91 datasets found
  1. Number of global social network users 2017-2028

    • statista.com
    • de.statista.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon, Number of global social network users 2017-2028 [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    How many people use social media?

                  Social media usage is one of the most popular online activities. In 2024, over five billion people were using social media worldwide, a number projected to increase to over six billion in 2028.
    
                  Who uses social media?
                  Social networking is one of the most popular digital activities worldwide and it is no surprise that social networking penetration across all regions is constantly increasing. As of January 2023, the global social media usage rate stood at 59 percent. This figure is anticipated to grow as lesser developed digital markets catch up with other regions
                  when it comes to infrastructure development and the availability of cheap mobile devices. In fact, most of social media’s global growth is driven by the increasing usage of mobile devices. Mobile-first market Eastern Asia topped the global ranking of mobile social networking penetration, followed by established digital powerhouses such as the Americas and Northern Europe.
    
                  How much time do people spend on social media?
                  Social media is an integral part of daily internet usage. On average, internet users spend 151 minutes per day on social media and messaging apps, an increase of 40 minutes since 2015. On average, internet users in Latin America had the highest average time spent per day on social media.
    
                  What are the most popular social media platforms?
                  Market leader Facebook was the first social network to surpass one billion registered accounts and currently boasts approximately 2.9 billion monthly active users, making it the most popular social network worldwide. In June 2023, the top social media apps in the Apple App Store included mobile messaging apps WhatsApp and Telegram Messenger, as well as the ever-popular app version of Facebook.
    
  2. Social Media and Mental Health

    • kaggle.com
    zip
    Updated Jul 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SouvikAhmed071 (2023). Social Media and Mental Health [Dataset]. https://www.kaggle.com/datasets/souvikahmed071/social-media-and-mental-health
    Explore at:
    zip(10944 bytes)Available download formats
    Dataset updated
    Jul 18, 2023
    Authors
    SouvikAhmed071
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Description

    This dataset was originally collected for a data science and machine learning project that aimed at investigating the potential correlation between the amount of time an individual spends on social media and the impact it has on their mental health.

    The project involves conducting a survey to collect data, organizing the data, and using machine learning techniques to create a predictive model that can determine whether a person should seek professional help based on their answers to the survey questions.

    This project was completed as part of a Statistics course at a university, and the team is currently in the process of writing a report and completing a paper that summarizes and discusses the findings in relation to other research on the topic.

    The following is the Google Colab link to the project, done on Jupyter Notebook -

    https://colab.research.google.com/drive/1p7P6lL1QUw1TtyUD1odNR4M6TVJK7IYN

    The following is the GitHub Repository of the project -

    https://github.com/daerkns/social-media-and-mental-health

    Libraries used for the Project -

    Pandas
    Numpy
    Matplotlib
    Seaborn
    Sci-kit Learn
    
  3. Social media as a news outlet worldwide 2024

    • statista.com
    • de.statista.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Amy Watson, Social media as a news outlet worldwide 2024 [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Amy Watson
    Description

    During a 2024 survey, 77 percent of respondents from Nigeria stated that they used social media as a source of news. In comparison, just 23 percent of Japanese respondents said the same. Large portions of social media users around the world admit that they do not trust social platforms either as media sources or as a way to get news, and yet they continue to access such networks on a daily basis.

                  Social media: trust and consumption
    
                  Despite the majority of adults surveyed in each country reporting that they used social networks to keep up to date with news and current affairs, a 2018 study showed that social media is the least trusted news source in the world. Less than 35 percent of adults in Europe considered social networks to be trustworthy in this respect, yet more than 50 percent of adults in Portugal, Poland, Romania, Hungary, Bulgaria, Slovakia and Croatia said that they got their news on social media.
    
                  What is clear is that we live in an era where social media is such an enormous part of daily life that consumers will still use it in spite of their doubts or reservations. Concerns about fake news and propaganda on social media have not stopped billions of users accessing their favorite networks on a daily basis.
                  Most Millennials in the United States use social media for news every day, and younger consumers in European countries are much more likely to use social networks for national political news than their older peers.
                  Like it or not, reading news on social is fast becoming the norm for younger generations, and this form of news consumption will likely increase further regardless of whether consumers fully trust their chosen network or not.
    
  4. f

    Data set belonging to Beyens et al. (2020). The effect of social media on...

    • uvaauas.figshare.com
    • narcis.nl
    bin
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    I. Beyens; J.L. Pouwels; I.I. van Driel; Loes Keijsers; P.M. Valkenburg (2023). Data set belonging to Beyens et al. (2020). The effect of social media on well-being differs from adolescent to adolescent [Dataset]. http://doi.org/10.21942/uva.12497990.v2
    Explore at:
    binAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    University of Amsterdam / Amsterdam University of Applied Sciences
    Authors
    I. Beyens; J.L. Pouwels; I.I. van Driel; Loes Keijsers; P.M. Valkenburg
    License

    http://rdm.uva.nl/en/support/confidential-data.htmlhttp://rdm.uva.nl/en/support/confidential-data.html

    Description

    This data set belongs to:Beyens, I., Pouwels, J. L., van Driel, I. I., Keijsers, L., & Valkenburg, P. M. (2020). The effect of social media on well-being differs from adolescent to adolescent. Scientific Reports. doi:10.1038/s41598-020-67727-7The design, sampling and analysis plan of the study are available on the Open Science Framework (OSF) at https://osf.io/nhks2.For more information, please contact the authors at i.beyens@uva.nl or info@project-awesome.nl.

  5. s

    Dataset for Social Media Activity, Number of Friends, and Relationship...

