100+ datasets found
  1. US Deep Learning Market Analysis, Size, and Forecast 2025-2029

    • technavio.com
    Updated Mar 24, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2017). US Deep Learning Market Analysis, Size, and Forecast 2025-2029 [Dataset]. https://www.technavio.com/report/us-deep-learning-market-industry-analysis
    Explore at:
    Dataset updated
    Mar 24, 2017
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    United States
    Description

    Snapshot img

    US Deep Learning Market Size 2025-2029

    The deep learning market size in US is forecast to increase by USD 5.02 billion at a CAGR of 30.1% between 2024 and 2029.

    The deep learning market is experiencing robust growth, driven by the increasing adoption of artificial intelligence (AI) in various industries for advanced solutioning. This trend is fueled by the availability of vast amounts of data, which is a key requirement for deep learning algorithms to function effectively. Industry-specific solutions are gaining traction, as businesses seek to leverage deep learning for specific use cases such as image and speech recognition, fraud detection, and predictive maintenance. Alongside, intuitive data visualization tools are simplifying complex neural network outputs, helping stakeholders understand and validate insights. 
    
    
    However, challenges remain, including the need for powerful computing resources, data privacy concerns, and the high cost of implementing and maintaining deep learning systems. Despite these hurdles, the market's potential for innovation and disruption is immense, making it an exciting space for businesses to explore further. Semi-supervised learning, data labeling, and data cleaning facilitate efficient training of deep learning models. Cloud analytics is another significant trend, as companies seek to leverage cloud computing for cost savings and scalability. 
    

    What will be the Size of the market During the Forecast Period?

    Request Free Sample

    Deep learning, a subset of machine learning, continues to shape industries by enabling advanced applications such as image and speech recognition, text generation, and pattern recognition. Reinforcement learning, a type of deep learning, gains traction, with deep reinforcement learning leading the charge. Anomaly detection, a crucial application of unsupervised learning, safeguards systems against security vulnerabilities. Ethical implications and fairness considerations are increasingly important in deep learning, with emphasis on explainable AI and model interpretability. Graph neural networks and attention mechanisms enhance data preprocessing for sequential data modeling and object detection. Time series forecasting and dataset creation further expand deep learning's reach, while privacy preservation and bias mitigation ensure responsible use.

    In summary, deep learning's market dynamics reflect a constant pursuit of innovation, efficiency, and ethical considerations. The Deep Learning Market in the US is flourishing as organizations embrace intelligent systems powered by supervised learning and emerging self-supervised learning techniques. These methods refine predictive capabilities and reduce reliance on labeled data, boosting scalability. BFSI firms utilize AI image recognition for various applications, including personalizing customer communication, maintaining a competitive edge, and automating repetitive tasks to boost productivity. Sophisticated feature extraction algorithms now enable models to isolate patterns with high precision, particularly in applications such as image classification for healthcare, security, and retail.

    How is this market segmented and which is the largest segment?

    The market research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.

    Application
    
      Image recognition
      Voice recognition
      Video surveillance and diagnostics
      Data mining
    
    
    Type
    
      Software
      Services
      Hardware
    
    
    End-user
    
      Security
      Automotive
      Healthcare
      Retail and commerce
      Others
    
    
    Geography
    
      North America
    
        US
    

    By Application Insights

    The Image recognition segment is estimated to witness significant growth during the forecast period. In the realm of artificial intelligence (AI) and machine learning, image recognition, a subset of computer vision, is gaining significant traction. This technology utilizes neural networks, deep learning models, and various machine learning algorithms to decipher visual data from images and videos. Image recognition is instrumental in numerous applications, including visual search, product recommendations, and inventory management. Consumers can take photographs of products to discover similar items, enhancing the online shopping experience. In the automotive sector, image recognition is indispensable for advanced driver assistance systems (ADAS) and autonomous vehicles, enabling the identification of pedestrians, other vehicles, road signs, and lane markings.

    Furthermore, image recognition plays a pivotal role in augmented reality (AR) and virtual reality (VR) applications, where it tracks physical objects and overlays digital content onto real-world scenarios. The model training process involves the backpropagation algorithm, which calculates

  2. d

    TagX Data collection for AI/ ML training | LLM data | Data collection for AI...

    • datarade.ai
    .json, .csv, .xls
    Updated Jun 18, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TagX (2021). TagX Data collection for AI/ ML training | LLM data | Data collection for AI development & model finetuning | Text, image, audio, and document data [Dataset]. https://datarade.ai/data-products/data-collection-and-capture-services-tagx
    Explore at:
    .json, .csv, .xlsAvailable download formats
    Dataset updated
    Jun 18, 2021
    Dataset authored and provided by
    TagX
    Area covered
    Iceland, Equatorial Guinea, Saudi Arabia, Qatar, Antigua and Barbuda, Russian Federation, Colombia, Belize, Benin, Djibouti
    Description

    We offer comprehensive data collection services that cater to a wide range of industries and applications. Whether you require image, audio, or text data, we have the expertise and resources to collect and deliver high-quality data that meets your specific requirements. Our data collection methods include manual collection, web scraping, and other automated techniques that ensure accuracy and completeness of data.

    Our team of experienced data collectors and quality assurance professionals ensure that the data is collected and processed according to the highest standards of quality. We also take great care to ensure that the data we collect is relevant and applicable to your use case. This means that you can rely on us to provide you with clean and useful data that can be used to train machine learning models, improve business processes, or conduct research.

    We are committed to delivering data in the format that you require. Whether you need raw data or a processed dataset, we can deliver the data in your preferred format, including CSV, JSON, or XML. We understand that every project is unique, and we work closely with our clients to ensure that we deliver the data that meets their specific needs. So if you need reliable data collection services for your next project, look no further than us.

