68 datasets found
  1. V

    Rural & Statewide GIS/Data Needs (HEPGIS) - 8-Hour Ozone

    • data.virginia.gov
    • data.transportation.gov
    • +1more
    html
    Updated May 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S Department of Transportation (2024). Rural & Statewide GIS/Data Needs (HEPGIS) - 8-Hour Ozone [Dataset]. https://data.virginia.gov/dataset/rural-statewide-gis-data-needs-hepgis-8-hour-ozone
    Explore at:
    htmlAvailable download formats
    Dataset updated
    May 8, 2024
    Dataset provided by
    Federal Highway Administration
    Authors
    U.S Department of Transportation
    Description

    HEPGIS is a web-based interactive geographic map server that allows users to navigate and view geo-spatial data, print maps, and obtain data on specific features using only a web browser. It includes geo-spatial data used for transportation planning. HEPGIS previously received ARRA funding for development of Economically distressed Area maps. It is also being used to demonstrate emerging trends to address MPO and statewide planning regulations/requirements , enhanced National Highway System, Primary Freight Networks, commodity flows and safety data . HEPGIS has been used to help implement MAP-21 regulations and will help implement the Grow America Act, particularly related to Ladder of Opportunities and MPO reforms.

  2. A

    Total Cloud Cover (oktas) - Scale Band 8

    • data.amerigeoss.org
    csv, esri rest +5
    Updated Jul 5, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmeriGEO ArcGIS (2017). Total Cloud Cover (oktas) - Scale Band 8 [Dataset]. https://data.amerigeoss.org/pl/dataset/total-cloud-cover-oktas-scale-band-81
    Explore at:
    kml, csv, ogc wms, html, zip, esri rest, geojsonAvailable download formats
    Dataset updated
    Jul 5, 2017
    Dataset provided by
    AmeriGEO ArcGIS
    Description
    Last Updated: January 2015
    Map Information

    This nowCOAST time-enabled map service provides map depicting the latest surface weather and marine weather observations at observing sites using the international station model. The station model is method for representing information collected at an observing station using symbols and numbers. The station model depicts current weather conditions, cloud cover, wind speed, wind direction, visibility, air temperature, dew point temperature, sea surface water temperature, significant wave height, air pressure adjusted to mean sea level, and the change in air pressure over the last 3 hours. The circle in the model is centered over the latitude and longitude coordinates of the station. The total cloud cover is expressed as a fraction of cloud covering the sky and is indicated by the amount of circle filled in. (Cloud cover is not presently displayed due to a problem with the source data. Present weather information is also not available for display at this time.) Wind speed and direction are represented by a wind barb whose line extends from the cover cloud circle towards the direction from which the wind is blowing. The short lines or flags coming off the end of the long line are called barbs. The barb indicates the wind speed in knots. Each normal barb represents 10 knots, while short barbs indicate 5 knots. A flag represents 50 knots. If there is no wind barb depicted, an outer circle around the cloud cover symbol indicates calm winds. The map of observations are updated in the nowCOAST map service approximately every 10 minutes. However, since the reporting frequency varies by network or station, the observation at a particular station may have not updated and may not update until after the next hour. For more detailed information about the update schedule, please see: http://new.nowcoast.noaa.gov/help/#section=updateschedule

    Background Information

    The maps of near-real-time surface weather and ocean observations are based on non-restricted data obtained from the NWS Family of Services courtesy of NESDIS/OPSD and also the NWS Meteorological Assimilation Data Ingest System (MADIS). The data includes observations from terrestrial and maritime observing from the U.S.A. and other countries. For terrestrial networks, the platforms including but not limited to ASOS, AWOS, RAWS, non-automated stations, U.S. Climate Reference Networks, many U.S. Geological Survey Stations via NWS HADS, several state DOT Road Weather Information Systems, and U.S. Historical Climatology Network-Modernization. For over maritime areas, the platforms include NOS/CO-OPS National Water Level Observation Network (NWLON), NOS/CO-OPS Physical Oceanographic Observing Network (PORTS), NWS/NDBC Fixed Buoys, NDBC Coastal-Marine Automated Network (C-MAN), drifting buoys, ferries, Regional Ocean Observing System (ROOS) coastal stations and buoys, and ships participating in the Voluntary Ship Observing (VOS) Program. Observations from MADIS are updated approximately every 10 minutes in the map service and those from NESDIS are updated every hour. However, not all stations report that frequently. Many stations only report once per hour sometime between 15 minutes before the hour and 30 minutes past the hour. For these stations, new observations will not appear until 22 minutes past top of the hour for land-based stations and 32 minutes past the top of the hour for maritime stations.

    Time Information

    This map is time-enabled, meaning that each individual layer contains time-varying data and can be utilized by clients capable of making map requests that include a time component.

    This particular service can be queried with or without the use of a time component. If the time parameter is specified in a request, the data or imagery most relevant to the provided time value, if any, will be returned. If the time parameter is not specified in a request, the latest data or imagery valid for the present system time will be returned to the client. If the time parameter is not specified and no data or imagery is available for the present time, no data will be returned.

    In addition to ArcGIS Server REST access, time-enabled OGC WMS 1.3.0 access is also provided by this service.

    Due to software limitations, the time extent of the service and map layers displayed below does not provide the most up-to-date start and end times of available data. Instead, users have three options for determining the latest time information about the service:

    1. Issue a returnUpdates=true request for an individual layer or for the service itself, which will return the current start and end times of available data, in epoch time format (milliseconds since 00:00 January 1, 1970). To see an example, click on the "Return Updates" link at the bottom of this page under "Supported Operations". Refer to the ArcGIS REST API Map Service Documentation for more information.
    2. Issue an Identify (ArcGIS REST) or GetFeatureInfo (WMS) request against the proper layer corresponding with the target dataset. For raster data, this would be the "Image Footprints with Time Attributes" layer in the same group as the target "Image" layer being displayed. For vector (point, line, or polygon) data, the target layer can be queried directly. In either case, the attributes returned for the matching raster(s) or vector feature(s) will include the following:
      • validtime: Valid timestamp.
      • starttime: Display start time.
      • endtime: Display end time.
      • reftime: Reference time (sometimes reffered to as issuance time, cycle time, or initialization time).
      • projmins: Number of minutes from reference time to valid time.
      • desigreftime: Designated reference time; used as a common reference time for all items when individual reference times do not match.
      • desigprojmins: Number of minutes from designated reference time to valid time.
    3. Query the nowCOAST LayerInfo web service, which has been created to provide additional information about each data layer in a service, including a list of all available "time stops" (i.e. "valid times"), individual timestamps, or the valid time of a layer's latest available data (i.e. "Product Time"). For more information about the LayerInfo web service, including examples of various types of requests, refer to the nowCOAST help documentation at: http://new.nowcoast.noaa.gov/help/#section=layerinfo
    References
  3. National Weather Service Smoke Forecast

    • data-napsg.opendata.arcgis.com
    • prep-response-portal.napsgfoundation.org
    • +16more
    Updated Aug 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). National Weather Service Smoke Forecast [Dataset]. https://data-napsg.opendata.arcgis.com/maps/a98fd08751a5480c898b7cebe38807f4
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This map displays projected visible surface smoke across the contiguous United States for the next 48 hours in 1 hour increments. It is updated every 24 hours by NWS. Concentrations are reported in micrograms per cubic meter.Where is the data coming from?The National Digital Guidance Database (NDGD) is a sister to the National Digital Forecast Database (NDFD). Information in NDGD may be used by NWS forecasters as guidance in preparing official NWS forecasts in NDFD. The experimental/guidance NDGD data is not an official NWS forecast product.Source: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndgd/GT.aq/AR.conus/ds.smokes01.binSource data archive can be found here: https://www.ncei.noaa.gov/products/weather-climate-models/national-digital-guidance-database look for 'LXQ...' files by date. These are the Binary GRIB2 files that can be decoded via DeGRIB tool.Where can I find other NDGD data?The Source data is downloaded and parsed using the Aggregated Live Feeds methodology to return information that can be served through ArcGIS Server as a map service or used to update Hosted Feature Services in Online or Enterprise.What can you do with this layer?This map service is suitable for data discovery and visualization. Identify features by clicking on the map to reveal the pre-configured pop-ups. View the time-enabled data using the time slider by Enabling Time Animation.RevisionsJuly 11, 2022: Feed updated to leverage forecast model change by NOAA, whereby the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) forecast model system was replaced with the Rapid Refresh (RAP) forecast model system. Key differences: higher accuracy with RAP now concentrated at 0-8 meter detail vs HYSPLIT at 0-100 meter; earlier data delivery by 6 hrs; forecast output extended to 51 hrs.This map is provided for informational purposes and is not monitored 24/7 for accuracy and currency.If you would like to be alerted to potential issues or simply see when this Service will update next, please visit our Live Feed Status Page!