    • eprints.soton.ac.uk
    Updated Jul 8, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Elder, Lindsay; Brignell, Catherine; Cooke, Tim (2022). Dataset for Social Media Activity, Number of Friends, and Relationship Quality [Dataset]. http://doi.org/10.5258/SOTON/D1955
    Explore at:
    Dataset updated
    Jul 8, 2022
    Dataset provided by
    University of Southampton
    Authors
    Elder, Lindsay; Brignell, Catherine; Cooke, Tim
    Description

    The data from my thesis. This data was collected using the Lifeguide Software and exported onto SPSS following data collection. The data was collected from young people aged 11-18 years old to explore the impact of different types of social media use.

  6. Data_Sheet_1_Social Media Use and Mental Health and Well-Being Among...

    • frontiersin.figshare.com
    docx
    Updated May 30, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Viktor Schønning; Gunnhild Johnsen Hjetland; Leif Edvard Aarø; Jens Christoffer Skogen (2023). Data_Sheet_1_Social Media Use and Mental Health and Well-Being Among Adolescents – A Scoping Review.docx [Dataset]. http://doi.org/10.3389/fpsyg.2020.01949.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Frontiers Mediahttp://www.frontiersin.org/
    Authors
    Viktor Schønning; Gunnhild Johnsen Hjetland; Leif Edvard Aarø; Jens Christoffer Skogen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Introduction: Social media has become an integrated part of daily life, with an estimated 3 billion social media users worldwide. Adolescents and young adults are the most active users of social media. Research on social media has grown rapidly, with the potential association of social media use and mental health and well-being becoming a polarized and much-studied subject. The current body of knowledge on this theme is complex and difficult-to-follow. The current paper presents a scoping review of the published literature in the research field of social media use and its association with mental health and well-being among adolescents.Methods and Analysis: First, relevant databases were searched for eligible studies with a vast range of relevant search terms for social media use and mental health and well-being over the past five years. Identified studies were screened thoroughly and included or excluded based on prior established criteria. Data from the included studies were extracted and summarized according to the previously published study protocol.Results: Among the 79 studies that met our inclusion criteria, the vast majority (94%) were quantitative, with a cross-sectional design (57%) being the most common study design. Several studies focused on different aspects of mental health, with depression (29%) being the most studied aspect. Almost half of the included studies focused on use of non-specified social network sites (43%). Of specified social media, Facebook (39%) was the most studied social network site. The most used approach to measuring social media use was frequency and duration (56%). Participants of both genders were included in most studies (92%) but seldom examined as an explanatory variable. 77% of the included studies had social media use as the independent variable.Conclusion: The findings from the current scoping review revealed that about 3/4 of the included studies focused on social media and some aspect of pathology. Focus on the potential association between social media use and positive outcomes seems to be rarer in the current literature. Amongst the included studies, few separated between different forms of (inter)actions on social media, which are likely to be differentially associated with mental health and well-being outcomes.

  7. Average daily time spent on social media worldwide 2012-2024

    • statista.com
    • de.statista.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon, Average daily time spent on social media worldwide 2012-2024 [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    How much time do people spend on social media?

                  As of 2024, the average daily social media usage of internet users worldwide amounted to 143 minutes per day, down from 151 minutes in the previous year. Currently, the country with the most time spent on social media per day is Brazil, with online users spending an average of three hours and 49 minutes on social media each day. In comparison, the daily time spent with social media in
                  the U.S. was just two hours and 16 minutes. Global social media usageCurrently, the global social network penetration rate is 62.3 percent. Northern Europe had an 81.7 percent social media penetration rate, topping the ranking of global social media usage by region. Eastern and Middle Africa closed the ranking with 10.1 and 9.6 percent usage reach, respectively.
                  People access social media for a variety of reasons. Users like to find funny or entertaining content and enjoy sharing photos and videos with friends, but mainly use social media to stay in touch with current events friends. Global impact of social mediaSocial media has a wide-reaching and significant impact on not only online activities but also offline behavior and life in general.
                  During a global online user survey in February 2019, a significant share of respondents stated that social media had increased their access to information, ease of communication, and freedom of expression. On the flip side, respondents also felt that social media had worsened their personal privacy, increased a polarization in politics and heightened everyday distractions.
    
  8. Social Media Platforms in the UK - Market Research Report (2015-2030)

    • ibisworld.com
    Updated Nov 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IBISWorld (2025). Social Media Platforms in the UK - Market Research Report (2015-2030) [Dataset]. https://www.ibisworld.com/united-kingdom/market-research-reports/social-media-platforms-industry/
    Explore at:
    Dataset updated
    Nov 15, 2025
    Dataset authored and provided by
    IBISWorld
    License

    https://www.ibisworld.com/about/termsofuse/https://www.ibisworld.com/about/termsofuse/

    Time period covered
    2015 - 2030
    Area covered
    United Kingdom
    Description

    Over the five years through 2025-26, industry revenue is forecast to expand at a compound annual rate of 20.3% to reach £12.5 billion. Social media platforms are integral to people's lives, offering ways to communicate, create and view content and share information. According to Ofcom, approximately 89% of UK internet users in 2023 used social media apps or sites. Teenagers and young adults are the biggest users. Advertising is the primary revenue source for social media platforms, although subscription-based services are gaining momentum as platforms seek to diversify their incomes. TikTok is the success story of the past five years, becoming the most downloaded app between 2020 and 2022, according to Apptopia. The short-form video platform has over 30 million monthly users in the UK in 2025. After Musk's takeover, X, formerly known as Twitter, adjusted its content moderation and allowed previously banned accounts to return. As a result, over 600 advertisers pulled their ads from the site because of fears their brand may be associated with malcontent. In response to falling ad revenue, X has introduced a subscription-based service which enables users to verify themselves and boosts the number of people who view their tweets. Meta-owned Facebook and Instagram have responded by introducing a similar service. In 2025, more social media platforms are using AI to boost user engagement. This improves click-through rates and drives higher advertising revenue. Industry revenue is expected to grow by 6.3% in 2025-26. Over the five years through 2030-31, social media platforms' revenue is projected to climb at an estimated 9.2% to reach £19.4 billion. Regulations relating to how data is collected, stored, and shared will force advertisers and platforms to rethink how they can target their desired demographics. The tightening of regulations will raise industry compliance costs, weighing on profit margin. Older age groups present a new revenue opportunity for social media platforms if they can bridge the gap between passive TV consumption and interactive digital engagement. Augmented Reality (AR) technology will move beyond filters to become standard for immersive product trials, interactive ads, and virtual meetups

