79 datasets found
  1. d

    Outscraper Google Maps Scraper

    • datarade.ai
    .csv, .xls, .json
    Updated Dec 9, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). Outscraper Google Maps Scraper [Dataset]. https://datarade.ai/data-products/outscraper-google-maps-scraper-outscraper
    Explore at:
    .csv, .xls, .jsonAvailable download formats
    Dataset updated
    Dec 9, 2021
    Area covered
    Guyana, Cameroon, Botswana, Mayotte, United States Minor Outlying Islands, Sint Eustatius and Saba, Egypt, Zimbabwe, Western Sahara, Uruguay
    Description

    Are you looking to identify B2B leads to promote your business, product, or service? Outscraper Google Maps Scraper might just be the tool you've been searching for. This powerful software enables you to extract business data directly from Google's extensive database, which spans millions of businesses across countless industries worldwide.

    Outscraper Google Maps Scraper is a tool built with advanced technology that lets you scrape a myriad of valuable information about businesses from Google's database. This information includes but is not limited to, business names, addresses, contact information, website URLs, reviews, ratings, and operational hours.

    Whether you are a small business trying to make a mark or a large enterprise exploring new territories, the data obtained from the Outscraper Google Maps Scraper can be a treasure trove. This tool provides a cost-effective, efficient, and accurate method to generate leads and gather market insights.

    By using Outscraper, you'll gain a significant competitive edge as it allows you to analyze your market and find potential B2B leads with precision. You can use this data to understand your competitors' landscape, discover new markets, or enhance your customer database. The tool offers the flexibility to extract data based on specific parameters like business category or geographic location, helping you to target the most relevant leads for your business.

    In a world that's growing increasingly data-driven, utilizing a tool like Outscraper Google Maps Scraper could be instrumental to your business' success. If you're looking to get ahead in your market and find B2B leads in a more efficient and precise manner, Outscraper is worth considering. It streamlines the data collection process, allowing you to focus on what truly matters – using the data to grow your business.

    https://outscraper.com/google-maps-scraper/

    As a result of the Google Maps scraping, your data file will contain the following details:

    Query Name Site Type Subtypes Category Phone Full Address Borough Street City Postal Code State Us State Country Country Code Latitude Longitude Time Zone Plus Code Rating Reviews Reviews Link Reviews Per Scores Photos Count Photo Street View Working Hours Working Hours Old Format Popular Times Business Status About Range Posts Verified Owner ID Owner Title Owner Link Reservation Links Booking Appointment Link Menu Link Order Links Location Link Place ID Google ID Reviews ID

    If you want to enrich your datasets with social media accounts and many more details you could combine Google Maps Scraper with Domain Contact Scraper.

    Domain Contact Scraper can scrape these details:

    Email Facebook Github Instagram Linkedin Phone Twitter Youtube

  2. Nevada Wildfire Information Map

    • hub.arcgis.com
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • +2more
    Updated Apr 27, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Interagency Fire Center (2017). Nevada Wildfire Information Map [Dataset]. https://hub.arcgis.com/maps/6910498b12574de490f240de4cca5648
    Explore at:
    Dataset updated
    Apr 27, 2017
    Dataset authored and provided by
    National Interagency Fire Centerhttps://www.nifc.gov/
    Area covered
    Description

    All data displayed on this map is near real-time. There are two ways in which this happens: Web service based data and a mobile mapping application called Field Maps. Web services are updated regularly ranging from every minute to once a month. All web services in this map are refreshed automatically to ensure the latest data being provided is displayed. Data collected through the use of Field Maps is done so by firefighters on the ground. The Field Maps application is consuming, creating, and editing data that are stored in ArcGIS Online. These data are then fed directly in to this map. To learn more about these web mapping technologies, visit the links below:Web ServicesArcGIS Field MapsArcGIS OnlineWeb Services used in this map:(visit link to learn more about each service)IRWIN - A central hub that orchestrates data between various fire reporting applications. When a new incident is created and/or updated by a dispatch center or other fire reporting system, it is then displayed on the map using the Integrated Reporting of Wildland-Fire Information (IRWIN) service. All layers below are derived from the same IRWIN service and automatically refresh every five minutes:New Starts (last 24hrs) - Any incident that has occurred within the last rolling 24 hour time period.Current Large Incidents - Incidents that have created an ICS 209 document at the type 3 Incident Commander (IC) level and above and are less than 100% contained.Ongoing - Incidents that do not have a containment, control, or out date.Contained - Incidents with a containment date but no control or out date.Controlled/Out (last 24hrs) - Incidents with a containment, control, and/or out date within the last rolling 24 hour time period.Controlled/Out - Incidents with a containment, control, and/or out date. Layer turned off by default.Season Summary - All incidents year to date. Layer turned off by default.ArcGIS Online/Field Maps - Part of the Esri Geospatial Cloud, ArcGIS Online and Collector enables firefighters to use web maps created in ArcGIS Online on mobile devices using the Collector application to capture and edit data on the fireline. Data may be captured and edited in both connected and disconnected environments. When data is submitted back to the web service in ArcGIS Online, it is then checked for accuracy and approved for public viewing.Fire Perimeter - Must be set to 'Approved' and 'Public' to be displayed on the map. Automatically refreshes every five minutes.NOAA nowCOAST - Provides web services of near real-time observations, analyses, tide predictions, model guidance, watches/warnings, and forecasts for the coastal United States by integrating data and information across NOAA, other federal agencies and regional ocean and weather observing systems (source). All layers below automatically refresh every five minutes.Tornado Warning - National Weather Service warning for short duration hazard.Severe Thunderstorm Warning - National Weather Service warning for short duration hazard.Flash Flood Warning - National Weather Service warning for short duration hazard.Red Flag Warning - National Weather Service warning for long duration hazard.nowCOAST Lightning Strike Density - 15-minute Satellite Emulated Lightning Strike Density imagery for the last several hours.nowCOAST Radar - Weather Radar (NEXRAD) Reflectivity Mosaics from NOAA MRMS for Alaska, CONUS, Puerto Rico, Guam, and Hawaii for last several hours.