  3. Data Science And Ml Platforms Market Report | Global Forecast From 2025 To...

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Data Science And Ml Platforms Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/data-science-and-ml-platforms-market
    Explore at:
    csv, pptx, pdfAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Data Science And ML Platforms Market Outlook



    The global market size for Data Science and ML Platforms was estimated to be approximately USD 78.9 billion in 2023, and it is projected to reach around USD 307.6 billion by 2032, growing at a Compound Annual Growth Rate (CAGR) of 16.4% during the forecast period. This remarkable growth can be largely attributed to the increasing adoption of artificial intelligence (AI) and machine learning (ML) across various industries to enhance operational efficiency, predictive analytics, and decision-making processes.



    The surge in big data and the necessity to make sense of unstructured data is a substantial growth driver for the Data Science and ML Platforms market. Organizations are increasingly leveraging data science and machine learning to gain insights that can help them stay competitive. This is especially true in sectors like retail and e-commerce where customer behavior analytics can lead to more targeted marketing strategies, personalized shopping experiences, and improved customer retention rates. Additionally, the proliferation of IoT devices is generating massive amounts of data, which further fuels the need for advanced data analytics platforms.



    Another significant growth factor is the increasing adoption of cloud-based solutions. Cloud platforms offer scalable resources, flexibility, and substantial cost savings, making them attractive for enterprises of all sizes. Cloud-based data science and machine learning platforms also facilitate collaboration among distributed teams, enabling more efficient workflows and faster time-to-market for new products and services. Furthermore, advancements in cloud technologies, such as serverless computing and containerization, are making it easier for organizations to deploy and manage their data science models.



    Investment in AI and ML by key industry players also plays a crucial role in market growth. Tech giants like Google, Amazon, Microsoft, and IBM are making substantial investments in developing advanced AI and ML tools and platforms. These investments are not only driving innovation but also making these technologies more accessible to smaller enterprises. Additionally, mergers and acquisitions in this space are leading to more integrated and comprehensive solutions, which are further accelerating market growth.



    Machine Learning Tools are at the heart of this technological evolution, providing the necessary frameworks and libraries that empower developers and data scientists to create sophisticated models and algorithms. These tools, such as TensorFlow, PyTorch, and Scikit-learn, offer a range of functionalities from data preprocessing to model deployment, catering to both beginners and experts. The accessibility and versatility of these tools have democratized machine learning, enabling a wider audience to harness the power of AI. As organizations continue to embrace digital transformation, the demand for robust machine learning tools is expected to grow, driving further innovation and development in this space.



    From a regional perspective, North America is expected to hold the largest market share due to the early adoption of advanced technologies and the presence of major market players. However, the Asia Pacific region is anticipated to exhibit the highest growth rate during the forecast period. This is driven by increasing investments in AI and ML, a burgeoning start-up ecosystem, and supportive government policies aimed at digital transformation. Countries like China, India, and Japan are at the forefront of this growth, making significant strides in AI research and application.



    Component Analysis



    When analyzing the Data Science and ML Platforms market by component, it's essential to differentiate between software and services. The software segment includes platforms and tools designed for data ingestion, processing, visualization, and model building. These software solutions are crucial for organizations looking to harness the power of big data and machine learning. They provide the necessary infrastructure for data scientists to develop, test, and deploy ML models. The software segment is expected to grow significantly due to ongoing advancements in AI algorithms and the increasing need for more sophisticated data analysis tools.



    The services segment in the Data Science and ML Platforms market encompasses consulting, system integration, and support services. Consulting services help organizatio

  4. Space-based AI and Machine Learning Market Report | Global Forecast From...

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Space-based AI and Machine Learning Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/space-based-ai-and-machine-learning-market
    Explore at:
    pptx, pdf, csvAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Space-based AI and Machine Learning Market Outlook



    The global market size for space-based AI and machine learning was valued at approximately $2.5 billion in 2023, and it is projected to reach around $8.8 billion by 2032, driven by a compound annual growth rate (CAGR) of 14.8%. The rapid expansion of this market is being fueled by advancements in AI technology, increased investments in space missions, and the growing need for real-time data analytics in space operations.



    One of the primary growth factors for the space-based AI and machine learning market is the increasing complexity and volume of data generated by space missions. As satellites and other space-based instruments become more advanced, they produce vast amounts of data that require sophisticated analytics to be useful. AI and machine learning algorithms are essential for processing this data in real-time, enabling more efficient space operations and better decision-making. Additionally, AI is proving to be invaluable in predictive maintenance of space equipment, thereby reducing downtime and costs associated with space missions.



    Another significant growth driver is the increased investment by both governmental and private entities in space exploration. Governments worldwide are ramping up their space programs, and private companies are entering the space race with ambitious projects. These investments are leading to more frequent and complex missions, which in turn require advanced AI and machine learning solutions for tasks such as autonomous navigation, mission planning, and anomaly detection. Moreover, the commercial viability of space tourism and mining is heavily reliant on AI for ensuring safety and efficiency, further driving the market.



    The rise of cloud computing is also playing a crucial role in the market's growth. Cloud-based AI solutions offer scalability and flexibility that are essential for space missions. They enable real-time data processing and analytics, which are critical for applications such as Earth observation and satellite imagery analysis. The ability to deploy AI models on the cloud reduces the need for extensive on-premises infrastructure, making it more cost-effective for organizations to adopt these technologies. Furthermore, advancements in edge computing are complementing cloud solutions by allowing real-time data analytics directly on space hardware, thereby improving responsiveness and reliability.



    From a regional perspective, North America holds the largest share of the market, driven by significant investments from NASA and private companies like SpaceX and Blue Origin. Europe is also witnessing substantial growth, supported by initiatives from the European Space Agency (ESA) and increasing collaborations between governmental and commercial entities. Meanwhile, the Asia Pacific region is emerging as a significant player, with countries like China and India making substantial investments in space technology and AI research. These regions are expected to continue their growth trajectory, contributing significantly to the global market.



    Space Data Analytics is becoming increasingly vital in the realm of space-based AI and machine learning. As the volume of data generated by satellites and space missions continues to grow exponentially, the need for advanced analytics to process and interpret this data becomes paramount. Space Data Analytics involves the use of sophisticated algorithms and machine learning models to extract meaningful insights from vast datasets, enabling more informed decision-making and enhancing mission outcomes. This capability is crucial for applications such as Earth observation, where real-time data analysis can provide critical information for environmental monitoring and disaster response. As the space industry continues to expand, the demand for Space Data Analytics is expected to rise, driving further innovation and investment in this field.