  9. m

    Abbreviated FOMO and social media dataset

    • figshare.mq.edu.au
    • researchdata.edu.au
    txt
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Danielle Einstein; Carol Dabb; Madeleine Ferrari; Anne McMaugh; Peter McEvoy; Ron Rapee; Eyal Karin; Maree J. Abbott (2023). Abbreviated FOMO and social media dataset [Dataset]. http://doi.org/10.25949/20188298.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Macquarie University
    Authors
    Danielle Einstein; Carol Dabb; Madeleine Ferrari; Anne McMaugh; Peter McEvoy; Ron Rapee; Eyal Karin; Maree J. Abbott
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This database is comprised of 951 participants who provided self-report data online in their school classrooms. The data was collected in 2016 and 2017. The dataset is comprised of 509 males (54%) and 442 females (46%). Their ages ranged from 12 to 16 years (M = 13.69, SD = 0.72). Seven participants did not report their age. The majority were born in Australia (N = 849, 89%). The next most common countries of birth were China (N = 24, 2.5%), the UK (N = 23, 2.4%), and the USA (N = 9, 0.9%). Data were drawn from students at five Australian independent secondary schools. The data contains item responses for the Spence Children’s Anxiety Scale (SCAS; Spence, 1998) which is comprised of 44 items. The Social media question asked about frequency of use with the question “How often do you use social media?”. The response options ranged from constantly to once a week or less. Items measuring Fear of Missing Out were included and incorporated the following five questions based on the APS Stress and Wellbeing in Australia Survey (APS, 2015). These were “When I have a good time it is important for me to share the details online; I am afraid that I will miss out on something if I don’t stay connected to my online social networks; I feel worried and uncomfortable when I can’t access my social media accounts; I find it difficult to relax or sleep after spending time on social networking sites; I feel my brain burnout with the constant connectivity of social media. Internal consistency for this measure was α = .81. Self compassion was measured using the 12-item short-form of the Self-Compassion Scale (SCS-SF; Raes et al., 2011). The data set has the option of downloading an excel file (composed of two worksheet tabs) or CSV files 1) Data and 2) Variable labels. References: Australian Psychological Society. (2015). Stress and wellbeing in Australia survey. https://www.headsup.org.au/docs/default-source/default-document-library/stress-and-wellbeing-in-australia-report.pdf?sfvrsn=7f08274d_4 Raes, F., Pommier, E., Neff, K. D., & Van Gucht, D. (2011). Construction and factorial validation of a short form of the self-compassion scale. Clinical Psychology and Psychotherapy, 18(3), 250-255. https://doi.org/10.1002/cpp.702 Spence, S. H. (1998). A measure of anxiety symptoms among children. Behaviour Research and Therapy, 36(5), 545-566. https://doi.org/10.1016/S0005-7967(98)00034-5

  10. Instagram: distribution of global audiences 2024, by age and gender

    • statista.com
    • de.statista.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon, Instagram: distribution of global audiences 2024, by age and gender [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    As of April 2024, around 16.5 percent of global active Instagram users were men between the ages of 18 and 24 years. More than half of the global Instagram population worldwide was aged 34 years or younger.

                  Teens and social media
    
                  As one of the biggest social networks worldwide, Instagram is especially popular with teenagers. As of fall 2020, the photo-sharing app ranked third in terms of preferred social network among teenagers in the United States, second to Snapchat and TikTok. Instagram was one of the most influential advertising channels among female Gen Z users when making purchasing decisions. Teens report feeling more confident, popular, and better about themselves when using social media, and less lonely, depressed and anxious.
                  Social media can have negative effects on teens, which is also much more pronounced on those with low emotional well-being. It was found that 35 percent of teenagers with low social-emotional well-being reported to have experienced cyber bullying when using social media, while in comparison only five percent of teenagers with high social-emotional well-being stated the same. As such, social media can have a big impact on already fragile states of mind.
    
  11. h

    kids-and-teens-selfie-dataset

    • huggingface.co
    Updated Sep 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Unidata (2025). kids-and-teens-selfie-dataset [Dataset]. https://huggingface.co/datasets/UniDataPro/kids-and-teens-selfie-dataset
    Explore at:
    Dataset updated
    Sep 27, 2025
    Authors
    Unidata
    License

    Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
    License information was derived automatically

    Description

    Age Estimation

    The dataset consists of 6,000 high-quality facial images from 300 people (children and teenagers), featuring a diverse range of facial features, poses, and attributes. It is designed for research and development in age estimation, facial recognition for younger demographics, and understanding media use patterns on social media platforms. By utilizing this dataset, researchers and developers can advance their models for responsible technology, ensuring safer accessing… See the full description on the dataset page: https://huggingface.co/datasets/UniDataPro/kids-and-teens-selfie-dataset.