  4. My Map Activity

    • library.ncge.org
    Updated Jul 27, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NCGE (2021). My Map Activity [Dataset]. https://library.ncge.org/documents/NCGE::my-map-activity--1/about
    Explore at:
    Dataset updated
    Jul 27, 2021
    Dataset provided by
    National Council for Geographic Educationhttp://www.ncge.org/
    Authors
    NCGE
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    Author: E Gunderson, educator, Minnesota Alliance for Geographic EducationGrade/Audience: grade 8, high schoolResource type: lessonSubject topic(s): gisRegion: united statesStandards: Minnesota Social Studies Standards

    Standard 1. People use geographic representations and geospatial technologies to acquire, process and report information within a spatial context.Objectives: Students will be able to:

    1. Create a custom map using Google Maps
    2. Collect and plot data using Google MapsSummary: Students will learn the basics of Google Maps while using geospatial data to create their neighborhood map with the places they spend time. They will also collect data of their choice from another source (website, book, personal life) and plot the data using Google Maps.
  5. U

    USA National Weather Service Precipitation Forecast

    • data.unep.org
    • hub.arcgis.com
    Updated Dec 9, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN World Environment Situation Room (2022). USA National Weather Service Precipitation Forecast [Dataset]. https://data.unep.org/app/dataset/wesr-arcgis-wm-usa-national-weather-service-precipitation-forecast
    Explore at:
    Dataset updated
    Dec 9, 2022
    Dataset provided by
    UN World Environment Situation Room
    Area covered
    United States
    Description

    This map displays projected visible surface smoke across the contiguous United States for the next 48 hours in 1 hour increments. It is updated every 24 hours by NWS. Concentrations are reported in micrograms per cubic meter.Where is the data coming from?The National Digital Guidance Database (NDGD) is a sister to the National Digital Forecast Database (NDFD). Information in NDGD may be used by NWS forecasters as guidance in preparing official NWS forecasts in NDFD. The experimental/guidance NDGD data is not an official NWS forecast product.Source: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndgd/GT.aq/AR.conus/ds.smokes01.binSource data archive can be found here: https://www.ncei.noaa.gov/products/weather-climate-models/national-digital-guidance-database look for 'LXQ...' files by date. These are the Binary GRIB2 files that can be decoded via DeGRIB tool.Where can I find other NDGD data?The Source data is downloaded and parsed using the Aggregated Live Feeds methodology to return information that can be served through ArcGIS Server as a map service or used to update Hosted Feature Services in Online or Enterprise.What can you do with this layer?This map service is suitable for data discovery and visualization. Identify features by clicking on the map to reveal the pre-configured pop-ups. View the time-enabled data using the time slider by Enabling Time Animation.RevisionsJuly 11, 2022: Feed updated to leverage forecast model change by NOAA, whereby the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) forecast model system was replaced with the Rapid Refresh (RAP) forecast model system. Key differences: higher accuracy with RAP now concentrated at 0-8 meter detail vs HYSPLIT at 0-100 meter; earlier data delivery by 6 hrs; forecast output extended to 51 hrs.This map is provided for informational purposes and is not monitored 24/7 for accuracy and currency.If you would like to be alerted to potential issues or simply see when this Service will update next, please visit our Live Feed Status Page!

  6. Climate Zones - DOE Building America Program

    • atlas.eia.gov
    Updated Aug 14, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Energy Information Administration (2020). Climate Zones - DOE Building America Program [Dataset]. https://atlas.eia.gov/datasets/eia::climate-zones-doe-building-america-program/
    Explore at:
    Dataset updated
    Aug 14, 2020
    Dataset provided by
    Energy Information Administrationhttp://www.eia.gov/
    Authors
    U.S. Energy Information Administration
    Area covered
    Description

    This map layer depicts the climate zone designations used by the U.S. Department of Energy Building America Program by county boundaries (generalized version). It is intended as an aid in helping builders to identify the appropriate climate designation for the counties in which they are building. The guide can be used in conjunction with guidance in the Building America Solution Center and the Best Practices builders’ guides produced by the DOE Building America Program to help builders determine which climate-specific guidance they should use. This data for this layer is taken from Building America Best Practices Series, Volume 7.3 - Guide to Determining Climate Regions by County. The eight U.S. Building America climate regions described here are based on the climate designations used by the International Energy Conservation Code (IECC) and the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). The IECC climate zone map was developed by DOE researchers at Pacific Northwest National Laboratory with input from Building America team members, in particular Joseph Lstiburek of Building Science Corporation.a,b The IECC map was developed to provide a simplified, consistent approach to defining climate for implementation of various codes; it was based on widely accepted classifications of world climates that have been applied in a variety of different disciplines. The PNNL-developed map was adopted by the IECC and was first included in the IECC in the 2004 Supplement to the IECC. It first appeared in ASHRAE 90.1 in the 2004 edition. The IECC map divided the United States into eight temperatureoriented climate zones. These zones are further divided into three moisture regimes designated A, B, and C. Thus the IECC map allows for up to 24 potential climate designations. In 2003, with direction from the Building America teams, researchers at DOE’s National Renewable Energy Laboratory simplified the IECC map for purposes of the Building America Program, into eight climate zones. For reporting purposes, these are further combined into five climate categories: Hot-humid,hot-dry/mixed drymixed-humidmarinecold/very coldsubarctic.The Building America and IECC climate maps are shown in Figures 1 and 2. The climate regions are described below. Climate zone boundaries follow county boundary lines. A listing of counties comprising each climate zone is provided below, beginning on page 5. The climate region definitions are based on heating degree days, average temperatures, and precipitation as follows:Hot-HumidA hot-humid climate is defined as a region that receives more than 20 inches (50 cm) of annual precipitation and where one or both of the following occur:• A 67°F (19.5°C) or higher wet bulb temperature for 3,000 or more hours during the warmest six consecutive months of the year; or• A 73°F (23°C) or higher wet bulb temperature for 1,500 or more hours during the warmest six consecutive months of the year.The Building America hot-humid climate zone includes the portions of IECC zones 1, 2, and 3 that are in the moist category (A) below the “warm-humid” line shown on the IECC map. Mixed-HumidA mixed-humid climate is defined as a region that receives more than 20 inches (50 cm) of annual precipitation, has approximately 5,400 heating degree days (65°F basis) or fewer, and where the average monthly outdoor temperature drops below 45°F (7°C) during the winter months.The Building America mixed-humid climate zone includes the portions of IECC zones 4 and 3 in category A above the “warmhumid” line. Hot-DryA hot-dry climate is defined as a region that receives less than 20 inches (50 cm) of annual precipitation and where the monthly average outdoor temperature remains above 45°F (7°C) throughout the year.The Building America hot-dry climate zone corresponds to the portions of IECC zones 2 and 3 in the dry category.Mixed-Dry A mixed-dry climate is defined as a region that receives less than 20 inches (50 cm) of annual precipitation, has approximately 5,400 heating degree days (65°F basis) or less, and where the average monthly outdoor temperature drops below 45°F (7°C) during the winter months.The Building America mixed-dry climate zone corresponds to IECC climate zone 4 B (dry).Cold A cold climate is defined as a region with between 5,400 and 9,000 heating degree days (65°F basis).The Building America cold climate corresponds to the IECC climate zones 5 and 6.Very-Cold A very cold climate is defined as a region with between 9,000 and 12,600 heating degree days (65°F basis).The Building America very cold climate corresponds to IECC climate zone 7.SubarcticA subarctic climate is defined as a region with 12,600 heating degree days (65° basis) or more. The only subarctic regions in the United States are in found Alaska, which is not shown in Figure 1.The Building America subarctic climate zone corresponds to IECC climate zone 8.Marine A marine climate is defined as a region that meets all of the following criteria: • A coldest month mean temperature between 27°F (-3°C) and 65°F (18°C)• A warmest month mean of less than 72°F (22°C)• At least 4 months with mean temperatures higher than 50°F (10°C)• A dry season in summer. The month with the heaviest precipitation in the cold season has at least three times as much precipitation as the month with the least precipitation in the rest of the year. The cold season is October through March in the Northern Hemisphere and April through September in the Southern Hemisphere.The Building America marine climate corresponds to those portions of IECC climate zones 3 and 4 located in the “C” moisture category. Building America and IECC Climate ZonesThe table below shows the relationship between the Building America and IECC climate zones.