  3. Rural & Statewide GIS/Data Needs (HEPGIS) - 8-Hour Ozone

    • catalog.data.gov
    • data.virginia.gov
    • +1more
    Updated May 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Federal Highway Administration (2024). Rural & Statewide GIS/Data Needs (HEPGIS) - 8-Hour Ozone [Dataset]. https://catalog.data.gov/dataset/rural-statewide-gis-data-needs-hepgis-8-hour-ozone
    Explore at:
    Dataset updated
    May 8, 2024
    Dataset provided by
    Federal Highway Administrationhttps://highways.dot.gov/
    Description

    HEPGIS is a web-based interactive geographic map server that allows users to navigate and view geo-spatial data, print maps, and obtain data on specific features using only a web browser. It includes geo-spatial data used for transportation planning. HEPGIS previously received ARRA funding for development of Economically distressed Area maps. It is also being used to demonstrate emerging trends to address MPO and statewide planning regulations/requirements , enhanced National Highway System, Primary Freight Networks, commodity flows and safety data . HEPGIS has been used to help implement MAP-21 regulations and will help implement the Grow America Act, particularly related to Ladder of Opportunities and MPO reforms.

  4. d

    Tutorial: How to use Google Data Studio and ArcGIS Online to create an...

    • search.dataone.org
    • hydroshare.org
    • +1more
    Updated Apr 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sarah Beganskas (2022). Tutorial: How to use Google Data Studio and ArcGIS Online to create an interactive data portal [Dataset]. http://doi.org/10.4211/hs.9edae0ef99224e0b85303c6d45797d56
    Explore at:
    Dataset updated
    Apr 15, 2022
    Dataset provided by
    Hydroshare
    Authors
    Sarah Beganskas
    Description

    This tutorial will teach you how to take time-series data from many field sites and create a shareable online map, where clicking on a field location brings you to a page with interactive graph(s).

    The tutorial can be completed with a sample dataset (provided via a Google Drive link within the document) or with your own time-series data from multiple field sites.

    Part 1 covers how to make interactive graphs in Google Data Studio and Part 2 covers how to link data pages to an interactive map with ArcGIS Online. The tutorial will take 1-2 hours to complete.

    An example interactive map and data portal can be found at: https://temple.maps.arcgis.com/apps/View/index.html?appid=a259e4ec88c94ddfbf3528dc8a5d77e8

  5. d

    Google Data – Custom Google Maps Dataset with US Business Ratings, Locations...

    • datarade.ai
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Canaria Inc., Google Data – Custom Google Maps Dataset with US Business Ratings, Locations & Reviews • Weekly Updated Google Data for Lead Scoring & Market Mapping [Dataset]. https://datarade.ai/data-products/canaria-google-maps-company-profile-data-30m-global-goog-canaria-inc
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset authored and provided by
    Canaria Inc.
    Area covered
    United States
    Description

    📊 Google Data for Market Intelligence, Business Validation & Lead Enrichment Google Data is one of the most valuable sources of location-based business intelligence available today. At Canaria, we’ve built a robust, scalable system for extracting, enriching, and delivering verified business data from Google Maps—turning raw location profiles into high-resolution, actionable insights.

    Our Google Maps Company Profile Data includes structured metadata on businesses across the U.S., such as company names, standardized addresses, geographic coordinates, phone numbers, websites, business categories, open hours, diversity and ownership tags, star ratings, and detailed review distributions. Whether you're modeling a market, identifying leads, enriching a CRM, or evaluating risk, our Google Data gives your team an accurate, up-to-date view of business activity at the local level.

    This dataset is updated weekly, and is fully customizable—allowing you to pull exactly what you need, whether you're targeting a specific geography, industry segment, review range, or open-hour window.

    🌎 What Makes Canaria’s Google Data Unique? • Location Precision – Every business record is enriched with latitude/longitude, ZIP code, and Google Plus Code to ensure exact geolocation • Reputation Signals – Review tags, star ratings, and review counts are included to allow brand sentiment scoring and risk monitoring • Diversity & Ownership Tags – Capture public-facing declarations such as “women-owned” or “Asian-owned” for DEI, ESG, and compliance applications • Contact Readiness – Clean, standardized phone numbers and domains help teams route leads to sales, support, or customer success • Operational Visibility – Up-to-date open hours, categories, and branch information help validate which locations are active and when

    Our data is built to be matched, integrated, and analyzed—and is trusted by clients in financial services, go-to-market strategy, HR tech, and analytics platforms.

    🧠 What This Google Data Solves Canaria Google Data answers critical operational, market, and GTM questions like:

    • Which businesses are actively operating in my target region or category? • Which leads are real, verified, and tied to an actual physical branch? • How can I detect underperforming companies based on review sentiment? • Where should I expand, prospect, or invest based on geographic presence? • How can I enhance my CRM, enrichment model, or targeting strategy using location-based data?

    ✅ Key Use Cases for Google Maps Business Data Our clients leverage Google Data across a wide spectrum of industries and functions. Here are the top use cases:

    🔍 Lead Scoring & Business Validation • Confirm the legitimacy and physical presence of potential customers, partners, or competitors using verified Google Data • Rank leads based on proximity, star ratings, review volume, or completeness of listing • Filter spammy or low-quality leads using negative review keywords and tag summaries • Validate ABM targets before outreach using enriched business details like phone, website, and hours

    📍 Location Intelligence & Market Mapping • Visualize company distributions across geographies using Google Maps coordinates and ZIPs • Understand market saturation, density, and white space across business categories • Identify underserved ZIP codes or local business deserts • Track presence and expansion across regional clusters and industry corridors

    ⚠️ Company Risk & Brand Reputation Scoring • Monitor Google Maps reviews for sentiment signals such as “scam”, “spam”, “calls”, or service complaints • Detect risk-prone or underperforming locations using star rating distributions and review counts • Evaluate consistency of open hours, contact numbers, and categories for signs of listing accuracy or abandonment • Integrate risk flags into investment models, KYC/KYB platforms, or internal alerting systems

    🗃️ CRM & RevOps Enrichment • Enrich CRM or lead databases with phone numbers, web domains, physical addresses, and geolocation from Google Data • Use business category classification for segmentation and routing • Detect duplicates or outdated data by matching your records with the most current Google listing • Enable advanced workflows like field-based rep routing, localized campaign assignment, or automated ABM triggers

    📈 Business Intelligence & Strategic Planning • Build dashboards powered by Google Maps data, including business counts, category distributions, and review activity • Overlay business presence with population, workforce, or customer base for location planning • Benchmark performance across cities, regions, or market verticals • Track mobility and change by comparing past and current Google Maps metadata

    💼 DEI, ESG & Ownership Profiling • Identify minority-owned, women-owned, or other diversity-flagged companies using Google Data ownership attributes • Build datasets aligned with supplier diversity mandates or ESG investment strategies • Segment location insi...