  12. Z

    Data from: Young People's Use of Digital Tools to Support Their Mental...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jun 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pretorius, Claudette; Coyle, David (2022). Young People's Use of Digital Tools to Support Their Mental Health During Covid-19 Restrictions [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_6642284
    Explore at:
    Dataset updated
    Jun 16, 2022
    Dataset provided by
    University College Dublin
    Authors
    Pretorius, Claudette; Coyle, David
    Description

    Young adulthood represents a sensitive period for young people's mental health. The lockdown restrictions associated with the COVID-19 pandemic have reduced young people's access to traditional sources of mental health support. This exploratory study aimed to investigate the online resources young people were using to support their mental health during the first lockdown period in Ireland. It made use of an anonymous online survey targeted at young people aged 18–25. Participants were recruited using ads on social media including Facebook, Twitter, Instagram, and SnapChat. A total of 393 respondents completed the survey. Many of the respondents indicated that they were using social media (51.4%, 202/393) and mental health apps (32.6%, 128/393) as sources of support. Fewer were making use of formal online resources such as charities (26%, 102/393) or professional counseling services (13.2%, 52/393). Different social media platforms were used for different purposes; Facebook was used for support groups whilst Instagram was used to engage with influencers who focused on mental health issues. Google search, recommendations from peers and prior knowledge of services played a role in how resources were located. Findings from this survey indicate that digital technologies and online resources have an important role to play in supporting young people's mental health. The COVID-19 pandemic has highlighted these digital tool's potential as well as how they can be improved to better meet young people's needs

  13. Instagram accounts with the most followers worldwide 2024

    • statista.com
    • de.statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon, Instagram accounts with the most followers worldwide 2024 [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    Cristiano Ronaldo has one of the most popular Instagram accounts as of April 2024.

                  The Portuguese footballer is the most-followed person on the photo sharing app platform with 628 million followers. Instagram's own account was ranked first with roughly 672 million followers.
    
                  How popular is Instagram?
    
                  Instagram is a photo-sharing social networking service that enables users to take pictures and edit them with filters. The platform allows users to post and share their images online and directly with their friends and followers on the social network. The cross-platform app reached one billion monthly active users in mid-2018. In 2020, there were over 114 million Instagram users in the United States and experts project this figure to surpass 127 million users in 2023.
    
                  Who uses Instagram?
    
                  Instagram audiences are predominantly young – recent data states that almost 60 percent of U.S. Instagram users are aged 34 years or younger. Fall 2020 data reveals that Instagram is also one of the most popular social media for teens and one of the social networks with the biggest reach among teens in the United States.
    
                  Celebrity influencers on Instagram
                  Many celebrities and athletes are brand spokespeople and generate additional income with social media advertising and sponsored content. Unsurprisingly, Ronaldo ranked first again, as the average media value of one of his Instagram posts was 985,441 U.S. dollars.
    
  14. f

    Dataset belonging to Siebers et al. (2024) Adolescents' digital nightlife:...

    • uvaauas.figshare.com
    csv
    Updated Jul 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    T. Siebers; Ine Beyens; Susanne E. Baumgartner; Patti Valkenburg (2024). Dataset belonging to Siebers et al. (2024) Adolescents' digital nightlife: The comparative effects of day- and nighttime smartphone use on sleep quality [Dataset]. http://doi.org/10.21942/uva.26395903.v2
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jul 29, 2024
    Dataset provided by
    University of Amsterdam / Amsterdam University of Applied Sciences
    Authors
    T. Siebers; Ine Beyens; Susanne E. Baumgartner; Patti Valkenburg
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The four datasets 'phone', 'game', 'social', and 'video' are the processed datasets that are used as input files for the Mplus models (but then in .csv instead of .dat format). The dataset 'phone' contains all data related to the main analyses of daytime, pre-bedtime and post-bedtime smartphone use. The datasets 'game', 'social', and 'video' represent the data related to the exploratory analyses for game app, social media app, and video player app use, respectively. The dataset 'timeframes' contains information about respondents' bedtime and wake-up time, which is required to calculate the three timeframes (daytime, pre-bedtime, and post-bedtime).------------------The materials used, including the R and Mplus syntaxes (https://osf.io/tpj98/) and the preregistration of the current study (https://osf.io/kxw2h/) can be found on OSF. For more information, please contact the authors via t.siebers@uva.nl or info@project-awesome.nl.

  15. m

    Data from two schools within Insights trial exploring changes in IU

    • figshare.mq.edu.au
    • researchdata.edu.au
    txt
    Updated Oct 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Danielle Einstein; Anne McMaugh; Peter McEvoy; Ron Rapee; Madeleine Fraser; Maree J. Abbott; Warren Mansell; Eyal Karin (2024). Data from two schools within Insights trial exploring changes in IU [Dataset]. http://doi.org/10.25949/23582805.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Oct 30, 2024
    Dataset provided by
    Macquarie University
    Authors
    Danielle Einstein; Anne McMaugh; Peter McEvoy; Ron Rapee; Madeleine Fraser; Maree J. Abbott; Warren Mansell; Eyal Karin
    License

    Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
    License information was derived automatically