    Component Analysis



    The component segment of the space-based AI and machine learning market can be categorized into software, hardware, and services. Each of these components plays a vital role in the overall functionality and efficiency of space-based AI systems. The software segment is primarily focused on developing AI algorithms and machine learning models that can analyze vast amounts of data generated by space missions. These software solutions are crucial for tasks such as predictive maintenance, autonomous navigation, and real-time data analytics. As AI technology continues

  5. o

    Replication data for: Big Data: New Tricks for Econometrics

    • openicpsr.org
    Updated May 1, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hal R. Varian (2014). Replication data for: Big Data: New Tricks for Econometrics [Dataset]. http://doi.org/10.3886/E113925V1
    Explore at:
    Dataset updated
    May 1, 2014
    Dataset provided by
    American Economic Association
    Authors
    Hal R. Varian
    Time period covered
    May 1, 2014
    Description

    Computers are now involved in many economic transactions and can capture data associated with these transactions, which can then be manipulated and analyzed. Conventional statistical and econometric techniques such as regression often work well, but there are issues unique to big datasets that may require different tools. First, the sheer size of the data involved may require more powerful data manipulation tools. Second, we may have more potential predictors than appropriate for estimation, so we need to do some kind of variable selection. Third, large datasets may allow for more flexible relationships than simple linear models. Machine learning techniques such as decision trees, support vector machines, neural nets, deep learning, and so on may allow for more effective ways to model complex relationships. In this essay, I will describe a few of these tools for manipulating and analyzing big data. I believe that these methods have a lot to offer and should be more widely known and used by economists.

  6. Data from: NICHE: A Curated Dataset of Engineered Machine Learning Projects...

    • figshare.com
    txt
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ratnadira Widyasari; Zhou YANG; Ferdian Thung; Sheng Qin Sim; Fiona Wee; Camellia Lok; Jack Phan; Haodi Qi; Constance Tan; Qijin Tay; David LO (2023). NICHE: A Curated Dataset of Engineered Machine Learning Projects in Python [Dataset]. http://doi.org/10.6084/m9.figshare.21967265.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Ratnadira Widyasari; Zhou YANG; Ferdian Thung; Sheng Qin Sim; Fiona Wee; Camellia Lok; Jack Phan; Haodi Qi; Constance Tan; Qijin Tay; David LO
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Machine learning (ML) has gained much attention and has been incorporated into our daily lives. While there are numerous publicly available ML projects on open source platforms such as GitHub, there have been limited attempts in filtering those projects to curate ML projects of high quality. The limited availability of such high-quality dataset poses an obstacle to understanding ML projects. To help clear this obstacle, we present NICHE, a manually labelled dataset consisting of 572 ML projects. Based on evidences of good software engineering practices, we label 441 of these projects as engineered and 131 as non-engineered. In this repository we provide "NICHE.csv" file that contains the list of the project names along with their labels, descriptive information for every dimension, and several basic statistics, such as the number of stars and commits. This dataset can help researchers understand the practices that are followed in high-quality ML projects. It can also be used as a benchmark for classifiers designed to identify engineered ML projects.

    GitHub page: https://github.com/soarsmu/NICHE

  7. Machine Learning Dataset

    • brightdata.com
    .json, .csv, .xlsx
    Updated Dec 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2024). Machine Learning Dataset [Dataset]. https://brightdata.com/products/datasets/machine-learning
    Explore at:
    .json, .csv, .xlsxAvailable download formats
    Dataset updated
    Dec 23, 2024
    Dataset authored and provided by
    Bright Datahttps://brightdata.com/
    License

    https://brightdata.com/licensehttps://brightdata.com/license

    Area covered
    Worldwide
    Description

    Utilize our machine learning datasets to develop and validate your models. Our datasets are designed to support a variety of machine learning applications, from image recognition to natural language processing and recommendation systems. You can access a comprehensive dataset or tailor a subset to fit your specific requirements, using data from a combination of various sources and websites, including custom ones. Popular use cases include model training and validation, where the dataset can be used to ensure robust performance across different applications. Additionally, the dataset helps in algorithm benchmarking by providing extensive data to test and compare various machine learning algorithms, identifying the most effective ones for tasks such as fraud detection, sentiment analysis, and predictive maintenance. Furthermore, it supports feature engineering by allowing you to uncover significant data attributes, enhancing the predictive accuracy of your machine learning models for applications like customer segmentation, personalized marketing, and financial forecasting.

  8. Metatasks for AutoGluon - ROC AUC and Balanced Accuracy

    • figshare.com
    bin
    Updated Jul 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lennart Purucker (2023). Metatasks for AutoGluon - ROC AUC and Balanced Accuracy [Dataset]. http://doi.org/10.6084/m9.figshare.23609361.v1
    Explore at:
    binAvailable download formats
    Dataset updated
    Jul 1, 2023
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Lennart Purucker
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Prediction Data of Base Models from AutoGluon on 71 classification datasets from the AutoML Benchmark for Balanced Accuracy and ROC AUC.

    The files of this figshare item include data that was collected for the paper: CMA-ES for Post Hoc Ensembling in AutoML: A Great Success and Salvageable Failure, Lennart Purucker, Joeran Beel, Second International Conference on Automated Machine Learning, 2023.

    The data was stored and used with the assembled framework: https://github.com/ISG-Siegen/assembled.

    In detail, the data contains the predictions of base models on validation and test as produced by running AutoGluon for 4 hours. Such prediction data is included for each model produced by AutoGluon on each fold of 10-fold cross-validation on the 71 classification datasets from the AutoML Benchmark. The data exists for two metrics (ROC AUC and Balanced Accuracy). More details can be found in the paper.

    The data was collected by code created for the paper and is available in its reproducibility repository: https://doi.org/10.6084/m9.figshare.23609226.

