https://brightdata.com/licensehttps://brightdata.com/license
Use our YouTube profiles dataset to extract both business and non-business information from public channels and filter by channel name, views, creation date, or subscribers. Datapoints include URL, handle, banner image, profile image, name, subscribers, description, video count, create date, views, details, and more. You may purchase the entire dataset or a customized subset, depending on your needs. Popular use cases for this dataset include sentiment analysis, brand monitoring, influencer marketing, and more.
The global number of Youtube users in was forecast to continuously increase between 2024 and 2029 by in total ***** million users (+***** percent). After the ninth consecutive increasing year, the Youtube user base is estimated to reach *** billion users and therefore a new peak in 2029. Notably, the number of Youtube users of was continuously increasing over the past years.User figures, shown here regarding the platform youtube, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to *** countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of Youtube users in countries like Africa and South America.
By VISHWANATH SESHAGIRI [source]
This dataset contains YouTube video and channel metadata to analyze the statistical relation between videos and form a topic tree. With 9 direct features, 13 more indirect features, it has all that you need to build a deep understanding of how videos are related – including information like total views per unit time, channel views, likes/subscribers ratio, comments/views ratio, dislikes/subscribers ratio etc. This data provides us with a unique opportunity to gain insights on topics such as subscriber count trends over time or calculating the impact of trends on subscriber engagement. We can develop powerful models that show us how different types of content drive viewership and identify the most popular styles or topics within YouTube's vast catalogue. Additionally this data offers an intriguing look into consumer behaviour as we can explore what drives people to watch specific videos at certain times or appreciate certain channels more than others - by analyzing things like likes per subscribers and dislikes per views ratios for example! Finally this dataset is completely open source with an easy-to-understand Github repo making it an invaluable resource for anyone looking to gain better insights into how their audience interacts with their content and how they might improve it in the future
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
How to Use This Dataset
In general, it is important to understand each parameter in the data set before proceeding with analysis. The parameters included are totalviews/channelelapsedtime, channelViewCount, likes/subscriber, views/subscribers, subscriberCounts, dislikes/views comments/subscriberchannelCommentCounts,, likes/dislikes comments/views dislikes/ subscribers totviewes /totsubsvews /elapsedtime.
To use this dataset for your own analysis:1) Review each parameter’s meaning and purpose in our dataset; 2) Get familiar with basic descriptive statistics such as mean median mode range; 3) Create visualizations or tables based on subsets of our data; 4) Understand correlations between different sets of variables or parameters; 5) Generate meaningful conclusions about specific channels or topics based on organized graph hierarchies or tables.; 6) Analyze trends over time for individual parameters as well as an aggregate reaction from all users when videos are released
Predicting the Relative Popularity of Videos: This dataset can be used to build a statistical model that can predict the relative popularity of videos based on various factors such as total views, channel viewers, likes/dislikes ratio, and comments/views ratio. This model could then be used to make recommendations and predict which videos are likely to become popular or go viral.
Creating Topic Trees: The dataset can also be used to create topic trees or taxonomies by analyzing the content of videos and looking at what topics they cover. For example, one could analyze the most popular YouTube channels in a specific subject area, group together those that discuss similar topics, and then build an organized tree structure around those topics in order to better understand viewer interests in that area.
Viewer Engagement Analysis: This dataset could also be used for viewer engagement analysis purposes by analyzing factors such as subscriber count, average time spent watching a video per user (elapsed time), comments made per view etc., so as to gain insights into how engaged viewers are with specific content or channels on YouTube. From this information it would be possible to optimize content strategy accordingly in order improve overall engagement rates across various types of video content and channel types
If you use this dataset in your research, please credit the original authors.
License
Unknown License - Please check the dataset description for more information.
File: YouTubeDataset_withChannelElapsed.csv | Column name | Description | |:----------------------------------|:-------------------------------------------------------| | totalviews/channelelapsedtime | Ratio of total views to channel elapsed time. (Ratio) | | channelViewCount | Total number of views for the channel. (Integer) | | likes/subscriber ...