  6. A

    Near-Real-Time Surface In-Situ Observations

    • data.amerigeoss.org
    • eo-for-disaster-management-amerigeoss.hub.arcgis.com
    esri rest, html +1
    Updated Jul 5, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmeriGEO ArcGIS (2017). Near-Real-Time Surface In-Situ Observations [Dataset]. https://data.amerigeoss.org/mn_MN/dataset/6882ce6e-a4fe-45fe-8d07-3a8f6c8bba2f
    Explore at:
    ogc wms, html, esri restAvailable download formats
    Dataset updated
    Jul 5, 2017
    Dataset provided by
    AmeriGEO ArcGIS
    Description
    Last Updated: January 2015
    Map Information

    This nowCOAST time-enabled map service provides map depicting the latest surface weather and marine weather observations at observing sites using the international station model. The station model is method for representing information collected at an observing station using symbols and numbers. The station model depicts current weather conditions, cloud cover, wind speed, wind direction, visibility, air temperature, dew point temperature, sea surface water temperature, significant wave height, air pressure adjusted to mean sea level, and the change in air pressure over the last 3 hours. The circle in the model is centered over the latitude and longitude coordinates of the station. The total cloud cover is expressed as a fraction of cloud covering the sky and is indicated by the amount of circle filled in. (Cloud cover is not presently displayed due to a problem with the source data. Present weather information is also not available for display at this time.) Wind speed and direction are represented by a wind barb whose line extends from the cover cloud circle towards the direction from which the wind is blowing. The short lines or flags coming off the end of the long line are called barbs. The barb indicates the wind speed in knots. Each normal barb represents 10 knots, while short barbs indicate 5 knots. A flag represents 50 knots. If there is no wind barb depicted, an outer circle around the cloud cover symbol indicates calm winds. The map of observations are updated in the nowCOAST map service approximately every 10 minutes. However, since the reporting frequency varies by network or station, the observation at a particular station may have not updated and may not update until after the next hour. For more detailed information about the update schedule, please see: http://new.nowcoast.noaa.gov/help/#section=updateschedule

    Background Information

    The maps of near-real-time surface weather and ocean observations are based on non-restricted data obtained from the NWS Family of Services courtesy of NESDIS/OPSD and also the NWS Meteorological Assimilation Data Ingest System (MADIS). The data includes observations from terrestrial and maritime observing from the U.S.A. and other countries. For terrestrial networks, the platforms including but not limited to ASOS, AWOS, RAWS, non-automated stations, U.S. Climate Reference Networks, many U.S. Geological Survey Stations via NWS HADS, several state DOT Road Weather Information Systems, and U.S. Historical Climatology Network-Modernization. For over maritime areas, the platforms include NOS/CO-OPS National Water Level Observation Network (NWLON), NOS/CO-OPS Physical Oceanographic Observing Network (PORTS), NWS/NDBC Fixed Buoys, NDBC Coastal-Marine Automated Network (C-MAN), drifting buoys, ferries, Regional Ocean Observing System (ROOS) coastal stations and buoys, and ships participating in the Voluntary Ship Observing (VOS) Program. Observations from MADIS are updated approximately every 10 minutes in the map service and those from NESDIS are updated every hour. However, not all stations report that frequently. Many stations only report once per hour sometime between 15 minutes before the hour and 30 minutes past the hour. For these stations, new observations will not appear until 22 minutes past top of the hour for land-based stations and 32 minutes past the top of the hour for maritime stations.

    Time Information

    This map is time-enabled, meaning that each individual layer contains time-varying data and can be utilized by clients capable of making map requests that include a time component.

    This particular service can be queried with or without the use of a time component. If the time parameter is specified in a request, the data or imagery most relevant to the provided time value, if any, will be returned. If the time parameter is not specified in a request, the latest data or imagery valid for the present system time will be returned to the client. If the time parameter is not specified and no data or imagery is available for the present time, no data will be returned.

    In addition to ArcGIS Server REST access, time-enabled OGC WMS 1.3.0 access is also provided by this service.

    Due to software limitations, the time extent of the service and map layers displayed below does not provide the most up-to-date start and end times of available data. Instead, users have three options for determining the latest time information about the service:

    1. Issue a returnUpdates=true request for an individual layer or for the service itself, which will return the current start and end times of available data, in epoch time format (milliseconds since 00:00 January 1, 1970). To see an example, click on the "Return Updates" link at the bottom of this page under "Supported Operations". Refer to the ArcGIS REST API Map Service Documentation for more information.
    2. Issue an Identify (ArcGIS REST) or GetFeatureInfo (WMS) request against the proper layer corresponding with the target dataset. For raster data, this would be the "Image Footprints with Time Attributes" layer in the same group as the target "Image" layer being displayed. For vector (point, line, or polygon) data, the target layer can be queried directly. In either case, the attributes returned for the matching raster(s) or vector feature(s) will include the following:
      • validtime: Valid timestamp.
      • starttime: Display start time.
      • endtime: Display end time.
      • reftime: Reference time (sometimes reffered to as issuance time, cycle time, or initialization time).
      • projmins: Number of minutes from reference time to valid time.
      • desigreftime: Designated reference time; used as a common reference time for all items when individual reference times do not match.
      • desigprojmins: Number of minutes from designated reference time to valid time.
    3. Query the nowCOAST LayerInfo web service, which has been created to provide additional information about each data layer in a service, including a list of all available "time stops" (i.e. "valid times"), individual timestamps, or the valid time of a layer's latest available data (i.e. "Product Time"). For more information about the LayerInfo web service, including examples of various types of requests, refer to the nowCOAST help documentation at: http://new.nowcoast.noaa.gov/help/#section=layerinfo
    References
  7. a