    Building America
    IECC
    
    
    Subarctic
    Zone 8
    
    
    Very Cold
    Zone 7
    
    
    Cold
    Zone 5 and 6
    
    
    Mixed-Humid
    4A and 3A counties above warm-humid line
    
    
    Mixed-Dry
    Zone 4B
    
    
    Hot-Humid
    2A and 3A counties below warm-humid line
    
    
    Hot-Dry
    Zone 3B
    
    
    Marine
    All counties with a “C” moisture regime
    
  7. USA Storm Reports

    • prep-response-portal.napsgfoundation.org
    • disasterpartners.org
    • +9more
    Updated Jun 12, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2019). USA Storm Reports [Dataset]. https://prep-response-portal.napsgfoundation.org/maps/e109e8fd9c5a495c813b5cbaee9c7d9b
    Explore at:
    Dataset updated
    Jun 12, 2019
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This map contains continuously updated U.S. tornado reports, wind storm reports and hail storm reports. Click each feature to receive information about the specific location and read a short description about the issue.Now contains ALL available Incident Report types, for a total of 15, not just Hail; Wind; and Tornados.See new layer for details or Feature Layer Item with exclusive Past 24-Hour ALL Storm Reports Layer.Each layer is updated 4 times hourly from data provided by NOAA’s National Weather Service Storm Prediction Center.A full archive of storm events can be accessed from the NOAA National Centers for Environmental Information.SourceNOAA Storm Prediction Center https://www.spc.noaa.gov/climo/reportsNOAA ALL Storm Reports layer https://www.spc.noaa.gov/exper/reportsSample DataSee Sample Layer Item for sample data during inactive periods!Update FrequencyThe service is updated every 15 minutes using the Aggregated Live Feeds MethodologyArea CoveredCONUS (Contiguous United States)What can you do with this layer?This map service is suitable for data discovery and visualization.Change the symbology of each layer using single or bi-variate smart mapping. For instance, use size or color to indicate the intensity of a tornado.Click each feature to receive information about the specific location and read a short description about the issue.Query the attributes to show only specific event types or locations.Revisions:Aug 10, 2021: Updated Classic Layers to use new Symbols. Corrected Layer Order Presentation. Updated Thumbnail.Aug 8, 2021: Update to layer-popups, correcting link URLs. Expanded length of 'Comment' fields to 1kb of text. New Layer added that includes ALL available Incident Types and Age in 'Hours Old'.This map is provided for informational purposes and is not monitored 24/7 for accuracy and currency.If you would like to be alerted to potential issues or simply see when this service will update next, please visit our Live Feed Status Page.

  8. d

    Mule Deer Migration Corridors - Modoc Interstate CA and OR - 1999-2001,...

    • catalog.data.gov
    • data.cnra.ca.gov
    • +4more
    Updated Nov 27, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Fish and Wildlife (2024). Mule Deer Migration Corridors - Modoc Interstate CA and OR - 1999-2001, 2017-2020 [ds2894] [Dataset]. https://catalog.data.gov/dataset/mule-deer-migration-corridors-modoc-interstate-ca-and-or-1999-2001-2017-2020-ds2894-e65de
    Explore at:
    Dataset updated
    Nov 27, 2024
    Dataset provided by
    California Department of Fish and Wildlife
    Description

    The project leads for the collection of this data were Julie Garcia and Richard Shinn. Female mule deer were captured in February 2017 and equipped with satellite collars manufactured by Lotek. Location fixes were collected from these collars between 2017 and 2020. Additional GPS data was collected between 1999-2001 from deer captured in 1999. The earlier dataset was included in the analysis to supplement the small sample size of the 2017-2020 dataset. The data was collected from deer throughout Modoc County with a priority to ascertain general distributions, survival, and home range, and not to model migration routes, hence the low sample sizes. Deer with overlapping winter ranges were defined as from the same herd. The Modoc Interstate deer herd migrates from a winter range near Clear Lake Reservoir in Modoc County, California north into Oregon in Klamath and Lake counties for the summer. GPS locations were fixed at 12-hour intervals in the 2017-2020 dataset and 8-hour intervals in the 1999-2001 dataset. To improve the quality of the data set as per Bjørneraas et al. (2010), the GPS data were filtered prior to analysis to remove locations which were: i) further from either the previous point or subsequent point than an individual deer is able to travel in the elapsed time, ii) forming spikes in the movement trajectory based on outgoing and incoming speeds and turning angles sharper than a predefined threshold , or iii) fixed in 2D space and visually assessed as a bad fix by the analyst. The methodology used for this migration analysis allowed for the mapping of winter ranges and the identification and prioritization of migration corridors. Brownian Bridge Movement Models (BBMMs; Sawyer et al. 2009) were constructed with GPS collar data from 21 migrating deer, including 52 migration sequences. Resident deer with winter ranges overlapping those of migrant deer were removed from the analysis; only migrants were used in the mapping of corridors, stopovers, and winter ranges. GPS locations, date, time, and average location error were used as inputs in Migration Mapper. Sixteen migration sequences from 12 deer, with an average migration time of 23.89 days and an average migration distance of 69.71 km, were used from the 1999-2001 dataset. Thirty-six migration sequences from 9 deer, with an average migration time of 19.53 days and an average migration distance of 87.57 km, were used from the 2017-2020 dataset. Corridors and stopovers were prioritized based on the number of animals moving through a particular area. BBMMs were produced at a spatial resolution of 50 m using a sequential fix interval of less than 27 hours and a fixed motion variance of 1000. Winter range analyses were based on data from 20 individual deer and 32 wintering sequences using a fixed motion variance of 1000. Winter range designations for this herd would likely expand with a larger sample, filling in some of the gaps between winter range polygons in the map. Large water bodies were clipped from the final outputs.Corridors are visualized based on deer use per cell, with greater than or equal to 1 deer, greater than or equal to 3 deer (10% of the sample), and greater than or equal to 5 deer (20% of the sample) representing migration corridors, moderate use, and high use corridors, respectively. Stopovers were calculated as the top 10 percent of the population level utilization distribution during migrations and can be interpreted as high use areas. Stopover polygon areas less than 20,000 m2were removed, but remaining small stopovers may be interpreted as short-term resting sites, likely based on a small concentration of points from an individual animal. Winter range is visualized as the 50thpercentile contour of the winter range utilization distribution.