    Its usage is intended for but not limited to using assembled to evaluate post hoc ensembling methods for AutoML.

    Details The link above points to a hosted server that facilitates the download. We opted for a hosted server, as we found no other suitable solution to share these large files (due to file size or storage limits) for a reasonable price. If you want to obtain the data in another way or know of a more suitable alternative, please contact Lennart Purucker.

    The link resolves to a directory containing the following:

    example_metatasks: contains an example metatask for test purposes before committing to downloading all files.
    metatasks_roc_auc.zip: The Metatasks obtained by running AutoGluon for ROC AUC. metatasks_bacc.zip: The Metatasks obtained by running AutoGluon for Balanced Accuracy.

    The size after unzipping is:

    metatasks_roc_auc.zip: ~85GB metatasks_bacc.zip: ~100GB

    The metatask .zip files contain 2 files per metatask. One .json file with metadata information and a .hdf file containing the prediction data. The details on how this should be read and used as a Metatask can be found in the assembled framework and the reproducibility repository. To obtain the data without Metataks, we advise looking at the file content and metadata individually or parsing them by using Metatasks first.

  9. D

    Data Collection and Labelling Report

    • marketresearchforecast.com
    doc, pdf, ppt
    Updated Mar 13, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Research Forecast (2025). Data Collection and Labelling Report [Dataset]. https://www.marketresearchforecast.com/reports/data-collection-and-labelling-33030
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Mar 13, 2025
    Dataset authored and provided by
    Market Research Forecast
    License

    https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The data collection and labeling market is experiencing robust growth, fueled by the escalating demand for high-quality training data in artificial intelligence (AI) and machine learning (ML) applications. The market, estimated at $15 billion in 2025, is projected to achieve a Compound Annual Growth Rate (CAGR) of 25% over the forecast period (2025-2033), reaching approximately $75 billion by 2033. This expansion is primarily driven by the increasing adoption of AI across diverse sectors, including healthcare (medical image analysis, drug discovery), automotive (autonomous driving systems), finance (fraud detection, risk assessment), and retail (personalized recommendations, inventory management). The rising complexity of AI models and the need for more diverse and nuanced datasets are significant contributing factors to this growth. Furthermore, advancements in data annotation tools and techniques, such as active learning and synthetic data generation, are streamlining the data labeling process and making it more cost-effective. However, challenges remain. Data privacy concerns and regulations like GDPR necessitate robust data security measures, adding to the cost and complexity of data collection and labeling. The shortage of skilled data annotators also hinders market growth, necessitating investments in training and upskilling programs. Despite these restraints, the market’s inherent potential, coupled with ongoing technological advancements and increased industry investments, ensures sustained expansion in the coming years. Geographic distribution shows strong concentration in North America and Europe initially, but Asia-Pacific is poised for rapid growth due to increasing AI adoption and the availability of a large workforce. This makes strategic partnerships and global expansion crucial for market players aiming for long-term success.

  10. A

    AI for Data Analytics Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated May 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). AI for Data Analytics Report [Dataset]. https://www.datainsightsmarket.com/reports/ai-for-data-analytics-493054
    Explore at:
    ppt, doc, pdfAvailable download formats
    Dataset updated
    May 31, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The AI for Data Analytics market is experiencing explosive growth, projected to reach a substantial size driven by the increasing volume and complexity of data, coupled with the need for faster, more accurate insights. The market's Compound Annual Growth Rate (CAGR) of 36.2% from 2019 to 2024 indicates a significant upward trajectory. While the provided 2025 market size of $3499 million serves as a strong baseline, we can extrapolate future growth based on this CAGR. Key drivers include the rising adoption of cloud-based solutions, the proliferation of big data technologies, and the growing demand for automation in data analysis across various industries like finance, healthcare, and retail. Furthermore, advancements in machine learning algorithms and deep learning techniques are fueling innovation, enabling more sophisticated predictive analytics and improved decision-making. The market is segmented by deployment model (cloud, on-premise), application (predictive analytics, descriptive analytics, prescriptive analytics), and industry vertical. Companies like IBM, Microsoft, Google, and others are actively investing in research and development, leading to continuous product enhancements and increased competition, which is further accelerating market expansion. The competitive landscape is highly dynamic, with established tech giants and emerging startups vying for market share. While the specific regional breakdown isn't provided, it is reasonable to assume that North America and Europe hold significant market shares, given the concentration of technology companies and high adoption rates in these regions. However, the market is also expanding rapidly in Asia-Pacific and other developing economies, due to increasing digitalization and investment in data infrastructure. Challenges like data security concerns, the need for skilled professionals, and the complexity of implementing AI solutions are acting as restraints. Nevertheless, the overall market outlook remains extremely positive, with continued high growth projected throughout the forecast period (2025-2033), driven by ongoing technological advancements and increasing reliance on data-driven decision-making across diverse sectors. This robust growth creates considerable opportunity for players throughout the value chain, from hardware and software providers to consulting and implementation services.

  11. Dataset: An Open Combinatorial Diffraction Dataset Including Consensus Human...

    • data.nist.gov
    • s.cnmilf.com
    • +1more
    Updated Oct 23, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Brian DeCost (2020). Dataset: An Open Combinatorial Diffraction Dataset Including Consensus Human and Machine Learning Labels with Quantified Uncertainty for Training New Machine Learning Models [Dataset]. http://doi.org/10.18434/mds2-2301
    Explore at:
    Dataset updated
    Oct 23, 2020
    Dataset provided by
    National Institute of Standards and Technologyhttp://www.nist.gov/
    Authors
    Brian DeCost
    License

