRFSS is completed by the Vermont Department of Health in collaboration with the Centers for Disease Control and Prevention (CDC).Notes:Prevalence estimates and trends for the 2021 Vermont YRBS were likely impacted by significant factors unique to 2021, including the COVID-19 pandemic and the delay of the survey administration period resulting in a younger population completing the survey. Students who participated in the 2021 YRBS may have had a different educational and social experience compared to previous participants. Disruptions, including remote learning, lack of social interactions, and extracurricular activities, are likely reflected in the survey results. As a result, no trend data is included in the 2021 report and caution should be used when interpreting and comparing the 2021 results to other years.The Vermont Department of Health (VDH) seeks to promote destigmatizing and equitable language. While the VDH uses the term "cannabis" to reflect updated terminology, the data sources referenced in this data brief use the term "marijuana" to refer to cannabis. Prescription Drugs Indicators:The average daily MMEThe average day's supplyThe average day's supply for opioid analgesic prescriptionsThe number of prescriptionsThe percent of the population receiving at least one prescriptionThe percent of prescriptionsThe proportion of opioid analgesic prescriptionsThe rate of prescriptions per 100 residentsData Source:The Vermont Prescription Monitoring System (VPMS) is an electronic data system that collects information on Schedule II-IV controlled substance prescriptions dispensed by pharmacies. VPMS proactively safeguards public health and safety while supporting the appropriate use of controlled substances. The program helps healthcare providers improve patient care. VPMS data is also a health statistics tool that is used to monitor statewide trends in the dispensing of prescriptions.Treatment Indicators:The number of times a new substance use disorder is diagnosed (Medicaid recipients index events)The number of times substance use disorder treatment is started within 14 days of diagnosis (Medicaid recipients initiation events)The number of times two or more treatment services are provided within 34 days of starting treatment (Medicaid recipients engagement events)The percent of times substance use disorder treatment is started within 14 days of diagnosis (Medicaid recipients initiation rate)The percent of times two or more treatment services are provided within 34 days of starting treatment (Medicaid recipients engagement rate)The MOUD treatment rate per 10,000 peopleThe number of people who received MOUD treatmentData Source:Vermont Medicaid ClaimsThe Vermont Prescription Monitoring System (VPMS)Substance Abuse Treatment Information System (SATIS)
Facebook
TwitterBackground: Italy has one of the world's oldest populations, and suffered one the highest death tolls from Coronavirus disease 2019 (COVID-19) worldwide. Older people with cardiovascular diseases (CVDs), and in particular hypertension, are at higher risk of hospitalization and death for COVID-19. Whether hypertension medications may increase the risk for death in older COVID 19 inpatients at the highest risk for the disease is currently unknown.Methods: Data from 5,625 COVID-19 inpatients were manually extracted from medical charts from 61 hospitals across Italy. From the initial 5,625 patients, 3,179 were included in the study as they were either discharged or deceased at the time of the data analysis. Primary outcome was inpatient death or recovery. Mixed effects logistic regression models were adjusted for sex, age, and number of comorbidities, with a random effect for site.Results: A large proportion of participating inpatients were ≥65 years old (58%), male (68%), non-smokers (93%) with comorbidities (66%). Each additional comorbidity increased the risk of death by 35% [adjOR = 1.35 (1.2, 1.5) p < 0.001]. Use of ACE inhibitors, ARBs, beta-blockers or Ca-antagonists was not associated with significantly increased risk of death. There was a marginal negative association between ARB use and death, and a marginal positive association between diuretic use and death.Conclusions: This Italian nationwide observational study of COVID-19 inpatients, the majority of which ≥65 years old, indicates that there is a linear direct relationship between the number of comorbidities and the risk of death. Among CVDs, hypertension and pre-existing cardiomyopathy were significantly associated with risk of death. The use of hypertension medications reported to be safe in younger cohorts, do not contribute significantly to increased COVID-19 related deaths in an older population that suffered one of the highest death tolls worldwide.