  9. A

    Tropical Cyclone Center Position Forecasts

    • data.amerigeoss.org
    • hurricane-tx-arcgisforem.hub.arcgis.com
    • +1more
    csv, esri rest +5
    Updated Sep 2, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA GeoPlatform (2020). Tropical Cyclone Center Position Forecasts [Dataset]. https://data.amerigeoss.org/he/dataset/tropical-cyclone-center-position-forecasts2
    Explore at:
    ogc wms, csv, kml, html, esri rest, zip, geojsonAvailable download formats
    Dataset updated
    Sep 2, 2020
    Dataset provided by
    NOAA GeoPlatform
    Description

    Map Information

    This nowCOAST time-enabled map service provides maps depicting the latest official NWS tropical cyclone forecast tracks and watches and warnings for all active systems in the Atlantic, Caribbean Sea, Gulf of Mexico, Eastern Pacific Ocean, and Central Pacific Ocean. The map layer displays the cyclone's present location, past locations (best track), maximum estimated sustained surface wind (MPH), wind gusts, mean sea level pressure (millibars), forecasts of the cyclone's surface positions, maximum sustained winds and gusts at 12, 24, 36, 48, 72, 96 and 120 hours, and uncertainty of the forecast track depicted as a cone. Best track information is available for all storms in the Atlantic, Caribbean Sea, Gulf of Mexico and Eastern Pacific Ocean but not for storms in the Central Pacific Ocean. The track forecasts are based on information from the NWS/National Hurricane Center (NHC) and NWS/Central Pacific Hurricane Center (CPHC) Tropical Cyclone Public Advisories. This map service is updated twice per hour in order to obtain and display the latest information from the regularly scheduled NHC tropical cyclone public advisories as well as any intermediate or special public advisories. For more detailed information about the update schedule, see:https://new.nowcoast.noaa.gov/help/#section=updateschedule

    Background Information

    The map service is updated twice per hour in order to obtain and display the latest information from the regularly scheduled NHC tropical cyclone public advisories as well as any intermediate or special public advisories. The regularly scheduled advisories are issued every six hours at 0300, 0900, 1500 and 2100 UTC, and intermediate public advisories are issued as needed. Public advisories for Atlantic tropical cyclones are normally issued every six hours at 5:00 AM EDT, 11:00 AM EDT, 5:00 PM EDT, and 11:00 PM EDT (or 4:00 AM EST, 10:00 AM EST, 4:00 PM EST, and 10:00 PM EST). Public advisories for Eastern Pacific tropical cyclones are normally issued every six hours at 2:00 AM PDT, 8:00 AM PDT, 2:00 PM PDT, and 8:00 PM PDT (or 1:00 AM PST, 7:00 AM PST, 1:00 PM PST, and 7:00 PM PST). Public advisories for Central Pacific tropical cyclones are issued every six hours at 5:00 AM HST, 11:00 AM HST, 5:00 PM HST, and 11:00 PM HST. Intermediate public advisories may be issued every three hours when coastal watches or warnings are in effect, or every two hours when coastal watches and warnings are in effect and land-based radars have identified a reliable storm center. Additionally, special public advisories may be issued at any time due to significant changes in warnings or with the tropical cyclone (e.g. intensity, direction of motion).

    The track and intensity forecasts represents the official forecast of center surface positions at 0-hour (initial location), 12, 24, 36, 48, 72, 96, and 120 hours as well as the connecting track. The international tropical cyclone symbols for Tropical Depression, Tropical Storm, or Hurricane are used to indicate the tropical cyclone category based on the NHC's forecast intensity at the different forecast projection hours. The labels of the predicted maximum sustained surface wind speed and gusts in knots, as well as Saffir-Simpson Category, for each of the 12 through 120 hour forecast center positions. In addition, the estimated observed maximum sustained surface wind speed, wind gusts, and lowest mean sea level pressure (MSLP, shown in millibars) of the initial (0-hour) position are also plotted on the map. NHC states that wind forecasts have an uncertainty near 20 knots each day. (The maximum sustained surface wind is defined as the highest 1-minute sustained surface wind speed occurring within the circulation of the tropical cyclone at the standard meteorological measurement height of 10 m (33 ft) in an unobstructed exposure. The predicted gust is the wind peak during a 3-5 second time period. The value of the maximum 3-second gust over a 1-minute period is on the order of 1.3 times (or 30% higher) than the 1-minute sustained wind speed.)

    The map service also provides maps of the "working best track" or "best track" for presently active tropical cyclones in the Atlantic, Caribbean Sea, Gulf of Mexico, and Eastern Pacific Oceans. This information is not presently available for cyclones in the Central Pacific Ocean from the CPHC. The best track information represents the forecasters' best estimates of the location, intensity, and size of a tropical cyclone while the cyclone is still an active weather system. According to the NHC, the "best track wind swath shows how the size of the storm has changed and the areas potentially affected so far by sustained winds of tropical storm force (34 knots), 50 knot, and hurricane force (64 knot) from a tropical cyclone. These data are based on the wind radii contained in the Automated Tropical Cyclone Forecasting (ATCF) system's working best track. Users are reminded that the best track wind radii represent the maximum possible extent of a given wind speed within particular quadrants around the tropical cyclone. As a result, not all locations falling within the swaths will have experienced the indicated sustained wind speeds. These data are intended for geographic display and analysis at the national level and for large regional areas. The data should be displayed and analyzed at scales appropriate for 1:2,000,000-scale data."


    The solid blue line represents the NHC forecast track from 0 to 72 hours and the dashed blue line indicates the forecast track from 72 to 120 hours. The track lines are provided as an aid in the visualization of official NHC track forecasts. Since there are an infinite number of ways to connect a set of forecast points and the motion of cyclones in between forecast projections, the lines should not be interpreted as representing a specific forecast for the cyclone location in between official forecast points. The second is that a tropical cyclone is not a point. The effects of a tropical cyclone can span many hundreds of miles from the system's center. The area experiencing tropical storm or hurricane winds can extend well beyond the greenish areas depicting the most likely track area of the center. In addition, the strength of winds can vary greatly in different quadrants of any tropical cyclone.

    The forecast uncertainty is conveyed by the track forecast "cone," frequently referred to as the Cone of Uncertainty. The cone represents the probable track of the center of a tropical cyclone. The greenish area depicts the track forecast uncertainty for days 1-3 of the forecast, while the clear area enclosed by a white outline depicts the uncertainty on days 4-5. NHC historical data indicate that the entire 5-day path of the center of the tropical cyclone will remain within the cone about 60-70% of the time. The cone is created by placing a set of imaginary circles along the forecast track at the 12, 24, 36, 48, 72, 96 and 120 hour forecast center positions, where the size of each circle is set so that it encloses 67% of the previous five years official forecast errors (NHC states that track errors have averaged near 225 nautical miles on Day 4 and 300 nautical miles on Day 5). The cone is then formed by smoothly connecting the area swept out by the set of circles.