    https://www.nist.gov/open/licensehttps://www.nist.gov/open/license

    Description

    The open dataset, software, and other files accompanying the manuscript "An Open Combinatorial Diffraction Dataset Including Consensus Human and Machine Learning Labels with Quantified Uncertainty for Training New Machine Learning Models," submitted for publication to Integrated Materials and Manufacturing Innovations. Machine learning and autonomy are increasingly prevalent in materials science, but existing models are often trained or tuned using idealized data as absolute ground truths. In actual materials science, "ground truth" is often a matter of interpretation and is more readily determined by consensus. Here we present the data, software, and other files for a study using as-obtained diffraction data as a test case for evaluating the performance of machine learning models in the presence of differing expert opinions. We demonstrate that experts with similar backgrounds can disagree greatly even for something as intuitive as using diffraction to identify the start and end of a phase transformation. We then use a logarithmic likelihood method to evaluate the performance of machine learning models in relation to the consensus expert labels and their variance. We further illustrate this method's efficacy in ranking a number of state-of-the-art phase mapping algorithms. We propose a materials data challenge centered around the problem of evaluating models based on consensus with uncertainty. The data, labels, and code used in this study are all available online at data.gov, and the interested reader is encouraged to replicate and improve the existing models or to propose alternative methods for evaluating algorithmic performance.

  12. n

    Data from: Probabilistic Machine Learning Methods for Spatio-Temporal Data

    • curate.nd.edu
    pdf
    Updated Nov 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Matthew Bonas (2024). Probabilistic Machine Learning Methods for Spatio-Temporal Data [Dataset]. http://doi.org/10.7274/25595235.v1
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Nov 11, 2024
    Dataset provided by
    University of Notre Dame
    Authors
    Matthew Bonas
    License

    Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
    License information was derived automatically

    Description

    This dissertation presents multiple novel methodological advancements in the realm of machine learning (ML) for spatio-temporal data applications. Traditional machine learning approaches typically have difficultly producing both accurate point predictions and adequate uncertainty quantification for these data, especially in instances where the data themselves are sampled at a fine temporal scale. This is due to the fact that inference on these complex ML models is notably difficult and can impose a significant computational burden. The challenge of forecasting spatio-temporal data is further heightened when attempting to ensure the forecast themselves obey any known physical laws which dictate or influence the underlying data structure.

    We explore the current challenges in properly quantifying the uncertainty of forecasts for spatio-temporal data applications stemming from contemporary ML models. Methods are introduced to not only calibrate the uncertainty estimates such that proper coverage is achieved but also so there is a realistic expansion of the uncertainty through time. These contemporary ML models are also adapted such that the physical processes present throughout that data are used to inform the learning procedures, so that the forecasts themselves are influenced to be more physically compliant. We demonstrate the power in combining ML models in an ensemble to improve model accuracy in predicting nonstationary, complex temporal data. Finally, a general comparison is made to explore the benefits and drawbacks of ML approaches to time-series forecasting versus the popular and standard statistical approaches, and as a guide to explain how these newfound advanced ML modelling techniques are not necessarily meant to act as a universal best approach for prediction and forecasting.

  13. Machine Learning market size was USD 24,345.76 million in 2021!

    • cognitivemarketresearch.com
    pdf,excel,csv,ppt
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cognitive Market Research, Machine Learning market size was USD 24,345.76 million in 2021! [Dataset]. https://www.cognitivemarketresearch.com/machine-learning-market-report
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset authored and provided by
    Cognitive Market Research
    License

    https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy

    Time period covered
    2021 - 2033
    Area covered
    Global
    Description

    As per Cognitive Market Research's latest published report, the Global Machine Learning market size was USD 24,345.76 million in 2021 and it is forecasted to reach USD 206,235.41 million by 2028. Machine Learning Industry's Compound Annual Growth Rate will be 42.64% from 2023 to 2030. What is Driving Machine Learning Market?

    COVID-19 Impact:
    

    Similar to other industries, the covid-19 situation has affected the machine learning industry. Despite the dire conditions and uncertain collapse, some industries have continued to grow during the pandemic. During covid 19, the machine learning market remains stable with positive growth and opportunities. The global machine learning market faces minimal impact compared to some other industries.The growth of the global machine learning market has stagnated owing to automation developments and technological advancements. Pre-owned machines and smartphones widely used for remote work are leading to positive growth of the market. Several industries have transplanted the market progress using new technologies of machine learning systems. June 2020, DeCaprio et al. Published COVID-19 pandemic risk research is still in its early stages. In the report, DeCaprio et al. mentions that it has used machine learning to build an initial vulnerability index for the coronavirus. The lab further noted that as more data and results from ongoing research become available, it will be able to see more practical applications of machine learning in predicting infection risk.

    Machine Learning Market Drivers:
    

    Growing use of the technology and automation is a major factor is expected to drive the growth of the global machine learning market. Increasing need of machine learning from the media and entertainment, automobiles, IT and telecommunications, education, and other government and non-government sectors are factors driving the growth of the global machine learning market over the forecast period. In October 2022, Bharat Electronics (BEL) announced the signing of an agreement with Meslova to develop products and services in artificial intelligence and machine learning to develop air defense (AD) systems and platforms for the armed forces. Meslova uses artificial intelligence to develop domain-specific products and applications for some of the largest governments and corporations. Increasing technology advancements to higher accuracy of systems coupled with demand of various system based on machine learning such as voice recognition systems, image recognition system and recommender systems which is expected to support the growth in the near future. Furthermore, introduction of self-driving automobiles and significant expenditures in AI is another factor expected to fuel the growth of the global market over the forecast year.

    Machine Learning Market: Restraints
    

    The lack of skilled and experienced employees in the machine learning is a major factor expected to decline growth of the target market to a certain extent. In addition, network hardware issues, delicate data security, and ethical allegations in the algorithms is expected to hamper growth of the potential market in the near future. However, the high deployment cost is another factor that could pose as a hindrance in the growth of global market.

    Machine Learning Market: Opportunities
    

    During covid 19, industries and organizations in almost all regions are using remote working and working from home. It increases the use of machines, smartphones and other technological devices. Schools, colleges, government and non-government sectors are using machines developed by AI systems. Therefore, according to the machine learning market forecast report, the technology and machine learning are in high demand and will increase in the future. Organizations and other organizational sectors are investing more in building A-based technologies to benefit the global market. These are the major machine learning market opportunities to watch during the forecast period. What is Machine Learning?