    Description

    This database is comprised of 603 participants who provided self-report data online in their school classrooms. The data was collected in 2016 and 2017. The dataset is comprised of 208 males (34%) and 395 females (66%). Their ages ranged from 12 to 15 years. Their age in years at baseline is provided. The majority were born in Australia. Data were drawn from students at two Australian independent secondary schools. The data contains total responses for the following scales: The Intolerance of Uncertainty Scale (IUS-12; Short form; Carleton et al, 2007) is a 12-item scale measuring two dimensions of Prospective and Inhibitory intolerance of uncertainty. Two subscales of the Children’s Automatic Thoughts Scale (CATS; Schniering & Rapee, 2002) were administered. The Peronalising and Social Threat were each composed of 10 items. UPPS Impulsive Behaviour Scale (Whiteside & Lynam, 2001) which is comprised of 12 items. Dispositional Envy Scale (DES; Smith et al, 1999) which is comprised of 8 items. Spence Children’s Anxiety Scale (SCAS; Spence, 1998) which is comprised of 44 items. Three subscales totals included were the GAD subscale (labelled SCAS_GAD), the OCD subscale (labelled SCAS_OCD) and the Social Anxiety subscale (labelled SCAS_SA). Each subscale was comprised of 6 items. Avoidance and Fusion Questionnaire for Youth (AFQ-Y; Greco et al., 2008) which is comprised of 17 items. Distress Disclosure Index (DDI; Kahn & Hessling, 2001) which is comprised of 12 items. Repetitive Thinking Questionnaire-10 (RTQ-10; McEvoy et al., 2014) which is comprised of 10 items. The Brief Fear of Negative Evaluation Scale, Straightforward Items (BFNE-S; Rodebaugh et al., 2004) which is comprised of 8 items. Short Mood and Feelings Questionnaire (SMFQ; Angold et al., 1995) which is comprised by 13 items. The Self-Compassion Scale Short Form (SCS-SF; Raes et al., 2011) which is comprised by 12 items. The subscales include Self Kindness, Self Judgment, Social Media subscales - These subscale scores were based on social media questions composed for this project and also drawn from three separate scales as indicated in the table below. The original scales assessed whether participants experience discomfort and a fear of missing out when disconnected from social media (taken from the Australian Psychological Society Stress and Wellbeing Survey; Australian Psychological Society, 2015a), style of social media use (Tandoc et al., 2015b) and Fear of Missing Out (Przybylski et al., 2013c). The items in each subscale are listed below. Pub_Share Public Sharing When I have a good time it is important for me to share the details onlinec On social media how often do you write a status updateb On social media how often do you post photosb Surveillance_SM On social media how often do you read the newsfeed On social media how often do you read a friend’s status updateb On social media how often do you view a friend’s photob On social media how often do you browse a friend’s timelineb Upset Share On social media how often do you go online to share things that have upset you? Text private On social media how often do you Text friends privately to share things that have upset you? Insight_SM Social Media Reduction I use social media less now because it often made me feel inadequate FOMO I am afraid that I will miss out on something if I don’t stay connected to my online social networksa. I feel worried and uncomfortable when I can’t access my social media accountsa. Neg Eff of SM I find it difficult to relax or sleep after spending time on social networking sitesa. I feel my brain ‘burnout’ with the constant connectivity of social mediaa. I notice I feel envy when I use social media.
    I can easily detach from the envy that appears following the use of social media (reverse scored) DES_SM Envy Mean acts online Feeling envious about another person has led me to post a comment online about another person to make them laugh Feeling envious has led me to post a photo online without someone’s permission to make them angry or to make fun of them Feeling envious has prompted me to keep another student out of things on purpose, excluding her from my group of friends or ignoring them. Substance Use: Two items measuring peer influence on alcohol consumption were adapted from the SHAHRP “Patterns of Alcohol Use” measure (McBride, Farringdon & Midford, 2000). These items were “When I am with friends I am quite likely to drink too much alcohol” and “Substances (alcohol, drugs, medication) are the immediate way I respond to my thoughts about a situation when I feel distressed or upset. Angold, A., Costello, E. J., Messer, S. C., & Pickles, A. (1995). Development of a short questionnaire for use in epidemiological studies of depression in children and adolescents. International Journal of Methods in Psychiatric Research, 5(4), 237–249. Australian Psychological Society. (2015). Stress and wellbeing in Australia survey. https://www.headsup.org.au/docs/default-source/default-document-library/stress-and-wellbeing-in-australia-report.pdf?sfvrsn=7f08274d_4 Greco, L.A., Lambert, W. & Baer., R.A. (2008) Psychological inflexibility in childhood and adolescence: Development and evaluation of the Avoidance and Fusion Questionnaire for Youth. Psychological Assessment, 20, 93-102. https://doi.org/10.1037/1040-3590.20.2.9 Kahn, J. H., & Hessling, R. M. (2001). Measuring the tendency to conceal versus disclose psychological distress. Journal of Social and Clinical Psychology, 20(1), 41–65. https://doi.org/10.1521/jscp.20.1.41.22254 McBride, N., Farringdon, F. & Midford, R. (2000) What harms do young Australians experience in alcohol use situations. Australian and New Zealand Journal of Public Health, 24, 54–60 https://doi.org/10.1111/j.1467-842x.2000.tb00723.x McEvoy, P.M., Thibodeau, M.A., Asmundson, G.J.G. (2014) Trait Repetitive Negative Thinking: A brief transdiagnostic assessment. Journal of Experimental Psychopathology, 5, 1-17. Doi. 10.5127/jep.037813 Przybylski, A. K., Murayama, K., DeHaan, C. R., & Gladwell, V. (2013). Motivational, emotional, and behavioral correlates of fear of missing out. Computers in human behavior, 29(4), 1841-1848. https://doi.org/10.1016/j.chb.2013.02.014 Raes, F., Pommier, E., Neff, K. D., & Van Gucht, D. (2011). Construction and factorial validation of a short form of the self-compassion scale. Clinical Psychology and Psychotherapy, 18(3), 250-255. https://doi.org/10.1002/cpp.702 Rodebaugh, T. L., Woods, C. M., Thissen, D. M., Heimberg, R. G., Chambless, D. L., & Rapee, R. M. (2004). More information from fewer questions: the factor structure and item properties of the original and brief fear of negative evaluation scale. Psychological assessment, 16(2), 169. https://doi.org/10.1037/10403590.16.2.169 Schniering, C. A., & Rapee, R. M. (2002). Development and validation of a measure of children’s automatic thoughts: the children’s automatic thoughts scale. Behaviour Research and Therapy, 40(9), 1091-1109. . https://doi.org/10.1016/S0005-7967(02)00022-0 Smith, R. H., Parrott, W. G., Diener, E. F., Hoyle, R. H., & Kim, S. H. (1999). Dispositional envy. Personality and Social Psychology Bulletin, 25(8), 1007-1020. https://doi.org/10.1177/01461672992511008 Spence, S. H. (1998). A measure of anxiety symptoms among children. Behaviour Research and Therapy, 36(5), 545-566. https://doi.org/10.1016/S0005-7967(98)00034-5 Tandoc, E. C., Ferrucci, P., & Duffy, M. (2015). Facebook use, envy, and depression among college students: Is facebooking depressing? Computers in Human Behavior, 43, 139–146. https://doi.org/10.1016/j.chb.2014.10.053 Whiteside, S.P. & Lynam, D.R. (2001) The five factor model and impulsivity: using a structural model of personality to understand impulsivity. Personality and Individual Differences 30,669-689. https://doi.org/10.1016/S0191-8869(00)00064-7 The data was collected by Dr Danielle A Einstein, Dr Madeleine Fraser, Dr Anne McMaugh, Prof Peter McEvoy, Prof Ron Rapee, Assoc/Prof Maree Abbott, Prof Warren Mansell and Dr Eyal Karin as part of the Insights Project. The data set has the option of downloading an excel file (composed of two worksheet tabs) or CSV files 1) Data and 2) Variable labels.