    BLM ID Wildfire Information Map - History

    • nifc.hub.arcgis.com
    Updated Aug 27, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Interagency Fire Center (2019). BLM ID Wildfire Information Map - History [Dataset]. https://nifc.hub.arcgis.com/maps/d10c2065a31646a9a97b6934b73bfe86
    Explore at:
    Dataset updated
    Aug 27, 2019
    Dataset authored and provided by
    National Interagency Fire Center
    Area covered
    Description

    All data displayed on this Dashboard is near real-time, automatically updating at regular intervals. Web Services used in the dashboard: (visit link to learn more about each service) IRWIN - The Integrated Reporting of Wildland-Fire Information (IRWIN) service is an investment intended to enable “end-to-end” fire reporting capability. IRWIN provides data exchange capabilities between existing applications used to manage data related to wildland fire incidents. IRWIN focuses on the goals of reducing redundant data entry, identifying authoritative data sources, and improving the consistency, accuracy, and availability of operational data.IRWIN can be thought of as a central hub that orchestrates data between the various applications. Users continue to utilize existing applications. Data is synchronized between participating applications to ensure the most current data is available in near real time. IRWIN supports conflict detection and resolution on all new wildfire incidents to support a unique record for each incident.NOAA nowCOAST - Provides web services of near real-time observations, analyses, tide predictions, model guidance, watches/warnings, and forecasts for the coastal United States by integrating data and information across NOAA, other federal agencies and regional ocean and weather observing systems (source). All layers below automatically refresh every five minutes.Tornado Warning - National Weather Service warning for short duration hazard.Severe Thunderstorm Warning - National Weather Service warning for short duration hazard.Flash Flood Warning - National Weather Service warning for short duration hazard.Red Flag Warning - National Weather Service warning for long duration hazard.nowCOAST Lightning Strike Density - 15-minute Satellite Emulated Lightning Strike Density imagery for the last several hours.nowCOAST Radar - Weather Radar (NEXRAD) Reflectivity Mosaics from NOAA MRMS for Alaska, CONUS, Puerto Rico, Guam, and Hawaii for last several hours.Data in each MapLast 24 Hours Map:New Starts - IRWIN Data where any incident that has occured within the last 24 hour time period.Current Large Incidents - IRWIN Data where incidents that have created an ICS 209 document at the type 3 Incident Commander (IC) level and above and are less than 100% contained.Ongoing - IRWIN Data where incidents that do not have a containment, control, or out date.Contained - IRWIN Data where incidents with a containment date but no control or out date.Season Summary Map:Fires by Cause - IRWIN data where any incident (Wildfire) that has occurred year to date displayed by cause. National Incident Feature Service 2019 (Fire Perimeters) - Must be set to 'Approved' and 'Public' to be displayed on the map. Automatically refreshes every five minutes. Data collected using Collector and the National InterAgency Fire Centers ArcGIS OnLine softwareNonActive Fires - Idaho's archived fire perimeters. Fires that are no longer available in the National Incident Feature Service 2019 (Fire Perimeters) because they have been inactive (out) for over a week.Fire History Map:Fire Ignition Points (Current Year) - IRWIN Data where any incident (Wildfire) that has occurred year to date displayed by daily acres Fire Ignition Points (Last 20yrs) - Idaho Fire Management Plan (FMP) locations of wildfire starts occur and a note of general causes for wildfires, since 1980Fire Frequency (Last 20yrs) - Idaho Fire Management Plan (FMP) determining how frequently a piece of ground is ignited and burns. Fires greated then 10 acres only were used in determining frequency. It is known that historical data from prior to the 1980s was inconsistantly recorded and therefore the information reflected in this dataset may not be complete and should be used with discretion.

  8. A

    Total Cloud Cover (oktas) - Scale Band 4

    • data.amerigeoss.org
    csv, esri rest +5
    Updated Jul 5, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmeriGEO ArcGIS (2017). Total Cloud Cover (oktas) - Scale Band 4 [Dataset]. https://data.amerigeoss.org/es/dataset/total-cloud-cover-oktas-scale-band-41
    Explore at:
    html, kml, csv, esri rest, geojson, ogc wms, zipAvailable download formats
    Dataset updated
    Jul 5, 2017
    Dataset provided by
    AmeriGEO ArcGIS
    Description
    Last Updated: January 2015
    Map Information

    This nowCOAST time-enabled map service provides map depicting the latest surface weather and marine weather observations at observing sites using the international station model. The station model is method for representing information collected at an observing station using symbols and numbers. The station model depicts current weather conditions, cloud cover, wind speed, wind direction, visibility, air temperature, dew point temperature, sea surface water temperature, significant wave height, air pressure adjusted to mean sea level, and the change in air pressure over the last 3 hours. The circle in the model is centered over the latitude and longitude coordinates of the station. The total cloud cover is expressed as a fraction of cloud covering the sky and is indicated by the amount of circle filled in. (Cloud cover is not presently displayed due to a problem with the source data. Present weather information is also not available for display at this time.) Wind speed and direction are represented by a wind barb whose line extends from the cover cloud circle towards the direction from which the wind is blowing. The short lines or flags coming off the end of the long line are called barbs. The barb indicates the wind speed in knots. Each normal barb represents 10 knots, while short barbs indicate 5 knots. A flag represents 50 knots. If there is no wind barb depicted, an outer circle around the cloud cover symbol indicates calm winds. The map of observations are updated in the nowCOAST map service approximately every 10 minutes. However, since the reporting frequency varies by network or station, the observation at a particular station may have not updated and may not update until after the next hour. For more detailed information about the update schedule, please see: http://new.nowcoast.noaa.gov/help/#section=updateschedule