    Machine learning (ML) is a subdivision of artificial intelligence (AI). It is a method of data analysis that teaches computers to learn from algorithms and data, quickly mimicking the way humans learn. The technique focuses primarily on developing a program that can access data and use it to learn for itself. Machine learning enables machines to learn directly from data, experience, and examples. Additionally, ma...

  14. Machine Learning Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Machine Learning Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/machine-learning-market
    Explore at:
    csv, pptx, pdfAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Machine Learning Market Outlook



    The global machine learning market is projected to witness a remarkable growth trajectory, with the market size estimated to reach USD 21.17 billion in 2023 and anticipated to expand to USD 209.91 billion by 2032, growing at a compound annual growth rate (CAGR) of 29.2% over the forecast period. This extraordinary growth is primarily propelled by the escalating demand for artificial intelligence-driven solutions across various industries. As businesses seek to leverage machine learning for improving operational efficiency, enhancing customer experience, and driving innovation, the market is poised to expand rapidly. Key factors contributing to this growth include advancements in data generation, increasing computational power, and the proliferation of big data analytics.



    A pivotal growth factor for the machine learning market is the ongoing digital transformation across industries. Enterprises globally are increasingly adopting machine learning technologies to optimize their operations, streamline processes, and make data-driven decisions. The healthcare sector, for example, leverages machine learning for predictive analytics to improve patient outcomes, while the finance sector uses machine learning algorithms for fraud detection and risk assessment. The retail industry is also utilizing machine learning for personalized customer experiences and inventory management. The ability of machine learning to analyze vast amounts of data in real-time and provide actionable insights is fueling its adoption across various applications, thereby driving market growth.



    Another significant growth driver is the increasing integration of machine learning with the Internet of Things (IoT). The convergence of these technologies enables the creation of smarter, more efficient systems that enhance operational performance and productivity. In manufacturing, for instance, IoT devices equipped with machine learning capabilities can predict equipment failures and optimize maintenance schedules, leading to reduced downtime and costs. Similarly, in the automotive industry, machine learning algorithms are employed in autonomous vehicles to process and analyze sensor data, improving navigation and safety. The synergistic relationship between machine learning and IoT is expected to further propel market expansion during the forecast period.



    Moreover, the rising investments in AI research and development by both public and private sectors are accelerating the advancement and adoption of machine learning technologies. Governments worldwide are recognizing the potential of AI and machine learning to transform industries, leading to increased funding for research initiatives and innovation centers. Companies are also investing heavily in developing cutting-edge machine learning solutions to maintain a competitive edge. This robust investment landscape is fostering an environment conducive to technological breakthroughs, thereby contributing to the growth of the machine learning market.



    Supervised Learning, a subset of machine learning, plays a crucial role in the advancement of AI-driven solutions. It involves training algorithms on a labeled dataset, allowing the model to learn and make predictions or decisions based on new, unseen data. This approach is particularly beneficial in applications where the desired output is known, such as in classification or regression tasks. For instance, in the healthcare sector, supervised learning algorithms are employed to analyze patient data and predict health outcomes, thereby enhancing diagnostic accuracy and treatment efficacy. Similarly, in finance, these algorithms are used for credit scoring and fraud detection, providing financial institutions with reliable tools for risk assessment. As the demand for precise and efficient AI applications grows, the significance of supervised learning in driving innovation and operational excellence across industries becomes increasingly evident.



    From a regional perspective, North America holds a dominant position in the machine learning market due to the early adoption of advanced technologies and the presence of major technology companies. The region's strong focus on R&D and innovation, coupled with a well-established IT infrastructure, further supports market growth. In addition, Asia Pacific is emerging as a lucrative market for machine learning, driven by rapid industrialization, increasing digitalization, and government initiatives promoting AI adoption. The region is witnessing significant investments in AI technologies, particu

  15. Machine Learning model data

    • ecmwf.int
    Updated Jan 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    European Centre for Medium-Range Weather Forecasts (2023). Machine Learning model data [Dataset]. https://www.ecmwf.int/en/forecasts/dataset/machine-learning-model-data
    Explore at:
    Dataset updated
    Jan 1, 2023
    Dataset authored and provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    three of these models are available:

  16. A

    AI Training Dataset Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Apr 30, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). AI Training Dataset Report [Dataset]. https://www.datainsightsmarket.com/reports/ai-training-dataset-1501897
    Explore at:
    pdf, doc, pptAvailable download formats
    Dataset updated
    Apr 30, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The AI training dataset market is experiencing robust growth, driven by the increasing adoption of artificial intelligence across diverse sectors. The market's expansion is fueled by the urgent need for high-quality data to train sophisticated AI models capable of handling complex tasks. Key application areas, such as autonomous vehicles in the automotive industry, advanced medical diagnosis in healthcare, and personalized experiences in retail and e-commerce, are significantly contributing to this market's upward trajectory. The prevalence of text, image/video, and audio data types further diversifies the market, offering opportunities for specialized dataset providers. While the market faces challenges like data privacy concerns and the high cost of data annotation, the overall trajectory remains positive, with a projected Compound Annual Growth Rate (CAGR) exceeding 20% for the forecast period (2025-2033). This growth is further supported by advancements in deep learning techniques that demand increasingly larger and more diverse datasets for optimal performance. Leading companies like Google, Amazon, and Microsoft are actively investing in this space, expanding their dataset offerings and fostering competition within the market. Furthermore, the emergence of specialized data annotation providers caters to the specific needs of various industries, ensuring accurate and reliable data for AI model development. The geographic distribution of the market reveals strong presence in North America and Europe, driven by early adoption of AI technologies and the presence of major technology players. However, Asia Pacific is projected to witness significant growth in the coming years, propelled by increasing digitalization and a burgeoning AI ecosystem in countries like China and India. Government initiatives promoting AI development in various regions are also expected to stimulate demand for high-quality training datasets. While challenges related to data security and ethical considerations remain, the long-term outlook for the AI training dataset market is exceptionally promising, fueled by the continued evolution of artificial intelligence and its increasing integration into various aspects of modern life. The market segmentation by application and data type allows for granular analysis and targeted investments for businesses operating in this rapidly expanding sector.