  16. Teenage Online Behavior and Cybersecurity Risks

    • kaggle.com
    Updated Oct 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DatasetEngineer (2024). Teenage Online Behavior and Cybersecurity Risks [Dataset]. http://doi.org/10.34740/kaggle/dsv/9587284
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 9, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    DatasetEngineer
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Dataset Description:

    This dataset captures the real-world online behavior of teenagers, focusing on e-safety awareness, cybersecurity risks, and device interactions. The data was collected from network activity logs and e-safety monitoring systems across various educational institutions and households in Texas and California. Spanning from January 2017 to October 2024, this dataset includes interactions with social media platforms, educational websites, and other online services, providing an in-depth look at teenage online activities in urban and suburban settings. The dataset is anonymized to protect user privacy and contains real incidents of network threats, security breaches, and cybersecurity behavior patterns observed in teenagers.

    Use Cases:

    Predicting e-safety awareness and online behavior patterns. Detecting malware exposure risk and cybersecurity vulnerabilities. Analyzing online habits related to social media and internet consumption. Evaluating cybersecurity behaviors like password strength, VPN usage, and phishing attempts. Features Overview:

    S.No Feature Name Description 1 Device Type The type of device used during the online session (Mobile, Laptop, Tablet, Desktop, etc.) 2 Malware Detection Whether malware was detected on the device during the session (Yes/No) 3 Phishing Attempts Number of phishing attempts experienced during online activity 4 Social Media Usage Frequency of social media usage (Low, Medium, High) 5 VPN Usage Whether a VPN was used during the session (Yes/No) 6 Cyberbullying Reports Number of reported cyberbullying incidents 7 Parental Control Alerts Number of alerts triggered by parental control software 8 Firewall Logs Number of blocked or allowed network connections by the firewall 9 Login Attempts Number of login attempts during the session 10 Download Risk Risk level associated with downloaded files (Low, Medium, High) 11 Password Strength Strength of the passwords used (Weak, Moderate, Strong) 12 Data Breach Notifications Number of alerts regarding compromised personal information 13 Online Purchase Risk Risk level of online purchases made (Low, Medium, High) 14 Education Content Usage Frequency of engagement with educational content (Low, Medium, High) 15 Age Group Age category of the teenager (Under 13, 13-16, 17-19) 16 Geolocation Location of network access (US, EU, etc.) 17 Public Network Usage Whether the online activity occurred over a public network (Yes/No) 18 Network Type Type of network connection (WiFi, Cellular, etc.) 19 Hours Online Total hours spent online during the session 20 Website Visits Number of websites visited per hour during the session 21 Peer Interactions Level of peer-to-peer interactions during online activity 22 Risky Website Visits Whether visits to risky websites occurred (Yes/No) 23 Cloud Service Usage Whether cloud services were accessed during the session (Yes/No) 24 Unencrypted Traffic Whether unencrypted network traffic was accessed during the session (Yes/No) 25 Ad Clicks Whether online advertisements were clicked during the session (Yes/No) 26 Insecure Login Attempts Number of insecure login attempts made (e.g., over unencrypted networks) Potential Research and Machine Learning Applications:

    Cybersecurity and anomaly detection models. Predictive modeling for e-safety awareness and risk behaviors. Time-series analysis of internet consumption and security threat trends. Behavioral clustering and pattern recognition in teenage online activity. Data Collection Method: The data was collected through collaboration with local schools and cybersecurity monitoring agencies. Real-time network monitoring systems captured interactions across different online platforms. All personally identifiable information (PII) was anonymized to ensure privacy, making the dataset ideal for public use in research and machine learning tasks.

    This dataset provides a rich foundation for studying teenage online behavior patterns and developing predictive models for cybersecurity awareness and risk mitigation. Researchers and data scientists can use this data to create models that better understand online behavior, identify security risks, and design interventions to improve e-safety for teenagers.