As of February 2025, India was the country with the largest YouTube audience by far, with approximately 491 million users engaging with the popular social video platform. The United States followed, with around 253 million YouTube viewers. Brazil came in third, with 144 million users watching content on YouTube. The United Kingdom saw around 54.8 million internet users engaging with the platform in the examined period. What country has the highest percentage of YouTube users? In July 2024, the United Arab Emirates was the country with the highest YouTube penetration worldwide, as around 94 percent of the country's digital population engaged with the service. In 2024, YouTube counted around 100 million paid subscribers for its YouTube Music and YouTube Premium services. YouTube mobile markets In 2024, YouTube was among the most popular social media platforms worldwide. In terms of revenues, the YouTube app generated approximately 28 million U.S. dollars in revenues in the United States in January 2024, as well as 19 million U.S. dollars in Japan.
Open Data Commons Attribution License (ODC-By) v1.0https://www.opendatacommons.org/licenses/by/1.0/
License information was derived automatically
Study how YouTube videos become viral or, more in general, how they evolve in terms of views, likes and subscriptions is a topic of interest in many disciplines. With this dataset you can study such phenomena, with statistics about 1 million YouTube videos. The information was collected in 2013 when YouTube was exposing the data publicly: they removed this functionality in the years and now it's possible to have such statistics only to the owner of the video. This makes this dataset unique.
This Dataset has been generated with YOUStatAnalyzer, a tool developed by myself (Mattia Zeni) when I was working for CREATE-NET (www.create-net.org) within the framework of the CONGAS FP7 project (http://www.congas-project.eu). For the project we needed to collect and analyse the dynamics of YouTube videos popularity. The dataset contains statistics of more than 1 million Youtube videos, chosen accordingly to random keywords extracted from the WordNet library (http://wordnet.princeton.edu).
The motivation that led us to the development of the YOUStatAnalyser data collection tool and the creation of this dataset is that there's an active research community working on the interplay among user individual preferences, social dynamics, advertising mechanisms and a common problem is the lack of open large-scale datasets. At the same time, no tool was present at that time. Today, YouTube removed the possibility to visualize these data on each video's page, making this dataset unique.
When using our dataset for research purposes, please cite it as:
@INPROCEEDINGS{YOUStatAnalyzer,
author={Mattia Zeni and Daniele Miorandi and Francesco {De Pellegrini}},
title = {{YOUStatAnalyzer}: a Tool for Analysing the Dynamics of {YouTube} Content Popularity},
booktitle = {Proc. 7th International Conference on Performance Evaluation Methodologies and Tools
(Valuetools, Torino, Italy, December 2013)},
address = {Torino, Italy},
year = {2013}
}
The dataset contains statistics and metadata of 1 million YouTube videos, collected in 2013. The videos have been chosen accordingly to random keywords extracted from the WordNet library (http://wordnet.princeton.edu).
The structure of a dataset is the following:
{
u'_id': u'9eToPjUnwmU',
u'title': u'Traitor Compilation # 1 (Trouble ...',
u'description': u'A traitor compilation by one are ...',
u'category': u'Games',
u'commentsNumber': u'6',
u'publishedDate': u'2012-10-09T23:42:12.000Z',
u'author': u'ServilityGaming',
u'duration': u'208',
u'type': u'video/3gpp',
u'relatedVideos': [u'acjHy7oPmls', u'EhW2LbCjm7c', u'UUKigFAQLMA', ...],
u'accessControl': {
u'comment': {u'permission': u'allowed'},
u'list': {u'permission': u'allowed'},
u'videoRespond': {u'permission': u'moderated'},
u'rate': {u'permission': u'allowed'},
u'syndicate': {u'permission': u'allowed'},
u'embed': {u'permission': u'allowed'},
u'commentVote': {u'permission': u'allowed'},
u'autoPlay': {u'permission': u'allowed'}
},
u'views': {
u'cumulative': {
u'data': [15.0, 25.0, 26.0, 26.0, ...]
},
u'daily': {
u'data': [15.0, 10.0, 1.0, 0.0, ..]
}
},
u'shares': {
u'cumulative': {
u'data': [0.0, 0.0, 0.0, 0.0, ...]
},
u'daily': {
u'data': [0.0, 0.0, 0.0, 0.0, ...]
}
},
u'watchtime': {
u'cumulative': {
u'data': [22.5666666667, 36.5166666667, 36.7, 36.7, ...]
},
u'daily': {
u'data': [22.5666666667, 13.95, 0.166666666667, 0.0, ...]
}
},
u'subscribers': {
u'cumulative': {
u'data': [0.0, 0.0, 0.0, 0.0, ...]