    The tropical cyclone watches and warnings depict the geographic extent of tropical storm and hurricane watches and warnings along the immediate coastline using the following color scheme: hurricane warning (red), hurricane watch (pink), tropical storm warning (orange) or tropical storm watch (yellow). The criteria for the different types of watches and warnings are the following: Tropical Storm Watch - An announcement for specific coastal areas that tropical storm conditions (sustained surface winds within the range of 34 to 63 knots (39 to 73 mph or 63 to 118 km/hr) are possible within 36 hours. Tropical Storm Warning - A warning that sustained surface winds within the range of 34 to 63 knots (39 to 73 mph or 63 to 118 km/hr) associated with a tropical cyclone are expected in a specified coastal area within 24 hours or less. Hurricane Watch - An announcement for specific coastal areas that hurricane conditions (sustained surface winds of 64 knots [74 mph or 119 km/hr] or higher) are possible within 36 hours.
    Hurricane Warning - A warning that sustained winds of 64 knots (74 mph or 119 km/hr) or higher associated with a hurricane are expected in a specified coastal area in 24 hours or less. A hurricane warning can remain in effect when dangerously high water or a combination of dangerously high water and exceptionally high waves continue, even though winds may be less than hurricane force. The coastal areas placed under these watches or warnings are identified through the use of "breakpoints." A tropical cyclone breakpoint is defined as an agreed upon coastal location that can be chosen as one of two specific end points or designated places between which a tropical storm/hurricane watch/warning is in effect. NWS designates these locations along the U.S. East, Gulf, and California coasts, Puerto Rico, and Hawaii.

    Time Information

    This map is time-enabled, meaning that each individual layer contains time-varying data and can be utilized by clients capable of making map requests that include a time component.

    This particular service can be queried with or without the use of a time component. If the time parameter is specified in a request, the data or imagery most relevant to the provided time value, if any, will be returned. If the time parameter is not specified in a request, the latest

  10. Data from: Global Soil Types, 0.5-Degree Grid (Modified Zobler)

    • s.cnmilf.com
    • data.globalchange.gov
    • +4more
    Updated Jun 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ORNL_DAAC (2025). Global Soil Types, 0.5-Degree Grid (Modified Zobler) [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/global-soil-types-0-5-degree-grid-modified-zobler-9dd94
    Explore at:
    Dataset updated
    Jun 28, 2025
    Dataset provided by
    Oak Ridge National Laboratory Distributed Active Archive Center
    Description

    A global data set of soil types is available at 0.5-degree latitude by 0.5-degree longitude resolution. There are 106 soil units, based on Zobler?s (1986) assessment of the FAO/UNESCO Soil Map of the World. This data set is a conversion of the Zobler 1-degree resolution version to a 0.5-degree resolution. The resolution of the data set was not actually increased. Rather, the 1-degree squares were divided into four 0.5-degree squares with the necessary adjustment of continental boundaries and islands. The computer code used to convert the original 1-degree data to 0.5-degree is provided as a companion file. A JPG image of the data is provided in this document. The Zobler data (1-degree resolution) as distributed by Webb et al. (1993) [http://www.ngdc.noaa.gov/seg/eco/cdroms/gedii_a/datasets/a12/wr.htm#top] contains two columns, one column for continent and one column for soil type. The Soil Map of the World consists of 9 maps that represent parts of the world. The texture data that Webb et al.(1993) provided allowed for the fact that a soil type in one part of the world may have different properties than the same soil in a different part of the world. This continent-specific information is retained in this 0.5-degree resolution data set, as well as the soil type information which is the second column. A code was written (one2half.c) to take the file CONTIZOB.LER distributed by Webb et al. (1993) [http://www.ngdc.noaa.gov/seg/eco/cdroms/gedii_a/datasets/a12/wr.htm#top] and simply divide the 1-degree cells into quarters. This code also reads in a land/water file (land.wave) that specifies the cells that are land at 0.5 degrees. The code checks for consistency between the newly quartered map and the land/water map to which the quartered map is to be registered. If there is a discrepancy between the two, an attempt was made to make the two consistent using the following logic. If the cell is supposed to be water, it is forced to be water. If it is supposed to be land but was resolved to water at 1 degree, the code looks at the surrounding 8 cells and picks the most frequent soil type and assigns it to the cell. If there are no surrounding land cells then it is kept as water in the hopes that on the next pass one or more of the surrounding cells might be converted from water to a soil type. The whole map is iterated 5 times. The remaining cells that should be land but couldn't be determined from surrounding cells (mostly islands that are resolved at 0.5 degree but not at 1 degree) are printed out with coordinate information. A temporary map is output with -9 indicating where data is required. This is repeated for the continent code in CONTIZOB.LER as well. A separate map of the temporary continent codes is produced with -9 indicating required data. A nearly identical code (one2half.c) does the same for the continent codes. The printout allows one to consult the printed versions of the soil map and look up the soil type with the largest coverage in the 0.5-degree cell. The program manfix.c then will go through the temporary map and prompt for input to correct both the soil codes and the continent codes for the map. This can be done manually or by preparing a file of changes (new_fix.dat) and redirecting stdin. A new complete version of the map is outputted. This is in the form of the original CONTIZOB.LER file (contizob.half) but four times larger. Original documentation and computer codes prepared by Post et al. (1996) are provided as companion files with this data set. Image of 106 global soil types available at 0.5-degree by 0.5-degree resolution. Additional documentation from Zobler?s assessment of FAO soil units is available from the NASA Center for Scientific Information.

  11. d

    NOAA ALL Storm Reports (past week)

    • disasterpartners.org
    • prep-response-portal.napsgfoundation.org
    • +14more
    Updated Jun 12, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2019). NOAA ALL Storm Reports (past week) [Dataset]. https://www.disasterpartners.org/datasets/esri2::usa-storm-reports?layer=4
    Explore at:
    Dataset updated
    Jun 12, 2019
    Dataset authored and provided by
    Esri
    Area covered
    Description

    This map contains continuously updated U.S. tornado reports, wind storm reports and hail storm reports. Click each feature to receive information about the specific location and read a short description about the issue.Now contains ALL available Incident Report types, for a total of 15, not just Hail; Wind; and Tornados.See new layer for details or Feature Layer Item with exclusive Past 24-Hour ALL Storm Reports Layer.Each layer is updated 4 times hourly from data provided by NOAA’s National Weather Service Storm Prediction Center.A full archive of storm events can be accessed from the NOAA National Centers for Environmental Information.SourceNOAA Storm Prediction Center https://www.spc.noaa.gov/climo/reportsNOAA ALL Storm Reports layer https://www.spc.noaa.gov/exper/reportsSample DataSee Sample Layer Item for sample data during inactive periods!Update FrequencyThe service is updated every 15 minutes using the Aggregated Live Feeds MethodologyArea CoveredCONUS (Contiguous United States)What can you do with this layer?This map service is suitable for data discovery and visualization.Change the symbology of each layer using single or bi-variate smart mapping. For instance, use size or color to indicate the intensity of a tornado.Click each feature to receive information about the specific location and read a short description about the issue.Query the attributes to show only specific event types or locations.Revisions:Aug 10, 2021: Updated Classic Layers to use new Symbols. Corrected Layer Order Presentation. Updated Thumbnail.Aug 8, 2021: Update to layer-popups, correcting link URLs. Expanded length of 'Comment' fields to 1kb of text. New Layer added that includes ALL available Incident Types and Age in 'Hours Old'.This map is provided for informational purposes and is not monitored 24/7 for accuracy and currency.If you would like to be alerted to potential issues or simply see when this service will update next, please visit our Live Feed Status Page.