  17. Teens Favourite Apps

    • kaggle.com
    zip
    Updated Jul 23, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shital Gaikwad (2021). Teens Favourite Apps [Dataset]. https://www.kaggle.com/shitalgaikwad123/teens-favourite-apps
    Explore at:
    zip(37813 bytes)Available download formats
    Dataset updated
    Jul 23, 2021
    Authors
    Shital Gaikwad
    Description

    YouTube, Instagram and Snapchat are the most popular online platforms among teens. Fully 95% of teens have access to a smartphone, and 45% say they are online 'almost constantly

    this dataset has all you need to know about apps that are more popular among teens

  18. Young People and Smartphones 2023

    • services.fsd.tuni.fi
    zip
    Updated Sep 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Finnish Social Science Data Archive (2025). Young People and Smartphones 2023 [Dataset]. http://doi.org/10.60686/t-fsd3904
    Explore at:
    zipAvailable download formats
    Dataset updated
    Sep 11, 2025
    Dataset provided by
    Finnish Social Science Data Archive
    Description

    The data covers the views and experiences related to well-being of young people and young adults aged 15-29 in relation to the use of smartphones and social media. The data was collected as part of the Finnish Safer Internet Centre project, which received funding from the EU-funded Digital Europe program. First, respondents were asked what they usually do with their smartphones in their leisure time and what social media services they use. They were also asked what are the main positive things that using a smartphone has given them over the past year and, on the other hand, whether they have encountered any negative things, such as harassment, anxiety, or hate speech, when using their smartphone. Next, respondents were asked whether smartphone use had taken time away from other activities and, if so, what kind of activities. They were then asked whether they had received advice and support regarding smartphone use and whether they found it easy to stop using their smartphone when they wanted to. Finally, they were asked whether they felt accepted in at least one online social network and were asked to give advice in an open-ended answer on how to use smartphones in a way that supports balance and mental well-being. Background variables include age, gender, province of residence, whether the respondent feels they belong to a minority group, native language, labor market status, level of education, residential area, and type of household.

  19. YouGamble 2018: US Data

    • services.fsd.tuni.fi
    zip
    Updated Sep 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Oksanen, Atte; Kaakinen, Markus; Sirola, Anu; Savolainen, Iina (2025). YouGamble 2018: US Data [Dataset]. http://doi.org/10.60686/t-fsd3591
    Explore at:
    zipAvailable download formats
    Dataset updated
    Sep 2, 2025
    Dataset provided by
    Finnish Social Science Data Archive
    Authors
    Oksanen, Atte; Kaakinen, Markus; Sirola, Anu; Savolainen, Iina
    Area covered
    United States
    Description

    This survey charted the gambling, social media usage and subjective well-being of young people aged 15-25 years in the United States. The study was conducted as part of the "Problem Gambling and Social Media: Social Psychological Study on Youth Behaviour in Online Gaming Communities" research project. The aim of the project was to analyse how young social media users evaluate, adopt and share gambling-related online content and how online group processes affect their gambling and gambling-related attitudes. FSD's holdings also include two other datasets that were collected using a nearly identical questionnaire (FSD3399 and FSD3400). Data for the research project have been collected in Finland, the United States, Spain, and South Korea. First, the respondents were asked which social media services they used (e.g. Facebook, YouTube, Instagram, discussion forums, online casinos) and how often. Topics that the respondents discussed on gambling-related social media were charted more closely, and they were asked, for example, whether the discussion usually related to instructions or tips on gambling or to problem gambling and recovering from problem gambling. Some questions on the respondents' social media activity were also presented, for instance, how often they saw gambling-related advertising online, how often they changed their most important social media passwords, and how often they uploaded pictures of themselves on social media. The respondents were asked whether they had ever been harassed online or had been the victim of a crime on the Internet in the past three years (e.g. defamation, identity theft, fraud, sexual harassment). The respondents' identity bubbles on social media were surveyed by using the IBR scale (Identity Bubble Reinforcement Scale). The respondents were asked, for instance, whether they thought they could be themselves on social media and whether they only interacted with people similar to them on social media. Additionally, the CIUS scale (Compulsive Internet Use) was used to examine problems related to Internet use. Questions focused on, for example, whether the respondents found it difficult to stop using the Internet when they were online, whether people close to them said they should use the Internet less, and whether they felt restless, frustrated or irritated when they couldn't use the Internet. In the next section of the questionnaire, the respondents were randomly assigned to two groups for a vignette experiment. Respondents in the test group were told they belong to Group C because they had answered the earlier questions in a similar manner to others in the group. Those in the control group were given no information on the group. The respondents were presented with different gambling-related social media scenarios, and they were asked to evaluate the contents of the gambling-related messages by "liking" or "disliking" the message or by not reacting to it at all. Each respondent was shown four different gambling messages with different contents. Three factors were manipulated in the scenarios (2x2x2 design): expressed stance of the message on gambling (positive or negative), narrative perspective of the message (experience-driven first-person narration or fact-driven third-person narration) and majority opinion of other respondents on the message (positively or negatively biased distribution of likes or dislikes). For Group C, the majority opinion was seemingly provided by other Group C members, whereas for the control group the majority opinion was seemingly provided by other respondents. Additionally, the respondents' attitudes towards the message were surveyed with statements regarding, for instance, how likely they would find the message interesting or share it on social media. Next, the respondents' attitudes towards gambling were charted by using the ATGS scale (Attitudes Towards Gambling Scale). They were asked, for example, whether people should have the right to gamble whenever they want, whether most people who gamble do so sensibly and whether it would be better if gambling was banned altogether. The respondents' gambling habits were examined by using the SOGS scale (South Oaks Gambling Screen), and they were asked, for instance, which types of gambling they had done in the past 12 months (played slot machines, visited an online casino, bet on lotteries etc.), whether the people close to them had gambling problems, and whether they had borrowed money to gamble or to pay gambling debts. In addition, the respondents' alcohol consumption was surveyed with a few questions from the AUDITC scale (The Alcohol Use Disorders Identification Test), and they were asked whether they had used various drugs for recreational purposes (e.g. cannabis, LSD, amphetamine, opioids) and which online resources they had used to purchases these drugs (e.g. Facebook, Instagram, Craigslist). The respondents' subjective well-being and social relationships were examined next. The respondents were asked how happy they were in general and how satisfied they were with their economic situation and life in general. They were also asked how well the single statement "I have high self-esteem" from the SISE scale (Single-item Self-esteem Scale) described them. The three statements on lacking companionship, feeling left out and feeling isolated from the LONE scale (Three-item Loneliness Scale) were also included in the survey. Feelings of belonging to different groups or communities (e.g. family, friends, neighbourhood, parish/religious community) were charted, and the 12-item GHQ scale (General Health Questionnaire) was used to survey the respondents' recent mental health. Questions included, for example, whether the respondents had been able to concentrate on what they were doing, had felt they couldn't overcome their difficulties, and had been losing confidence in themselves. Finally, the respondents' sense of control over the events in their lives was examined with the MASTERY scale (Sense of Mastery Scale), with questions focusing on, for instance, whether they thought they had little control over the things that happen to them and whether they often felt helpless in dealing with the problems of life. The respondents' impulsivity was surveyed by using the EIS scale (Eysenck Impulsivity Scale) and their willingness to delay gratification was surveyed with the GRATIF scale (Delay of Gratification). Background variables included the respondent's gender, age, country of birth (own and parents') level of education, type of municipality of residence, household composition, disposable income, possible financial problems, and economic activity and occupational status.