  17. D

    Data Labeling Market Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Mar 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Data Labeling Market Report [Dataset]. https://www.datainsightsmarket.com/reports/data-labeling-market-20383
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Mar 8, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The data labeling market is experiencing robust growth, projected to reach $3.84 billion in 2025 and maintain a Compound Annual Growth Rate (CAGR) of 28.13% from 2025 to 2033. This expansion is fueled by the increasing demand for high-quality training data across various sectors, including healthcare, automotive, and finance, which heavily rely on machine learning and artificial intelligence (AI). The surge in AI adoption, particularly in areas like autonomous vehicles, medical image analysis, and fraud detection, necessitates vast quantities of accurately labeled data. The market is segmented by sourcing type (in-house vs. outsourced), data type (text, image, audio), labeling method (manual, automatic, semi-supervised), and end-user industry. Outsourcing is expected to dominate the sourcing segment due to cost-effectiveness and access to specialized expertise. Similarly, image data labeling is likely to hold a significant share, given the visual nature of many AI applications. The shift towards automation and semi-supervised techniques aims to improve efficiency and reduce labeling costs, though manual labeling will remain crucial for tasks requiring high accuracy and nuanced understanding. Geographical distribution shows strong potential across North America and Europe, with Asia-Pacific emerging as a key growth region driven by increasing technological advancements and digital transformation. Competition in the data labeling market is intense, with a mix of established players like Amazon Mechanical Turk and Appen, alongside emerging specialized companies. The market's future trajectory will likely be shaped by advancements in automation technologies, the development of more efficient labeling techniques, and the increasing need for specialized data labeling services catering to niche applications. Companies are focusing on improving the accuracy and speed of data labeling through innovations in AI-powered tools and techniques. Furthermore, the rise of synthetic data generation offers a promising avenue for supplementing real-world data, potentially addressing data scarcity challenges and reducing labeling costs in certain applications. This will, however, require careful attention to ensure that the synthetic data generated is representative of real-world data to maintain model accuracy. This comprehensive report provides an in-depth analysis of the global data labeling market, offering invaluable insights for businesses, investors, and researchers. The study period covers 2019-2033, with 2025 as the base and estimated year, and a forecast period of 2025-2033. We delve into market size, segmentation, growth drivers, challenges, and emerging trends, examining the impact of technological advancements and regulatory changes on this rapidly evolving sector. The market is projected to reach multi-billion dollar valuations by 2033, fueled by the increasing demand for high-quality data to train sophisticated machine learning models. Recent developments include: September 2024: The National Geospatial-Intelligence Agency (NGA) is poised to invest heavily in artificial intelligence, earmarking up to USD 700 million for data labeling services over the next five years. This initiative aims to enhance NGA's machine-learning capabilities, particularly in analyzing satellite imagery and other geospatial data. The agency has opted for a multi-vendor indefinite-delivery/indefinite-quantity (IDIQ) contract, emphasizing the importance of annotating raw data be it images or videos—to render it understandable for machine learning models. For instance, when dealing with satellite imagery, the focus could be on labeling distinct entities such as buildings, roads, or patches of vegetation.October 2023: Refuel.ai unveiled a new platform, Refuel Cloud, and a specialized large language model (LLM) for data labeling. Refuel Cloud harnesses advanced LLMs, including its proprietary model, to automate data cleaning, labeling, and enrichment at scale, catering to diverse industry use cases. Recognizing that clean data underpins modern AI and data-centric software, Refuel Cloud addresses the historical challenge of human labor bottlenecks in data production. With Refuel Cloud, enterprises can swiftly generate the expansive, precise datasets they require in mere minutes, a task that traditionally spanned weeks.. Key drivers for this market are: Rising Penetration of Connected Cars and Advances in Autonomous Driving Technology, Advances in Big Data Analytics based on AI and ML. Potential restraints include: Rising Penetration of Connected Cars and Advances in Autonomous Driving Technology, Advances in Big Data Analytics based on AI and ML. Notable trends are: Healthcare is Expected to Witness Remarkable Growth.

  18. D

    Notable AI Models

    • epoch.ai
    csv
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Epoch AI, Notable AI Models [Dataset]. https://epoch.ai/data/notable-ai-models
    Explore at:
    csvAvailable download formats
    Dataset authored and provided by
    Epoch AI
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Global
    Variables measured
    https://epoch.ai/data/notable-ai-models-documentation#records
    Measurement technique
    https://epoch.ai/data/notable-ai-models-documentation#records
    Description

    Our most comprehensive database of AI models, containing over 800 models that are state of the art, highly cited, or otherwise historically notable. It tracks key factors driving machine learning progress and includes over 300 training compute estimates.

  19. d

    Replication Data for: The MIDAS Touch: Accurate and Scalable Missing-Data...

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lall, Ranjit; Robinson, Thomas (2023). Replication Data for: The MIDAS Touch: Accurate and Scalable Missing-Data Imputation with Deep Learning [Dataset]. http://doi.org/10.7910/DVN/UPL4TT
    Explore at:
    Dataset updated
    Nov 23, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Lall, Ranjit; Robinson, Thomas
    Description

    Replication and simulation reproduction materials for the article "The MIDAS Touch: Accurate and Scalable Missing-Data Imputation with Deep Learning." Please see the README file for a summary of the contents and the Replication Guide for a more detailed description. Article abstract: Principled methods for analyzing missing values, based chiefly on multiple imputation, have become increasingly popular yet can struggle to handle the kinds of large and complex data that are also becoming common. We propose an accurate, fast, and scalable approach to multiple imputation, which we call MIDAS (Multiple Imputation with Denoising Autoencoders). MIDAS employs a class of unsupervised neural networks known as denoising autoencoders, which are designed to reduce dimensionality by corrupting and attempting to reconstruct a subset of data. We repurpose denoising autoencoders for multiple imputation by treating missing values as an additional portion of corrupted data and drawing imputations from a model trained to minimize the reconstruction error on the originally observed portion. Systematic tests on simulated as well as real social science data, together with an applied example involving a large-scale electoral survey, illustrate MIDAS's accuracy and efficiency across a range of settings. We provide open-source software for implementing MIDAS.