  12. n

    Coronavirus (Covid-19) Data in the United States

    • nytimes.com
    • openicpsr.org
    • +2more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html
    Explore at:
    Dataset provided by
    New York Times
    Description

    The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

    Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

    We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

    The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

  13. a

    Terrain: Slope Map

    • idaho-epscor-gem3-uidaho.hub.arcgis.com
    • uidaho.hub.arcgis.com
    Updated Jun 30, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of Idaho (2021). Terrain: Slope Map [Dataset]. https://idaho-epscor-gem3-uidaho.hub.arcgis.com/datasets/terrain-slope-map/about
    Explore at:
    Dataset updated
    Jun 30, 2021
    Dataset authored and provided by
    University of Idaho
    Area covered
    Description

    This map provides a colorized representation of slope, generated dynamically using server-side slope function on Terrain service. The degree of slope steepness is depicted by light to dark colors - flat surfaces as gray, shallow slopes as light yellow, moderate slopes as light orange and steep slopes as red-brown. A scaling is applied to slope values to generate appropriate visualization at each map scale. This service should only be used for visualization, such as a base layer in applications or maps. If access to non-scaled slope values is required, use the Slope Degrees or Slope percent functions, which return values from 0 to 90 degrees, or 0 to 1000%, respectively.What can you do with this layer?Use for Visualization: Yes. This colorized slope is appropriate for visualizing the steepness of the terrain at all map scales. This layer can be added to applications or maps to enhance contextual understanding. Use for Analysis: No. 8 bit color values returned by this service represent scaled slope values. For analysis with non-scaled values, use the Slope Degrees or Slope percent functions.For more details such as Data Sources, Mosaic method used in this layer, please see the Terrain layer. This layer allows query, identify, and export image requests. The layer is restricted to a 5,000 x 5,000 pixel limit in a single export image request.This layer is part of a larger collection of elevation layers that you can use to perform a variety of mapping analysis tasks.

  14. d

    River Bureau jurisdiction map

    • data.gov.tw
    csv
    Updated Jun 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Water Resources Agency,Ministry of Economic Affairs (2025). River Bureau jurisdiction map [Dataset]. https://data.gov.tw/en/datasets/25782
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 1, 2025
    Dataset authored and provided by
    Water Resources Agency,Ministry of Economic Affairs
    License

    https://data.gov.tw/licensehttps://data.gov.tw/license

    Description

    This dataset is linked to a list of KML (Keyhole Markup Language) files, which is a markup language based on the XML (eXtensible Markup Language) syntax standard, which adopts markup structure, contains nested elements and attributes. Developed and maintained by Keyhole, a company owned by Google, for expressing geographical annotations. Documents written in KML language are KML files, which use the same XML file format and are used in Google Earth-related software (Google Earth, Google Map, Google Maps for mobile...) to display geographic data (including points, lines, polygons, polyhedra, and models...). Many GIS-related systems now also adopt this format for the exchange of geographic data started by Google, and the fields and encoding of the KML in this dataset are UTF-8. For more details, please visit the "Geographic Information Warehouse Center" (http://gic.wra.gov.tw/).

  15. u

    National Soil Information System (NASIS) data base

    • gstore.unm.edu
    zip
    Updated Nov 22, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Earth Data Analysis Center (2022). National Soil Information System (NASIS) data base [Dataset]. http://gstore.unm.edu/apps/rgisarchive/datasets/e69b133e-0cef-4e03-a759-8bee55311356/metadata/FGDC-STD-001-1998.html
    Explore at:
    zip(3)Available download formats
    Dataset updated
    Nov 22, 2022
    Dataset provided by
    Earth Data Analysis Center
    Time period covered
    May 10, 2005
    Area covered
    West Bounding Coordinate -106.75 East Bounding Coordinate -106.07 North Bounding Coordinate 33.824 South Bounding Coordinate 32.327, New Mexico
    Description

    This data set is a digital soil survey and generally is the most detailed level of soil geographic data developed by the National Cooperative Soil Survey. The information was prepared by digitizing maps, by compiling information onto a planimetric correct base and digitizing, or by revising digitized maps using remotely sensed and other information. This data set consists of georeferenced digital map data and computerized attribute data. The map data are in a soil survey area extent format and include a detailed, field verified inventory of soils and miscellaneous areas that normally occur in a repeatable pattern on the landscape and that can be cartographically shown at the scale mapped. A special soil features layer (point and line features) is optional. This layer displays the location of features too small to delineate at the mapping scale, but they are large enough and contrasting enough to significantly influence use and management. The soil map units are linked to attributes in the National Soil Information System relational database, which gives the proportionate extent of the component soils and their properties.

  16. a

    Image Footprints with Time Attributes

    • margig-edt.hub.arcgis.com
    • national-government.esrij.com
    • +16more
    Updated May 12, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri European National Government Team (2019). Image Footprints with Time Attributes [Dataset]. https://margig-edt.hub.arcgis.com/datasets/image-footprints-with-time-attributes
    Explore at:
    Dataset updated
    May 12, 2019
    Dataset authored and provided by
    Esri European National Government Team
    Area covered
    Description

    Map Information This nowCOAST time-enabled map service provides maps of experimental lightning strike density data from the NOAA/National Weather Service/NCEP's Ocean Prediction Center (OPC) which emulate (simulate) data from the future NOAA GOES-R Global Lightning Mapper (GLM). The purpose of this experimental product is to provide mariners and others with enhanced "awareness of developing and transitory thunderstorm activity, to give users the ability to determine whether a cloud system is producing lightning and if that activity is increasing or decreasing..." Lightning Strike Density, as opposed to display of individual strikes, highlights the location of lightning cores and trends of increasing and decreasing activity. The maps depict the density of lightning strikes during a 15 minute time period at an 8 km x 8 km spatial resolution. The lightning strike density maps cover the geographic area from 25 degrees South to 80 degrees North latitude and from 110 degrees East to 0 degrees West longitude. The map units are number of strikes per square km per minute multiplied by a scaling factor of 10^3. The strike density is color coded using a color scheme which allows the data to be easily seen when overlaid on GOES imagery and to distinguish values at low density values. The maps are updated on nowCOAST approximately every 15 minutes. The latest data depicted on the maps are approximately 12 minutes old (or older). The OPC lightning strike density product is still experimental and may not always be available. Given the spatial resolution and latency of the data, the data should NOT be used to activite your lightning safety plans. Always follow the safety rule: when you first hear thunder or see lightning in your area, activate your emergency plan. If outdoors, immediately seek shelter in a substantial building or a fully enclosed metal vehicle such as a car, truck or a van. Do not resume activities until 30 minutes after the last observed lightning or thunder. For more detailed information about the update schedule for the lightning strike density data maps on nowCOAST, please see: http://new.nowcoast.noaa.gov/help/#section=updateschedule Background Information The source for the data is OPC's gridded lightning strike density data on an 8 x 8 km grid. The gridded data emulate the spatial resolution of the future Global Lightning Mapper (GLM) instrument to be flown on the NOAA GOES-R series of geostationary satellites, with the first satellite scheduled for launch in early 2016. The gridded data is based on data from Vaisala's ground based Vaisala's U.S. National Lightning Detection Network (NLDN) and its global lightning detection network referred to as the Global Lightning Dataset (GLD360). These networks are capable of detecting cloud-to-ground strokes, cloud-to-ground flash information and survey level cloud lightning information. According to the National Lightning Safety Institute, NLDN uses radio frequency detectors in the spectrum 1.0 kHz through 400 kHz to measure energy discharges from lightning as well as approximate distance and direction. According to Vaisala, the GLD360 network is capable of a detection efficiency greater than 70% over most of the Northern Hemisphere with a median location accuracy of 5 km or better. OPC's experimental gridded data are coarser than the original source data from Vaisala's networks. The 15-minute gridded source data are updated at OPC every 15 minutes at 10 minutes past the valid time. The lightning strike density product from NWS/NCEP/OPC is considered a derived product or Level 5 product ("NOAA-generated products using lightning data as input but not displaying the contractor transmitted/provided lightning data") and is appropriate for public distribution. Time Information

    This map is time-enabled, meaning that each individual layer contains time-varying data and can be utilized by clients capable of making map requests that include a time component.