  20. Data from: Social media use by young people with language disorders: a...

    • tandf.figshare.com
    • datasetcatalog.nlm.nih.gov
    docx
    Updated Dec 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nichola Shelton; Natalie Munro; Julia Starling; Lyn Tieu; Melanie Keep (2024). Social media use by young people with language disorders: a scoping review [Dataset]. http://doi.org/10.6084/m9.figshare.25375260.v1
    Explore at:
    docxAvailable download formats
    Dataset updated
    Dec 19, 2024
    Dataset provided by
    Taylor & Francishttps://taylorandfrancis.com/
    Authors
    Nichola Shelton; Natalie Munro; Julia Starling; Lyn Tieu; Melanie Keep
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Social media are widely used by young people (YP), but how YP with language disorders use social media for social interaction remains insufficiently studied. This article provides an overview of the research on social media use by YP with language disorders. A scoping review was conducted, guided by a five-stage framework. Ten databases were searched (CENTRAL, CINAHL, ERIC, LLBA, Medline, PsychINFO, Scopus, speechBITE, Web of Science, ProQuest Dissertations & Theses Global). Chaining searches of papers identified for inclusion were conducted. After screening 199 unique papers, 44 were included. Findings revealed that YP with language disorders use social media less compared to typically developing peers; their profile of communication difficulties may impact the types of social media with which they engage. Although intervention studies are limited, the results offer encouraging findings regarding the positive impact of support for use of social media. Barriers and facilitators for social media use are identified. YP with language disorders use social media for social purposes. However, co-designed research into what YP with language disorders perceive their social media needs to be is urgently needed. How to support YP with language disorders to use social media is subject to future investigation. Young people with language disorders are likely using a range of social media to support their social participation, but they use social media less than typically developing peers.The types of social media young people with language disorders choose to engage with may be impacted by their language/literacy difficulties.There is preliminary evidence that intervention to support the use of social media by young people with language disorders is beneficial, but more research is required to identify the components to include in social media use training programs.To support the access to and use of social media by young people with language disorders, healthcare professionals may need to collaborate with parents and schools. Young people with language disorders are likely using a range of social media to support their social participation, but they use social media less than typically developing peers. The types of social media young people with language disorders choose to engage with may be impacted by their language/literacy difficulties. There is preliminary evidence that intervention to support the use of social media by young people with language disorders is beneficial, but more research is required to identify the components to include in social media use training programs. To support the access to and use of social media by young people with language disorders, healthcare professionals may need to collaborate with parents and schools.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Stacy Jo Dixon, Number of global social network users 2017-2028 [Dataset]. https://www.statista.com/topics/1164/social-networks/
Organization logo

Number of global social network users 2017-2028

Explore at:
Dataset provided by
Statistahttp://statista.com/
Authors
Stacy Jo Dixon
Description

How many people use social media?

              Social media usage is one of the most popular online activities. In 2024, over five billion people were using social media worldwide, a number projected to increase to over six billion in 2028.

              Who uses social media?
              Social networking is one of the most popular digital activities worldwide and it is no surprise that social networking penetration across all regions is constantly increasing. As of January 2023, the global social media usage rate stood at 59 percent. This figure is anticipated to grow as lesser developed digital markets catch up with other regions
              when it comes to infrastructure development and the availability of cheap mobile devices. In fact, most of social media’s global growth is driven by the increasing usage of mobile devices. Mobile-first market Eastern Asia topped the global ranking of mobile social networking penetration, followed by established digital powerhouses such as the Americas and Northern Europe.

              How much time do people spend on social media?
              Social media is an integral part of daily internet usage. On average, internet users spend 151 minutes per day on social media and messaging apps, an increase of 40 minutes since 2015. On average, internet users in Latin America had the highest average time spent per day on social media.

              What are the most popular social media platforms?
              Market leader Facebook was the first social network to surpass one billion registered accounts and currently boasts approximately 2.9 billion monthly active users, making it the most popular social network worldwide. In June 2023, the top social media apps in the Apple App Store included mobile messaging apps WhatsApp and Telegram Messenger, as well as the ever-popular app version of Facebook.
Search
Clear search
Close search
Google apps
Main menu