},
u'daily': {
u'data': [-1.0, 0.0, 0.0, 0.0, ...]
}
},
u'day': {
u'data': [1349740800000.0, 1349827200000.0, 1349913600000.0, 1350000000000.0, ...]
}
}
From the structure above is possible to see which fields an entry in the dataset has. It is possible to divide them into 2 sections:
1) Video Information.
_id -> Corresponding to the video ID and to the unique identifier of an entry in the database.
title -> Te video's title.
description -> The video's description.
category -> The YouTube category the video is inserted in.
commentsNumber -> The number of comments posted by users.
publishedDate -> The date the video has been published.
author -> The author of the video.
duration -> The video duration in seconds.
type -> The encoding type of the video.
relatedVideos -> A list of related videos.
accessControl -> A list of access policies for different aspects related to the video.
2) Video Statistics.
Each video can have 4 different statistics variables: views, shares, subscribers and watchtime. Recent videos have all of them while older video can have only the 'views' variable. Each variable has 2 dimensions, daily and cumulative.
`views -> number of views collected by the vi...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
📺 YouTube-Commons 📺
YouTube-Commons is a collection of audio transcripts of 2,063,066 videos shared on YouTube under a CC-By license.
Content
The collection comprises 22,709,724 original and automatically translated transcripts from 3,156,703 videos (721,136 individual channels). In total, this represents nearly 45 billion words (44,811,518,375). All the videos where shared on YouTube with a CC-BY license: the dataset provide all the necessary provenance information… See the full description on the dataset page: https://huggingface.co/datasets/PleIAs/YouTube-Commons.
The number of Youtube users in India was forecast to continuously increase between 2024 and 2029 by in total ***** million users (+***** percent). After the ninth consecutive increasing year, the Youtube user base is estimated to reach ****** million users and therefore a new peak in 2029. Notably, the number of Youtube users of was continuously increasing over the past years.User figures, shown here regarding the platform youtube, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to *** countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of Youtube users in countries like Sri Lanka and Nepal.
By VISHWANATH SESHAGIRI [source]
The YouTube Video and Channel Metadata dataset is a comprehensive collection of data related to YouTube videos and channels. It consists of various features and statistics that provide insights into the performance and engagement of videos, as well as the overall popularity and success of channels.
The dataset includes both direct features, such as total views, channel elapsed time, channel ID, video category ID, channel view count, likes per subscriber, dislikes per subscriber, comments per subscriber, and more. Additionally, there are indirect features derived from YouTube's API that provide additional metrics for analysis.
One important aspect covered in this dataset is the ratio between certain metrics. For example: - The totalviews/channelelapsedtime ratio represents the average number of views a video has received relative to the elapsed time since the channel was created. - The likes/dislikes ratio indicates the proportion of likes on a video compared to dislikes. - The views/subscribers ratio showcases how engaged subscribers are by measuring the number of views relative to the number of subscribers.
Other metrics explored in this dataset include comments/views ratio (representing viewer engagement), dislikes/views ratio (measuring viewer sentiment), comments/subscriber ratio (indicating community participation), likes/subscriber ratio (reflecting audience loyalty), dislikes/subscriber ratio (highlighting dissatisfaction levels), total number of subscribers for a channel (subscriberCount), total views on a channel (channelViewCount), total number of comments on a channel (channelCommentCount), among others.
By analyzing these features and statistics within this dataset, researchers or data analysts can gain valuable insights into various aspects related to YouTube videos and channels. Furthermore, it may be possible to build statistical relationships between videos based on their performance characteristics or even develop topic trees based on similarities between different content categories. This dataset serves as an excellent resource for studying YouTube's ecosystem comprehensively.
For accessing additional resources related to this dataset or exploring code repositories associated with it, users can refer to the provided GitHub repository
Introduction:
Step 1: Understanding the Dataset Start by familiarizing yourself with the columns in the dataset. Here are some key features to pay attention to:
- totalviews/channelelapsedtime: The ratio of total views of a video to the elapsed time of the channel.
- channelViewCount: The total number of views on the channel.
- likes/subscriber: The ratio of likes on a video to the number of subscribers of the channel.
- views/subscribers: The ratio of views on a video to the number of subscribers of the channel.
- subscriberCount: The total number of subscribers for a channel.
- dislikes/views: The ratio of dislikes on a video to its total views.