  20. Z

    Development and validation of a machine learning model for use as an...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jun 15, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anna Stachel (2020). Development and validation of a machine learning model for use as an automated artificial intelligence tool to predict mortality risk in patients with COVID-19 [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_3893845
    Explore at:
    Dataset updated
    Jun 15, 2020
    Dataset authored and provided by
    Anna Stachel
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Background

    New York City quickly became an epicenter of the COVID-19 pandemic. Due to a sudden and massive increase in patients during COVID-19 pandemic, healthcare providers incurred an exponential increase in workload which created a strain on the staff and limited resources. As this is a new infection, predictors of morbidity and mortality are not well characterized.

    Methods

    We developed a prediction model to predict patients at risk for mortality using only laboratory, vital and demographic information readily available in the electronic health record on more than 3000 hospital admissions with COVID-19. A variable importance algorithm was used for interpretability and understanding of performance and predictors.

    Findings

    We built a model with 84-97% accuracy to identify predictors and patients with high risk of mortality, and developed an automated artificial intelligence (AI) notification tool that does not require manual calculation by the busy clinician. Oximetry, respirations, blood urea nitrogen, lymphocyte percent, calcium, troponin and neutrophil percentage were important features and key ranges were identified that contributed to a 50% increase in patients’ mortality prediction score. With an increasing negative predictive value (NPV) starting 0.90 after the second day of admission, we are able more confidently able identify likely survivors. This study serves as a use case of a model with visualizations to aide clinicians with a better understanding of the model and predictors of mortality. Additionally, an example of the operationalization of the model via an AI notification tool is illustrated.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Technavio (2017). US Deep Learning Market Analysis, Size, and Forecast 2025-2029 [Dataset]. https://www.technavio.com/report/us-deep-learning-market-industry-analysis
Organization logo

US Deep Learning Market Analysis, Size, and Forecast 2025-2029

Explore at:
Dataset updated
Mar 24, 2017
Dataset provided by
TechNavio
Authors
Technavio
Time period covered
2021 - 2025
Area covered
United States
Description

Snapshot img

US Deep Learning Market Size 2025-2029

The deep learning market size in US is forecast to increase by USD 5.02 billion at a CAGR of 30.1% between 2024 and 2029.

The deep learning market is experiencing robust growth, driven by the increasing adoption of artificial intelligence (AI) in various industries for advanced solutioning. This trend is fueled by the availability of vast amounts of data, which is a key requirement for deep learning algorithms to function effectively. Industry-specific solutions are gaining traction, as businesses seek to leverage deep learning for specific use cases such as image and speech recognition, fraud detection, and predictive maintenance. Alongside, intuitive data visualization tools are simplifying complex neural network outputs, helping stakeholders understand and validate insights. 


However, challenges remain, including the need for powerful computing resources, data privacy concerns, and the high cost of implementing and maintaining deep learning systems. Despite these hurdles, the market's potential for innovation and disruption is immense, making it an exciting space for businesses to explore further. Semi-supervised learning, data labeling, and data cleaning facilitate efficient training of deep learning models. Cloud analytics is another significant trend, as companies seek to leverage cloud computing for cost savings and scalability. 

What will be the Size of the market During the Forecast Period?

Request Free Sample

Deep learning, a subset of machine learning, continues to shape industries by enabling advanced applications such as image and speech recognition, text generation, and pattern recognition. Reinforcement learning, a type of deep learning, gains traction, with deep reinforcement learning leading the charge. Anomaly detection, a crucial application of unsupervised learning, safeguards systems against security vulnerabilities. Ethical implications and fairness considerations are increasingly important in deep learning, with emphasis on explainable AI and model interpretability. Graph neural networks and attention mechanisms enhance data preprocessing for sequential data modeling and object detection. Time series forecasting and dataset creation further expand deep learning's reach, while privacy preservation and bias mitigation ensure responsible use.

In summary, deep learning's market dynamics reflect a constant pursuit of innovation, efficiency, and ethical considerations. The Deep Learning Market in the US is flourishing as organizations embrace intelligent systems powered by supervised learning and emerging self-supervised learning techniques. These methods refine predictive capabilities and reduce reliance on labeled data, boosting scalability. BFSI firms utilize AI image recognition for various applications, including personalizing customer communication, maintaining a competitive edge, and automating repetitive tasks to boost productivity. Sophisticated feature extraction algorithms now enable models to isolate patterns with high precision, particularly in applications such as image classification for healthcare, security, and retail.

How is this market segmented and which is the largest segment?

The market research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.

Application

  Image recognition
  Voice recognition
  Video surveillance and diagnostics
  Data mining


Type

  Software
  Services
  Hardware


End-user

  Security
  Automotive
  Healthcare
  Retail and commerce
  Others


Geography

  North America

    US

By Application Insights

The Image recognition segment is estimated to witness significant growth during the forecast period. In the realm of artificial intelligence (AI) and machine learning, image recognition, a subset of computer vision, is gaining significant traction. This technology utilizes neural networks, deep learning models, and various machine learning algorithms to decipher visual data from images and videos. Image recognition is instrumental in numerous applications, including visual search, product recommendations, and inventory management. Consumers can take photographs of products to discover similar items, enhancing the online shopping experience. In the automotive sector, image recognition is indispensable for advanced driver assistance systems (ADAS) and autonomous vehicles, enabling the identification of pedestrians, other vehicles, road signs, and lane markings.

Furthermore, image recognition plays a pivotal role in augmented reality (AR) and virtual reality (VR) applications, where it tracks physical objects and overlays digital content onto real-world scenarios. The model training process involves the backpropagation algorithm, which calculates

Search
Clear search
Close search
Google apps
Main menu