    Background Information

    The maps of near-real-time surface weather and ocean observations are based on non-restricted data obtained from the NWS Family of Services courtesy of NESDIS/OPSD and also the NWS Meteorological Assimilation Data Ingest System (MADIS). The data includes observations from terrestrial and maritime observing from the U.S.A. and other countries. For terrestrial networks, the platforms including but not limited to ASOS, AWOS, RAWS, non-automated stations, U.S. Climate Reference Networks, many U.S. Geological Survey Stations via NWS HADS, several state DOT Road Weather Information Systems, and U.S. Historical Climatology Network-Modernization. For over maritime areas, the platforms include NOS/CO-OPS National Water Level Observation Network (NWLON), NOS/CO-OPS Physical Oceanographic Observing Network (PORTS), NWS/NDBC Fixed Buoys, NDBC Coastal-Marine Automated Network (C-MAN), drifting buoys, ferries, Regional Ocean Observing System (ROOS) coastal stations and buoys, and ships participating in the Voluntary Ship Observing (VOS) Program. Observations from MADIS are updated approximately every 10 minutes in the map service and those from NESDIS are updated every hour. However, not all stations report that frequently. Many stations only report once per hour sometime between 15 minutes before the hour and 30 minutes past the hour. For these stations, new observations will not appear until 22 minutes past top of the hour for land-based stations and 32 minutes past the top of the hour for maritime stations.

    Time Information

    This map is time-enabled, meaning that each individual layer contains time-varying data and can be utilized by clients capable of making map requests that include a time component.

    This particular service can be queried with or without the use of a time component. If the time parameter is specified in a request, the data or imagery most relevant to the provided time value, if any, will be returned. If the time parameter is not specified in a request, the latest data or imagery valid for the present system time will be returned to the client. If the time parameter is not specified and no data or imagery is available for the present time, no data will be returned.

    In addition to ArcGIS Server REST access, time-enabled OGC WMS 1.3.0 access is also provided by this service.

    Due to software limitations, the time extent of the service and map layers displayed below does not provide the most up-to-date start and end times of available data. Instead, users have three options for determining the latest time information about the service:

    1. Issue a returnUpdates=true request for an individual layer or for the service itself, which will return the current start and end times of available data, in epoch time format (milliseconds since 00:00 January 1, 1970). To see an example, click on the "Return Updates" link at the bottom of this page under "Supported Operations". Refer to the ArcGIS REST API Map Service Documentation for more information.
    2. Issue an Identify (ArcGIS REST) or GetFeatureInfo (WMS) request against the proper layer corresponding with the target dataset. For raster data, this would be the "Image Footprints with Time Attributes" layer in the same group as the target "Image" layer being displayed. For vector (point, line, or polygon) data, the target layer can be queried directly. In either case, the attributes returned for the matching raster(s) or vector feature(s) will include the following:
      • validtime: Valid timestamp.
      • starttime: Display start time.
      • endtime: Display end time.
      • reftime: Reference time (sometimes reffered to as issuance time, cycle time, or initialization time).
      • projmins: Number of minutes from reference time to valid time.
      • desigreftime: Designated reference time; used as a common reference time for all items when individual reference times do not match.
      • desigprojmins: Number of minutes from designated reference time to valid time.
    3. Query the nowCOAST LayerInfo web service, which has been created to provide additional information about each data layer in a service, including a list of all available "time stops" (i.e. "valid times"), individual timestamps, or the valid time of a layer's latest available data (i.e. "Product Time"). For more information about the LayerInfo web service, including examples of various types of requests, refer to the nowCOAST help documentation at: http://new.nowcoast.noaa.gov/help/#section=layerinfo
    References
  9. Total Cloud Cover (oktas) - Scale Band 3

    • data.amerigeoss.org
    Updated Jul 5, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA GeoPlatform (2017). Total Cloud Cover (oktas) - Scale Band 3 [Dataset]. https://data.amerigeoss.org/ca/dataset/total-cloud-cover-oktas-scale-band-32
    Explore at:
    html, zip, csv, ogc wms, arcgis geoservices rest api, geojson, kmlAvailable download formats
    Dataset updated
    Jul 5, 2017
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Description
    Last Updated: January 2015
    Map Information

    This nowCOAST time-enabled map service provides map depicting the latest surface weather and marine weather observations at observing sites using the international station model. The station model is method for representing information collected at an observing station using symbols and numbers. The station model depicts current weather conditions, cloud cover, wind speed, wind direction, visibility, air temperature, dew point temperature, sea surface water temperature, significant wave height, air pressure adjusted to mean sea level, and the change in air pressure over the last 3 hours. The circle in the model is centered over the latitude and longitude coordinates of the station. The total cloud cover is expressed as a fraction of cloud covering the sky and is indicated by the amount of circle filled in. (Cloud cover is not presently displayed due to a problem with the source data. Present weather information is also not available for display at this time.) Wind speed and direction are represented by a wind barb whose line extends from the cover cloud circle towards the direction from which the wind is blowing. The short lines or flags coming off the end of the long line are called barbs. The barb indicates the wind speed in knots. Each normal barb represents 10 knots, while short barbs indicate 5 knots. A flag represents 50 knots. If there is no wind barb depicted, an outer circle around the cloud cover symbol indicates calm winds. The map of observations are updated in the nowCOAST map service approximately every 10 minutes. However, since the reporting frequency varies by network or station, the observation at a particular station may have not updated and may not update until after the next hour. For more detailed information about the update schedule, please see: http://new.nowcoast.noaa.gov/help/#section=updateschedule

    Background Information

    The maps of near-real-time surface weather and ocean observations are based on non-restricted data obtained from the NWS Family of Services courtesy of NESDIS/OPSD and also the NWS Meteorological Assimilation Data Ingest System (MADIS). The data includes observations from terrestrial and maritime observing from the U.S.A. and other countries. For terrestrial networks, the platforms including but not limited to ASOS, AWOS, RAWS, non-automated stations, U.S. Climate Reference Networks, many U.S. Geological Survey Stations via NWS HADS, several state DOT Road Weather Information Systems, and U.S. Historical Climatology Network-Modernization. For over maritime areas, the platforms include NOS/CO-OPS National Water Level Observation Network (NWLON), NOS/CO-OPS Physical Oceanographic Observing Network (PORTS), NWS/NDBC Fixed Buoys, NDBC Coastal-Marine Automated Network (C-MAN), drifting buoys, ferries, Regional Ocean Observing System (ROOS) coastal stations and buoys, and ships participating in the Voluntary Ship Observing (VOS) Program. Observations from MADIS are updated approximately every 10 minutes in the map service and those from NESDIS are updated every hour. However, not all stations report that frequently. Many stations only report once per hour sometime between 15 minutes before the hour and 30 minutes past the hour. For these stations, new observations will not appear until 22 minutes past top of the hour for land-based stations and 32 minutes past the top of the hour for maritime stations.