- comments/subscriber: The ratio comments on a video receive per subscriber count.
Step 2: Determining Data Analysis Objectives Define your objectives or research questions before diving into data analysis using this dataset. For example, you may want to explore relationships between viewership, engagement metrics, and various attributes such as category ID or elapsed time.
Step 3: Analyzing Relationships between Variables Use statistical techniques like correlation analysis or visualization tools like scatter plots, bar graphs, or heatmaps to understand relationships between variables in this dataset.
For example: - Plotting totalviews/channelelapsedtime against channelViewCount can help identify patterns between overall video popularity and channels' view count growth over time. - Comparing likes/dislikes with comments/views can give insights into viewer engagement levels across different videos.
Step 4: Building Machine Learning Models (Optional) If your objective includes predictive analysis or building machine learning models, select relevant features as predictors and the target variable (e.g., totalviews/channelelapsedtime) for training and evaluation.
You can use various algorithms such as linear regression, decision trees, or neural networks to predict video performance or channel growth based on available attributes.
Step 5: Evaluating Model Performance Assess the predictive model's performance using appropriate evaluation metrics like mean square...
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
YouTube maintains a list of the top trending videos on the platform. According to Variety magazine, “To determine the year’s top-trending videos, YouTube uses a combination of factors including measuring users interactions (number of views, shares, comments and likes). Note that they’re not the most-viewed videos overall for the calendar year”.
Note that this dataset is a structurally improved version of this dataset.
This dataset includes several months (and counting) of data on daily trending YouTube videos. Data is included for the IN, US, GB, DE, CA, FR, RU, BR, MX, KR, and JP regions (India, USA, Great Britain, Germany, Canada, France, Russia, Brazil, Mexico, South Korea, and, Japan respectively), with up to 200 listed trending videos per day.
Each region’s data is in a separate file. Data includes the video title, channel title, publish time, tags, views, likes and dislikes, description, and comment count.
The data also includes a category_id field, which varies between regions. To retrieve the categories for a specific video, find it in the associated JSON. One such file is included for each of the 11 regions in the dataset.
For more information on specific columns in the dataset refer to the column metadata.
This dataset was collected using the YouTube API. This dataset is the updated version of Trending YouTube Video Statistics.
Possible uses for this dataset could include: - Sentiment analysis in a variety of forms - Categorizing YouTube videos based on their comments and statistics. - Training ML algorithms like RNNs to generate their own YouTube comments. - Analyzing what factors affect how popular a YouTube video will be. - Statistical analysis over time.
For further inspiration, see the kernels on this dataset!
In 2021, YouTube's user base in Vietnam amounts to approximately ***** million users. The number of YouTube users in Vietnam is projected to reach ***** million users by 2025. User figures have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to *** countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).
This comprehensive YouTube Video Analytics Dataset provides valuable insights into the performance of a wide range of videos on the popular platform. Spanning various genres, the dataset encompasses essential information such as - 1.Genre 2.video titles, 3.publish times, 4.view counts, 5.watch time (in hours), 6.subscriber counts, 7.average view durations, 8.impressions, and 9.impressions click-through rates (%).
By leveraging this dataset, researchers, analysts, and data enthusiasts can delve into the factors that influence video success on YouTube. Analyze the correlation between genre and view counts, investigate the impact of subscriber counts on watch time, or explore how average view durations and click-through rates affect video impressions.
Whether you're interested in exploring video trends, identifying patterns in user behavior, or developing machine learning models, this dataset serves as a valuable resource. Gain actionable insights into YouTube video performance and contribute to the ever-growing field of online content analysis. LICENCE NOTE - This is the dataset of my own channel.
The global number of Facebook users was forecast to continuously increase between 2023 and 2027 by in total 391 million users (+14.36 percent). After the fourth consecutive increasing year, the Facebook user base is estimated to reach 3.1 billion users and therefore a new peak in 2027. Notably, the number of Facebook users was continuously increasing over the past years. User figures, shown here regarding the platform Facebook, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period and count multiple accounts by persons only once.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Late Night Talk Shows are a staple of American television culture and with the shows establishing a digital presence in the form of YouTube channels, this culture has become more global. Some of the channels here have more than 20 Million subscribers which shows the amount of influence they hold in this platform.