Facebook
TwitterAttribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
This data is a subset of the Smart Discharges Uganda Under 5 years parent study and is specific to the Phase I observation cohort of children aged 0-6 months collected during the Covid-19 pandemic in 2020. Objective(s): Used as part of the Smart Discharge prediction modelling for adverse outcomes such as post-discharge death and readmission. Data Description: All data were collected at the point of care using encrypted study tablets and these data were then uploaded to a Research Electronic Data Capture (REDCap) database hosted at the BC Children’s Hospital Research Institute (Vancouver, Canada). At admission, trained study nurses systematically collected data on clinical, social and demographic variables. Following discharge, field officers contacted caregivers at 2 and 4 months by phone, and in-person at 6 months, to determine vital status, post-discharge health-seeking, and readmission details. Verbal autopsies were conducted for children who had died following discharge. . Data Processing: Created z-scores for anthropometry variables using height and weight according to WHO cutoff. Distance to hospital was calculated using latitude and longitude. Extra symptom and diagnosis categories were created based on text field in these two variables. BCS score was created by summing all individual components. Limitations: There are missing dates and the admission, discharge, and readmission dates are not in order. Ethics Declaration: This study was approved by the Mbarara University of Science and Technology Research Ethics Committee (No. 15/10-16), the Uganda National Institute of Science and Technology (HS 2207), and the University of British Columbia / Children & Women’s Health Centre of British Columbia Research Ethics Board (H16-02679). This manuscript adheres to the guidelines for STrengthening the Reporting of OBservational studies in Epidemiology (STROBE). NOTE for restricted files: If you are not yet a CoLab member, please complete our membership application survey to gain access to restricted files within 2 business days. Some files may remain restricted to CoLab members. These files are deemed more sensitive by the file owner and are meant to be shared on a case-by-case basis. Please contact the CoLab coordinator at sepsiscolab@bcchr.ca or visit our website.
Facebook
TwitterDate created: Data effective February 2020. Uploaded to Open Data on September 22, 2020.Update frequency: DailyAccuracy: Points of consideration for interpretation of the data: The data was extracted by Ottawa Public Health from The COVID-19 Ottawa Database (The COD). The COD is a dynamic disease reporting system that allows for ongoing updates to data previously entered. The data extracted from The COD represent a snapshot at the time of extraction and may differ in previous or subsequent reports. Data are for confirmed outbreaks and the number of staff, living in Ottawa, and residents/patients/students with laboratory confirmed COVID-19 associated to each outbreak is provided. Please note, individuals may be linked to multiple outbreaks. All the outbreaks reflect the outbreak definitions at the time they were declared open:Healthcare Institutions: From April 1st 2020, 1 staff or resident case of laboratory-confirmed COVID-19 is considered an outbreak in long-term care homes (LTCH), retirement homes (RH) and other healthcare institutions (e.g. group home, assisted living, group shelter) and declared facility wide. Starting May 10th 2020, 2 staff or patient cases of laboratory-confirmed COVID-19 within a specified hospital unit within a 14-day period where both cases could have reasonably acquired their infection in hospital is considered an outbreak in a public hospital. Childcare & Education: Starting July 2020, 1 child or staff (or household member) case of laboratory-confirmed COVID-19 is considered an outbreak in a childcare establishment. Starting August 26 2020, 2 student or staff (or visitor) cases of laboratory-confirmed COVID-19 within a specified class within a 14-day period where at least one case could have reasonably acquired their infection at school (including transportation and before/after school care) is considered an outbreak in an educational establishment.Attributes Data fields:Facility Name – text Type of Facility - textLocation in Facility – textReported Date – date the COVID-19 outbreak was openedEnd Date - date the COVID-19 outbreak was closedResident/Patient/Child/Student Cases – number of residents, patients, children, or students with confirmed COVID-19Resident/Patient/Child/Student Cases – number of residents, patients, children, or students with confirmed COVID-19 who diedStaff Cases – number of staff with confirmed COVID-19Staff Deaths – number of staff with confirmed COVID-19 who diedTotal Cases – total number of people with confirmed COVID-19 Total Deaths – total number of people with confirmed COVID-19 who died Author: OPH Epidemiology TeamAuthor email: OPH-Epidemiology@ottawa.caMaintainer Organization: Epidemiology & Evidence, Ottawa Public Health
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Purpose: The COVID-19 death-rate in Italy continues to climb, surpassing that in every other country. We implement one of the first nationally representative surveys about this unprecedented public health crisis and use it to evaluate the Italian government’ public health efforts and citizen responses. Findings: (1) Public health messaging is being heard. Except for slightly lower compliance among young adults, all subgroups we studied understand how to keep themselves and others safe from the SARS-Cov-2 virus. Remarkably, even those who do not trust the government, or think the government has been untruthful a bout the crisis believe the messaging and claim to be acting in accordance. (2) The quarantine is beginning to have serious negative effects on the population’s mental health. Policy Recommendations: Communications should move from explaining to citizens that they should stay at home to what they can do there. We need interventions that make staying following public health protocols more desirable, such as virtual social interactions, online social reading activities, classes, exercise routines, etc. — all designed to reduce the boredom of long term social isolation and to increase the attractiveness of following public health recommendations. Interventions like these will grow in importance as the crisis wears on around the world, and staying inside wears on people.
Facebook
Twitterhttps://www.usa.gov/government-workshttps://www.usa.gov/government-works
Effective June 28, 2023, this dataset will no longer be updated. Similar data are accessible from CDC WONDER (https://wonder.cdc.gov/mcd-icd10-provisional.html).
Deaths involving coronavirus disease 2019 (COVID-19) with a focus on ages 0-18 years in the United States.