    Time Information

    This map is time-enabled, meaning that each individual layer contains time-varying data and can be utilized by clients capable of making map requests that include a time component.

    This particular service can be queried with or without the use of a time component. If the time parameter is specified in a request, the data or imagery most relevant to the provided time value, if any, will be returned. If the time parameter is not specified in a request, the latest data or imagery valid for the present system time will be returned to the client. If the time parameter is not specified and no data or imagery is available for the present time, no data will be returned.

    In addition to ArcGIS Server REST access, time-enabled OGC WMS 1.3.0 access is also provided by this service.

    Due to software limitations, the time extent of the service and map layers displayed below does not provide the most up-to-date start and end times of available data. Instead, users have three options for determining the latest time information about the service:

    1. Issue a returnUpdates=true request for an individual layer or for the service itself, which will return the current start and end times of available data, in epoch time format (milliseconds since 00:00 January 1, 1970). To see an example, click on the "Return Updates" link at the bottom of this page under "Supported Operations". Refer to the ArcGIS REST API Map Service Documentation for more information.
    2. Issue an Identify (ArcGIS REST) or GetFeatureInfo (WMS) request against the proper layer corresponding with the target dataset. For raster data, this would be the "Image Footprints with Time Attributes" layer in the same group as the target "Image" layer being displayed. For vector (point, line, or polygon) data, the target layer can be queried directly. In either case, the attributes returned for the matching raster(s) or vector feature(s) will include the following:
      • validtime: Valid timestamp.
      • starttime: Display start time.
      • endtime: Display end time.
      • reftime: Reference time (sometimes reffered to as issuance time, cycle time, or initialization time).
      • projmins: Number of minutes from reference time to valid time.
      • desigreftime: Designated reference time; used as a common reference time for all items when individual reference times do not match.
      • desigprojmins: Number of minutes from designated reference time to valid time.
    3. Query the nowCOAST LayerInfo web service, which has been created to provide additional information about each data layer in a service, including a list of all available "time stops" (i.e. "valid times"), individual timestamps, or the valid time of a layer's latest available data (i.e. "Product Time"). For more information about the LayerInfo web service, including examples of various types of requests, refer to the nowCOAST help documentation at: http://new.nowcoast.noaa.gov/help/#section=layerinfo
    References
  10. National Weather Service Precipitation Forecast

    • disasterpartners.org
    • atlas.eia.gov
    • +9more
    Updated Aug 16, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). National Weather Service Precipitation Forecast [Dataset]. https://www.disasterpartners.org/maps/f9e9283b9c9741d09aad633f68758bf6
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This map displays the Quantitative Precipitation Forecast (QPF) for the next 72 hours across the contiguous United States. Data are updated hourly from the National Digital Forecast Database produced by the National Weather Service.The dataset includes incremental and cumulative precipitation data in 6-hour intervals. In the ArcGIS Online map viewer you can enable the time animation feature and select either the "Amount by Time" (incremental) layer or the "Accumulation by Time" (cumulative) layer to view a 72-hour animation of forecast precipitation. All times are reported according to your local time zone.Where is the data coming from?The National Digital Forecast Database (NDFD) was designed to provide access to weather forecasts in digital form from a central location. The NDFD produces forecast data of sensible weather elements. NDFD contains a seamless mosaic of digital forecasts from National Weather Service (NWS) field offices working in collaboration with the National Centers for Environmental Prediction (NCEP). All of these organizations are under the administration of the National Oceanic and Atmospheric Administration (NOAA).Source: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.conus/VP.001-003/ds.qpf.binWhere can I find other NDFD data?The Source data is downloaded and parsed using the Aggregated Live Feeds methodology to return information that can be served through ArcGIS Server as a map service or used to update Hosted Feature Services in Online or Enterprise.What can you do with this layer?This map service is suitable for data discovery and visualization. Identify features by clicking on the map to reveal the pre-configured pop-ups. View the time-enabled data using the time slider by Enabling Time Animation.This map is provided for informational purposes and is not monitored 24/7 for accuracy and currency.If you would like to be alerted to potential issues or simply see when this Service will update next, please visit our Live Feed Status Page!

  11. National Mine Map Repository Mine Locations

    • catalog.data.gov
    • gimi9.com
    Updated Nov 28, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office of Surface Mining, Reclamation and Enforcement (2023). National Mine Map Repository Mine Locations [Dataset]. https://catalog.data.gov/dataset/national-mine-map-repository-mine-locations
    Explore at:
    Dataset updated
    Nov 28, 2023
    Dataset provided by
    Office of Surface Mining Reclamation and Enforcementhttp://www.osmre.gov/
    Description