The data is organized on a per-show channel basis which has the most important information like video titles, and all the numeric counts of Likes, Dislikes, Comments and number of views (as of 13th June 2020)
All of this data is responsibly scraped from YouTube and I would like to acknowledge all the respective Talk Shows for making their content free for the public.
The main inspiration for this dataset is how a video title or a particular celebrity appearing on the talk show can affect the engagement rate of a video
We only provide video URLs. Text/Captions are generated by BLIP-2. Please follow open-source agreement for any usage. DATA PREPARATION
Download youtube videos to the folder '$workdir/download_videos' with the urls provided in metafiles, and name the videos with their video_id. e.g. url: https://www.youtube.com/watch?v=--4M68p_Loc
$workdir download_videos --4M68p_Loc.mp4
We do not provide an official script for downloading YouTube videos. You may consider using the open-source… See the full description on the dataset page: https://huggingface.co/datasets/Jonathan916/my-cool-dataset.
This is the dataset used for the research "The Good, the Bad and the Bait: Detecting and Characterizing Clickbait on YouTube", with DOI: 10.1109/SPW.2018.00018.
The dataset consists of three files:
1. groundtruth.json: This is the groundtruth dataset. We have 3443 manually annotated videos (we manually annotated more after the acceptance of the paper), and 17,648 videos that were obtained from channels that post clickbait or not. You can distinguish the method of annotation by observing the field "comments" in "clickbaitClassification" (the ones that have the comment "channels" are the ones obtained from the channels).
2. videos.json: Contains the data for 206K videos that were obtained as described in the paper.
3. predictions.json: It contains the mapping between the video id and the probability of our classifier. In our paper, we treat a video as clickbait if the probability is larger than 0.5.
The related software produced for this study may be found here.
The file stores the record of the references that were used as units of analysis in the research that resulted in the publication “Is the YouTube Animation Algorithm-Friendly? How YouTube's Algorithm Influences the Evolution of Animation Production on the Internet”. The data set consists of 3,376 videos published by the 25 channels, which total 8,822,179,453 views from the day of publication to the day of sampling.
How many people use social media?
Social media usage is one of the most popular online activities. In 2024, over five billion people were using social media worldwide, a number projected to increase to over six billion in 2028.
Who uses social media?
Social networking is one of the most popular digital activities worldwide and it is no surprise that social networking penetration across all regions is constantly increasing. As of January 2023, the global social media usage rate stood at 59 percent. This figure is anticipated to grow as lesser developed digital markets catch up with other regions
when it comes to infrastructure development and the availability of cheap mobile devices. In fact, most of social media’s global growth is driven by the increasing usage of mobile devices. Mobile-first market Eastern Asia topped the global ranking of mobile social networking penetration, followed by established digital powerhouses such as the Americas and Northern Europe.
How much time do people spend on social media?
Social media is an integral part of daily internet usage. On average, internet users spend 151 minutes per day on social media and messaging apps, an increase of 40 minutes since 2015. On average, internet users in Latin America had the highest average time spent per day on social media.
What are the most popular social media platforms?
Market leader Facebook was the first social network to surpass one billion registered accounts and currently boasts approximately 2.9 billion monthly active users, making it the most popular social network worldwide. In June 2023, the top social media apps in the Apple App Store included mobile messaging apps WhatsApp and Telegram Messenger, as well as the ever-popular app version of Facebook.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
If using this dataset, please cite the following paper and the current Zenodo repository.
This dataset is described in detail in the following paper:
The associated code is available at: https://github.com/YYao-42/Identifying-Temporal-Correlations-Between-Natural-Single-shot-Videos-and-EEG-Signals?tab=readme-ov-file
The research work leading to this dataset was conducted at the Department of Electrical Engineering (ESAT), KU Leuven.
This dataset contains electroencephalogram (EEG) data collected from 19 young participants with normal or corrected-to-normal eyesight when they were watching a series of carefully selected YouTube videos. The videos were muted to avoid the confounds introduced by audio. For synchronization, a square box was encoded outside of the original frames and flashed every 30 seconds in the top right corner of the screen. A photosensor, detecting the light changes from this flashing box, was affixed to that region using black tape to ensure that the box did not distract participants. The EEG data was recorded using a BioSemi ActiveTwo system at a sample rate of 2048 Hz. Participants wore a 64-channel EEG cap, and 4 electrooculogram (EOG) sensors were positioned around the eyes to track eye movements.