    This particular service can be queried with or without the use of a time component. If the time parameter is specified in a request, the data or imagery most relevant to the provided time value, if any, will be returned. If the time parameter is not specified in a request, the latest data or imagery valid for the present system time will be returned to the client. If the time parameter is not specified and no data or imagery is available for the present time, no data will be returned.

    In addition to ArcGIS Server REST access, time-enabled OGC WMS 1.3.0 access is also provided by this service.

    Due to software limitations, the time extent of the service and map layers displayed below does not provide the most up-to-date start and end times of available data. Instead, users have three options for determining the latest time information about the service:

    Issue a returnUpdates=true request for an individual layer or for the service itself, which will return the current start and end times of available data, in epoch time format (milliseconds since 00:00 January 1, 1970). To see an example, click on the "Return Updates" link at the bottom of this page under "Supported Operations". Refer to the ArcGIS REST API Map Service Documentation for more information.

    Issue an Identify (ArcGIS REST) or GetFeatureInfo (WMS) request against the proper layer corresponding with the target dataset. For raster data, this would be the "Image Footprints with Time Attributes" layer in the same group as the target "Image" layer being displayed. For vector (point, line, or polygon) data, the target layer can be queried directly. In either case, the attributes returned for the matching raster(s) or vector feature(s) will include the following:

    validtime: Valid timestamp.

    starttime: Display start time.

    endtime: Display end time.

    reftime: Reference time (sometimes reffered to as issuance time, cycle time, or initialization time).

    projmins: Number of minutes from reference time to valid time.

    desigreftime: Designated reference time; used as a common reference time for all items when individual reference times do not match.

    desigprojmins: Number of minutes from designated reference time to valid time.

    Query the nowCOAST LayerInfo web service, which has been created to provide additional information about each data layer in a service, including a list of all available "time stops" (i.e. "valid times"), individual timestamps, or the valid time of a layer's latest available data (i.e. "Product Time"). For more information about the LayerInfo web service, including examples of various types of requests, refer to the nowCOAST help documentation at: http://new.nowcoast.noaa.gov/help/#section=layerinfo

    References Kithil, 2015: Overview of Lightning Detection Equipment, National Lightning Safety Institute, Louisville, CO. (Available from http://www.lightningsafety.com/nsli_ihm/detectors.html).NASA and NOAA, 2014: Geostationary Lightning Mapper (GLM). (Available at http://www.goes-r.gov/spacesegment/glm.html).NWS, 2013: Experimental Lightning Strike Density Product Description Document. NOAA/NWS/NCEP/Ocean Prediction Center, College Park, MD (Available at http://www.opc.ncep.noaa.gov/lightning/lightning_pdd.php and http://products.weather.gov/PDD/Experimental%20Lightning%20Strike%20Density%20Product%2020130913.pdf). ,li>NOAA Knows Lightning. NWS, Silver Spring, MD (Available at http://www.lightningsafety.noaa.gov/resources/lightning3_050714.pdf).) Siebers, A., 2013: Soliciting Comments until June 3, 2014 on an Experimental Lightning Strike Density product (Offshore Waters). Public Information Notice, NOAA/NWS Headquarters, Washington, DC (Available at http://www.nws.noaa.gov/om/notification/pns13lightning_strike_density.htm).

  17. u

    AADT Unrounded

    • digitaldelivery.udot.utah.gov
    • hub.arcgis.com
    • +2more
    Updated Aug 28, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UPlan Map Center (2024). AADT Unrounded [Dataset]. https://digitaldelivery.udot.utah.gov/datasets/aadt-unrounded
    Explore at:
    Dataset updated
    Aug 28, 2024
    Dataset authored and provided by
    UPlan Map Center
    Area covered
    Description

    This layer contains traffic statistics collected or obtained by the Transportation Monitoring Unit and developed and analyzed by the Traffic Analysis section of the Technology & Innovation Division at the Utah Department of Transportation. These statistics are intended for transportation management, private businesses, and public use. The traffic information is used in planning, programming, highway design, maintenance, traffic control, and general administration of highway systems.The traffic information contained represents the Annual Average Daily Traffic (AADT) on road sections of State Highway and Federal-Aided roads. These statistics are developed by the Traffic Analysis section through the use of the following count site types:1. Continuous Count Stations (CCS) provided by the Utah Department of Transportation. A statewide system of permanent vehicle count stations that collect volume, vehicle classification (length), and speed, 24 hours per day, 365 days per year.2. Short-term counts administered by the Utah Department of Transportation, each traffic section is generally counted about every 3 years for a duration of 48 hours, and seasonally factored using factors created by CCS stations.AADT represents traffic for both directions of travel. The routes are sectioned according to:a. Major intersectionsb. Sections where traffic volumes show a significant difference in AADT. Generally 20% under 5,000 AADT to 5% for over 50,000 AADT.Truck Statistics are available for State routes only. Single-Unit Truck (FHWA Vehicle Axle Classifications 4-7), and Combination Unit Trucks (FHWA UDOT Open Data Portal Vehicle Axle Classifications 8-13). The values are represented by a percentage of the AADT reported for the same year.Example: A roadway with 1000 AADT has 0.1500 SUTRK reported, is 15% of the AADT are Single-Unit Trucks (or 150 SUTRK AADT).For AADT reported as Rounded, reports and maps use the AASHTO recommendation as follows:AADT = 0 - 999: Round to the nearest 10thAADT = 1,000 - 9,999: Round to the nearest 100thAADT >= 10,000: Round to the nearest 1000thNOTE: If a statistical calculation is needed to be applied to the AADT, (such as when calculating Vehicle Miles Traveled), it is not recommended to use rounded AADT’s. Unrounded AADT’s and truck percentages for are available at UDOT's Open Data Portal for download.This service is specially configured for use with UDOT's Open Data Portal. Please see the Data Assessment Form for more information. To download either the Rounded or Unrounded AADT for this data please visit the and download the available Shapefile and CSV's.

  18. c

    Active Hurricanes, Cyclones and Typhoons

    • resilience.climate.gov
    • prep-response-portal.napsgfoundation.org
    • +26more
    Updated Aug 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). Active Hurricanes, Cyclones and Typhoons [Dataset]. https://resilience.climate.gov/maps/248e7b5827a34b248647afb012c58787
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    Esri
    Area covered
    Earth
    Description

    Hurricane tracks and positions provide information on where the storm has been, where it is currently located, and where it is predicted to go. Each storm location is depicted by the sustained wind speed, according to the Saffir-Simpson Scale. It should be noted that the Saffir-Simpson Scale only applies to hurricanes in the Atlantic and Eastern Pacific basins, however all storms are still symbolized using that classification for consistency.Data SourceThis data is provided by NOAA National Hurricane Center (NHC) for the Central+East Pacific and Atlantic, and the Joint Typhoon Warning Center for the West+Central Pacific and Indian basins. For more disaster-related live feeds visit the Disaster Web Maps & Feeds ArcGIS Online Group.Sample DataSee Sample Layer Item for sample data during inactive Hurricane Season!Update FrequencyThe Aggregated Live Feeds methodology checks the Source for updates every 15 minutes. Tropical cyclones are normally issued every six hours at 5:00 AM EDT, 11:00 AM EDT, 5:00 PM EDT, and 11:00 PM EDT (or 4:00 AM EST, 10:00 AM EST, 4:00 PM EST, and 10:00 PM EST).Public advisories for Eastern Pacific tropical cyclones are normally issued every six hours at 2:00 AM PDT, 8:00 AM PDT, 2:00 PM PDT, and 8:00 PM PDT (or 1:00 AM PST, 7:00 AM PST, 1:00 PM PST, and 7:00 PM PST).Intermediate public advisories may be issued every 3 hours when coastal watches or warnings are in effect, and every 2 hours when coastal watches or warnings are in effect and land-based radars have identified a reliable storm center. Additionally, special public advisories may be issued at any time due to significant changes in warnings or in a cyclone. For the NHC data source you can subscribe to RSS Feeds.North Pacific and North Indian Ocean tropical cyclone warnings are updated every 6 hours, and South Indian and South Pacific Ocean tropical cyclone warnings are routinely updated every 12 hours. Times are set to Zulu/UTC.Scale/ResolutionThe horizontal accuracy of these datasets is not stated but it is important to remember that tropical cyclone track forecasts are subject to error, and that the effects of a tropical cyclone can span many hundreds of miles from the center.Area CoveredWorldGlossaryForecast location: Represents the official NHC forecast locations for the center of a tropical cyclone. Forecast center positions are given for projections valid 12, 24, 36, 48, 72, 96, and 120 hours after the forecast's nominal initial time. Click here for more information.