    The National Mine Map Repository (NMMR) maintains point locations for mines appearing on maps within its archive. This dataset is intended to help connect the Office of Surface Mining Reclamation and Enforcement, other federal, state, and local government agencies, private industry, and the general public with archived mine maps in the NMMR's collection. The coordinates for mine point locations represent the best information the NMMR has for the location of the mine. As much as possible, the NMMR strives to find precise locations for all historic mines appearing on mine maps. When this is not possible, another feature as close to the mine as is known is used. This information is reflected in the mine point symbols. However, the NMMR cannot guarantee the accuracy of mine point locations or any other information on or derived from mine maps. The NMMR is part of the United States Department of the Interior, Office of Surface Mining Reclamation and Enforcement (OSMRE). The mission of the NMMR is to preserve abandoned mine maps, to correlate those maps to the surface topography, and to provide the public with quality map products and services. It serves as a point of reference for maps and other information on surface and underground coal, metal, and non-metal mines from throughout the United States. It also serves as a location to retrieve mine maps in an emergency. Some of the information that can be found in the repository includes: Mine and company names, Mine plans including mains, rooms, and pillars, Man-ways, shafts, and mine surface openings. Geological information such as coal bed names, bed thicknesses, bed depths and elevations, bed outcrops, drill-hole data, cross-sections, stratigraphic columns, and mineral assays. Geographical information including historic railroad lines, roads, coal towns, surface facilities and structures, ponds, streams, and property survey lines, gas well and drill-hole locations. Please note: Map images are not available for download from this dataset. They can be requested by contacting NMMR staff and providing them with the desired Document Numbers. NMMR staff also have additional search capabilities and can fulfill more complex requests if necessary. See the NMMR website homepage for contact information: https://www.osmre.gov/programs/national-mine-map-repository. There is no charge for noncommercial use of the maps. Commercial uses will incur a $46/hour research fee for fulfilling requests.

  12. W

    NWS 48 hour Smoke Forecast

    • wifire-data.sdsc.edu
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • +2more
    csv, esri rest +4
    Updated Sep 22, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CA Governor's Office of Emergency Services (2020). NWS 48 hour Smoke Forecast [Dataset]. https://wifire-data.sdsc.edu/dataset/nws-48-hour-smoke-forecast
    Explore at:
    geojson, csv, esri rest, kml, zip, htmlAvailable download formats
    Dataset updated
    Sep 22, 2020
    Dataset provided by
    CA Governor's Office of Emergency Services
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This feature service displays projected visible smoke across the contiguous United States for the next 48 hours in 1 hour increments. It is updated every 24 hours by NWS. Concentrations are reported in micrograms per cubic meter.

    Where the data is coming from


    The National Digital Guidance Database (NDGD) is a sister to the National Digital Forecast Database (NDFD). Information in NDGD may be used by NWS forecasters as guidance in preparing official NWS forecasts in NDFD. The experimental/guidance NDGD data is not an official NWS forecast product.

    Source: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndgd/GT.aq/AR.conus/ds.smokes01.bin

    Where can I find other NDGD data?

    The Source data is downloaded and parsed using the Aggregated Live Feeds methodology to return information that can be served through ArcGIS Server as a map service.

    What can you do with this layer?

    This map service is suitable for data discovery and visualization. Identify features by clicking on the map to reveal the pre-configured pop-ups. View the time-enabled data using the time slider by Enabling Time Animation.

    This map is provided for informational purposes and is not monitored 24/7 for accuracy and currency.

  13. A

    Station ID, Air Temperature (deg F), Dew Point Temperature (deg F), Wind...

    • data.amerigeoss.org
    csv, esri rest +5
    Updated Jul 5, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmeriGEO ArcGIS (2017). Station ID, Air Temperature (deg F), Dew Point Temperature (deg F), Wind Gust (kt), Mean Sea-Level Pressure (mb), 3-Hour Pressure Change (mb), Visibility (mi), Sea Surface Temperature (deg F), Significant Wave Height (ft) - Scale Band 1 [Dataset]. https://data.amerigeoss.org/dataset/ca3e4ccc-1b41-4d82-bb16-2daa48ce050e
    Explore at:
    geojson, html, csv, kml, ogc wms, esri rest, zipAvailable download formats
    Dataset updated
    Jul 5, 2017
    Dataset provided by
    AmeriGEO ArcGIS
    Description
    Last Updated: January 2015
    Map Information

    This nowCOAST time-enabled map service provides map depicting the latest surface weather and marine weather observations at observing sites using the international station model. The station model is method for representing information collected at an observing station using symbols and numbers. The station model depicts current weather conditions, cloud cover, wind speed, wind direction, visibility, air temperature, dew point temperature, sea surface water temperature, significant wave height, air pressure adjusted to mean sea level, and the change in air pressure over the last 3 hours. The circle in the model is centered over the latitude and longitude coordinates of the station. The total cloud cover is expressed as a fraction of cloud covering the sky and is indicated by the amount of circle filled in. (Cloud cover is not presently displayed due to a problem with the source data. Present weather information is also not available for display at this time.) Wind speed and direction are represented by a wind barb whose line extends from the cover cloud circle towards the direction from which the wind is blowing. The short lines or flags coming off the end of the long line are called barbs. The barb indicates the wind speed in knots. Each normal barb represents 10 knots, while short barbs indicate 5 knots. A flag represents 50 knots. If there is no wind barb depicted, an outer circle around the cloud cover symbol indicates calm winds. The map of observations are updated in the nowCOAST map service approximately every 10 minutes. However, since the reporting frequency varies by network or station, the observation at a particular station may have not updated and may not update until after the next hour. For more detailed information about the update schedule, please see: http://new.nowcoast.noaa.gov/help/#section=updateschedule

    Background Information

    The maps of near-real-time surface weather and ocean observations are based on non-restricted data obtained from the NWS Family of Services courtesy of NESDIS/OPSD and also the NWS Meteorological Assimilation Data Ingest System (MADIS). The data includes observations from terrestrial and maritime observing from the U.S.A. and other countries. For terrestrial networks, the platforms including but not limited to ASOS, AWOS, RAWS, non-automated stations, U.S. Climate Reference Networks, many U.S. Geological Survey Stations via NWS HADS, several state DOT Road Weather Information Systems, and U.S. Historical Climatology Network-Modernization. For over maritime areas, the platforms include NOS/CO-OPS National Water Level Observation Network (NWLON), NOS/CO-OPS Physical Oceanographic Observing Network (PORTS), NWS/NDBC Fixed Buoys, NDBC Coastal-Marine Automated Network (C-MAN), drifting buoys, ferries, Regional Ocean Observing System (ROOS) coastal stations and buoys, and ships participating in the Voluntary Ship Observing (VOS) Program. Observations from MADIS are updated approximately every 10 minutes in the map service and those from NESDIS are updated every hour. However, not all stations report that frequently. Many stations only report once per hour sometime between 15 minutes before the hour and 30 minutes past the hour. For these stations, new observations will not appear until 22 minutes past top of the hour for land-based stations and 32 minutes past the top of the hour for maritime stations.