The dataset includes a total of (19 subjects x 63 min + 9 subjects x 24 min) of data. Further details can be found in the following section.
The dataset is divided into two subsets: Single-shot and MrBean, based on the characteristics of the video stimuli.
The stimuli of this dataset consist of 13 single-shot videos (63 min in total), each depicting a single individual engaging in various activities such as dancing, mime, acrobatics, and magic shows. All the participants watched this video collection.
Video ID | Link | Start time (s) | End time (s) |
---|---|---|---|
01_Dance_1 | https://youtu.be/uOUVE5rGmhM | 8.54 | 231.20 |
03_Acrob_1 | https://youtu.be/DjihbYg6F2Y | 4.24 | 231.91 |
04_Magic_1 | https://youtu.be/CvzMqIQLiXE | 3.68 | 348.17 |
05_Dance_2 | https://youtu.be/f4DZp0OEkK4 | 5.05 | 227.99 |
06_Mime_2 | https://youtu.be/u9wJUTnBdrs | 5.79 | 347.05 |
07_Acrob_2 | https://youtu.be/kRqdxGPLajs | 183.61 | 519.27 |
08_Magic_2 | https://youtu.be/FUv-Q6EgEFI | 3.36 | 270.62 |
09_Dance_3 | https://youtu.be/LXO-jKksQkM | 5.61 | 294.17 |
12_Magic_3 | https://youtu.be/S84AoWdTq3E | 1.76 | 426.36 |
13_Dance_4 | https://youtu.be/0wc60tA1klw | 14.28 | 217.18 |
14_Mime_3 | https://youtu.be/0Ala3ypPM3M | 21.87 | 386.84 |
15_Dance_5 | https://youtu.be/mg6-SnUl0A0 | 15.14 | 233.85 |
16_Mime_6 | https://youtu.be/8V7rhAJF6Gc | 31.64 | 388.61 |
Additionally, 9 participants watched an extra 24-minute clip from the first episode of Mr. Bean, where multiple (moving) objects may exist and interact, and the camera viewpoint may change. The subject IDs and the signal quality files are inherited from the single-shot dataset.
Video ID | Link | Start time (s) | End time (s) |
---|---|---|---|
Mr_Bean | https://www.youtube.com/watch?v=7Im2I6STbms | 39.77 | 1495.00 |
This research is funded by the Research Foundation - Flanders (FWO) project No G081722N, junior postdoctoral fellowship fundamental research of the FWO (for S. Geirnaert, No. 1242524N), the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement No 802895), the Flemish Government (AI Research Program), and the PDM mandate from KU Leuven (for S. Geirnaert, No PDMT1/22/009).
We also thank the participants for their time and effort in the experiments.
Executive researcher: Yuanyuan Yao, yuanyuan.yao@kuleuven.be
Led by: Prof. Alexander Bertrand, alexander.bertrand@kuleuven.be
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This paper investigates the profiles, challenges, and motivations of science communicators of the ScienceVlogs Brasil project—a Brazilian alliance of YouTube channels that disseminate science information on YouTube. It also looks into their prospects of professionalization in science communication and their strategies to improve their skills, increase public reach, and have financial support. Results show that the typical science YouTuber is a highly educated young male who works primarily in the education field, wishes to improve science understanding and fight misinformation, and is challenged by YouTube's highly competitive environment and restrictive algorithms. Science YouTubers also strive to improve their skills and techniques to produce high-quality, professional-like videos to become visible on the platform.
The number of Youtube users in Europe was forecast to continuously increase between 2024 and 2029 by in total 7.8 million users (+3.61 percent). After the ninth consecutive increasing year, the Youtube user base is estimated to reach 223.61 million users and therefore a new peak in 2029. Notably, the number of Youtube users of was continuously increasing over the past years.User figures, shown here regarding the platform youtube, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of Youtube users in countries like North America and Australia & Oceania.
https://brightdata.com/licensehttps://brightdata.com/license
Use our YouTube profiles dataset to extract both business and non-business information from public channels and filter by channel name, views, creation date, or subscribers. Datapoints include URL, handle, banner image, profile image, name, subscribers, description, video count, create date, views, details, and more. You may purchase the entire dataset or a customized subset, depending on your needs. Popular use cases for this dataset include sentiment analysis, brand monitoring, influencer marketing, and more.