    Forecast points from the JTWC are valid 12, 24, 36, 48 and 72 hours after the forecast’s initial time.Forecast track: This product aids in the visualization of an NHC official track forecast, the forecast points are connected by a red line. The track lines are not a forecast product, as such, the lines should not be interpreted as representing a specific forecast for the location of a tropical cyclone in between official forecast points. It is also important to remember that tropical cyclone track forecasts are subject to error, and that the effects of a tropical cyclone can span many hundreds of miles from the center. Click here for more information.The Cone of Uncertainty: Cyclone paths are hard to predict with absolute certainty, especially days in advance.

    The cone represents the probable track of the center of a tropical cyclone and is formed by enclosing the area swept out by a set of circles along the forecast track (at 12, 24, 36 hours, etc). The size of each circle is scaled so that two-thirds of the historical official forecast errors over a 5-year sample fall within the circle. Based on forecasts over the previous 5 years, the entire track of a tropical cyclone can be expected to remain within the cone roughly 60-70% of the time. It is important to note that the area affected by a tropical cyclone can extend well beyond the confines of the cone enclosing the most likely track area of the center. Click here for more information. Now includes 'Danger Area' Polygons from JTWC, detailing US Navy Ship Avoidance Area when Wind speeds exceed 34 Knots!Coastal Watch/Warning: Coastal areas are placed under watches and warnings depending on the proximity and intensity of the approaching storm.Tropical Storm Watch is issued when a tropical cyclone containing winds of 34 to 63 knots (39 to 73 mph) or higher poses a possible threat, generally within 48 hours. These winds may be accompanied by storm surge, coastal flooding, and/or river flooding. The watch does not mean that tropical storm conditions will occur. It only means that these conditions are possible.Tropical Storm Warning is issued when sustained winds of 34 to 63 knots (39 to 73 mph) or higher associated with a tropical cyclone are expected in 36 hours or less. These winds may be accompanied by storm surge, coastal flooding, and/or river flooding.Hurricane Watch is issued when a tropical cyclone containing winds of 64 knots (74 mph) or higher poses a possible threat, generally within 48 hours. These winds may be accompanied by storm surge, coastal flooding, and/or river flooding. The watch does not mean that hurricane conditions will occur. It only means that these conditions are possible.Hurricane Warning is issued when sustained winds of 64 knots (74 mph) or higher associated with a tropical cyclone are expected in 36 hours or less. These winds may be accompanied by storm surge, coastal flooding, and/or river flooding. A hurricane warning can remain in effect when dangerously high water or a combination of dangerously high water and exceptionally high waves continue, even though winds may be less than hurricane force.RevisionsMar 13, 2025: Altered 'Forecast Error Cone' layer to include 'Danger Area' with updated symbology.Nov 20, 2023: Added Event Label to 'Forecast Position' layer, showing arrival time and wind speed localized to user's location.Mar 27, 2022: Added UID, Max_SS, Max_Wind, Max_Gust, and Max_Label fields to ForecastErrorCone layer.This map is provided for informational purposes and is not monitored 24/7 for accuracy and currency. Always refer to NOAA or JTWC sources for official guidance.If you would like to be alerted to potential issues or simply see when this Service will update next, please visit our Live Feed Status Page!

  19. d

    Reservoir storage area

    • data.gov.tw
    csv
    Updated Jun 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Water Resources Agency,Ministry of Economic Affairs (2025). Reservoir storage area [Dataset]. https://data.gov.tw/en/datasets/13795
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 1, 2025
    Dataset authored and provided by
    Water Resources Agency,Ministry of Economic Affairs
    License

    https://data.gov.tw/licensehttps://data.gov.tw/license

    Description

    The Water Resources Agency and its affiliated agencies provide relevant information on the water storage range maps of various reservoirs in Taiwan for use by civil institutions, groups commissioned by government agencies, or academic units for government projects. This dataset is linked to a list of Keyhole Markup Language (KML) files, which is a markup language based on the XML syntax standard. It is developed and maintained by Keyhole, a company owned by Google, for expressing geographical annotations. Documents written in KML language are KML files, which also use the XML file format and are used in Google Earth-related software (Google Earth, Google Map, Google Maps for mobile...) to display geographical data (including points, lines, areas, polygons, polyhedra, and models...). Many GIS-related systems now also adopt this format for exchanging geographical data, with the KML in this dataset using UTF-8 for fields and encoding.

  20. b

    Charted Territory Map

    • data.baltimorecity.gov
    • noveladata.com
    • +16more
    Updated May 26, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). Charted Territory Map [Dataset]. https://data.baltimorecity.gov/maps/d582a9e953c44c09bb998c7d9b66f8d4
    Explore at:
    Dataset updated
    May 26, 2018
    Dataset authored and provided by
    Esri
    Area covered
    Description

    The Charted Territory Map (World Edition) web map provides a customized world basemap uniquely symbolized. It takes its inspiration from a printed atlas plate and pull-down scholastic classroom maps. The map emphasizes the geographic and political features in the design. The use of country level polygons are preassigned with eight different colors. It also includes the global graticule features as well as landform labels of physical features and hillshade. This basemap, included in the ArcGIS Living Atlas of the World, uses the Charted Territory vector tile layer and World Hillshade. The vector tile layer in this web map is built using the same data sources used for other Esri Vector Basemaps. For details on data sources contributed by the GIS community, view the map of Community Maps Basemap Contributors. Esri Vector Basemaps are updated monthly.Use this MapThis map is designed to be used as a basemap for overlaying other layers of information or as a stand-alone reference map. You can add layers to this web map and save as your own map. If you like, you can add this web map to a custom basemap gallery for others in your organization to use in creating web maps. If you would like to add this map as a layer in other maps you are creating, you may use the layers referenced in this map.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
U.S Department of Transportation (2024). Rural & Statewide GIS/Data Needs (HEPGIS) - 8-Hour Ozone [Dataset]. https://data.virginia.gov/dataset/rural-statewide-gis-data-needs-hepgis-8-hour-ozone

Rural & Statewide GIS/Data Needs (HEPGIS) - 8-Hour Ozone

Explore at:
htmlAvailable download formats
Dataset updated
May 8, 2024
Dataset provided by
Federal Highway Administration
Authors
U.S Department of Transportation
Description

HEPGIS is a web-based interactive geographic map server that allows users to navigate and view geo-spatial data, print maps, and obtain data on specific features using only a web browser. It includes geo-spatial data used for transportation planning. HEPGIS previously received ARRA funding for development of Economically distressed Area maps. It is also being used to demonstrate emerging trends to address MPO and statewide planning regulations/requirements , enhanced National Highway System, Primary Freight Networks, commodity flows and safety data . HEPGIS has been used to help implement MAP-21 regulations and will help implement the Grow America Act, particularly related to Ladder of Opportunities and MPO reforms.

Search
Clear search
Close search
Google apps
Main menu