    Time Information

    This map is time-enabled, meaning that each individual layer contains time-varying data and can be utilized by clients capable of making map requests that include a time component.

    This particular service can be queried with or without the use of a time component. If the time parameter is specified in a request, the data or imagery most relevant to the provided time value, if any, will be returned. If the time parameter is not specified in a request, the latest data or imagery valid for the present system time will be returned to the client. If the time parameter is not specified and no data or imagery is available for the present time, no data will be returned.

    In addition to ArcGIS Server REST access, time-enabled OGC WMS 1.3.0 access is also provided by this service.

    Due to software limitations, the time extent of the service and map layers displayed below does not provide the most up-to-date start and end times of available data. Instead, users have three options for determining the latest time information about the service:

    1. Issue a returnUpdates=true request for an individual layer or for the service itself, which will return the current start and end times of available data, in epoch time format (milliseconds since 00:00 January 1, 1970). To see an example, click on the "Return Updates" link at the bottom of this page under "Supported Operations". Refer to the ArcGIS REST API Map Service Documentation for more information.
    2. Issue an Identify (ArcGIS REST) or GetFeatureInfo (WMS) request against the proper layer corresponding with the target dataset. For raster data, this would be the "Image Footprints with Time Attributes" layer in the same group as the target "Image" layer being displayed. For vector (point, line, or polygon) data, the target layer can be queried directly. In either case, the attributes returned for the matching raster(s) or vector feature(s) will include the following:
      • validtime: Valid timestamp.
      • starttime: Display start time.
      • endtime: Display end time.
      • reftime: Reference time (sometimes reffered to as issuance time, cycle time, or initialization time).
      • projmins: Number of minutes from reference time to valid time.
      • desigreftime: Designated reference time; used as a common reference time for all items when individual reference times do not match.
      • desigprojmins: Number of minutes from designated reference time to valid time.
    3. Query the nowCOAST LayerInfo web service, which has been created to provide additional information about each data layer in a service, including a list of all available "time stops" (i.e. "valid times"), individual timestamps, or the valid time of a layer's latest available data (i.e. "Product Time"). For more information about the LayerInfo web service, including examples of various types of requests, refer to the nowCOAST help documentation at: http://new.nowcoast.noaa.gov/help/#section=layerinfo
    References
  14. Surface Water Currents w/Speed

    • data.amerigeoss.org
    Updated Sep 8, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA GeoPlatform (2020). Surface Water Currents w/Speed [Dataset]. https://data.amerigeoss.org/dataset/surface-water-currents-w-speed
    Explore at:
    arcgis geoservices rest api, html, csv, geojsonAvailable download formats
    Dataset updated
    Sep 8, 2020
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Description
    Map Information

    This nowCOAST time-enabled map service provides maps depicting the latest global forecast guidance of water currents, water temperature, and salinity at forecast projections: 0, 12, 24, 36, 48, 60, 72, 84, and 96-hours from the NWS/NCEP Global Real-Time Ocean Forecast System (GRTOFS). The surface water currents velocity maps displays the direction using white or black streaklets. The magnitude of the current is indicated by the length and width of the streaklet. The maps of the GRTOFS surface forecast guidance are updated on the nowCOAST map service once per day. For more detailed information about the update schedule, see: https://new.nowcoast.noaa.gov/help/#section=updateschedule

    Background Information

    GRTOFS is based on the Hybrid Coordinates Ocean Model (HYCOM), an eddy resolving, hybrid coordinate numerical ocean prediction model. GRTOFS has global coverge and a horizontal resolution of 1/12 degree and 32 hybrid vertical layers. It has one forecast cycle per day (i.e. 0000 UTC) which generates forecast guidance out to 144 hours (6 days). However, nowCOAST only provides guidance out to 96 hours (4 days). The forecast cycle uses 3-hourly momentum and radiation fluxes along with precipitation predictions from the NCEP Global Forecast System (GFS). Each forecast cycle is preceded with a 48-hr long nowcast cycle. The nowcast cycle uses daily initial 3-D fields from the NAVOCEANO operational HYCOM-based forecast system which assimilates situ profiles of temperature and salinity from a variety of sources and remotely sensed SST, SSH and sea-ice concentrations. GRTOFS was developed by NCEP/EMC/Marine Modeling and Analysis Programs. GRTOFS is run once per day (0000 UTC forecast cycle) on the NOAA Weather and Climate Operational Supercomputer System (WCOSS) operated by NWS/NCEP Central Operations.

    The maps are generated using a visualization technique was developed by the Data Visualization Research Lab at The University of New Hampshire Center for Coastal and Ocean Mapping (https://www.ccom.unh.edu/vislab/). The method combines two techniques. First, equally spaced streamlines are computed in the flow field using Jobard and Lefer's (1977) algorithm. Second, a series of "streaklets" are rendered head to tail along each streamline to show the direction of flow. Each of these varies along its length in size, color and transparency using a method developed by Fowler and Ware (1989), and later refined by Mr. Pete Mitchell and Dr. Colin Ware (Mitchell, 2007).

    Time Information

    This map is time-enabled, meaning that each individual layer contains time-varying data and can be utilized by clients capable of making map requests that include a time component.

    This particular service can be queried with or without the use of a time component. If the time parameter is specified in a request, the data or imagery most relevant to the provided time value, if any, will be returned. If the time parameter is not specified in a request, the latest data or imagery valid for the present system time will be returned to the client. If the time parameter is not specified and no data or imagery is available for the present time, no data will be returned.

    In addition to ArcGIS Server REST access, time-enabled OGC WMS 1.3.0 access is also provided by this service.

    Due to software limitations, the time extent of the service and map layers displayed below does not provide the most up-to-date start and end times of available data. Instead, users have three options for determining the latest time information about the service:

    1. Issue a returnUpdates=true request for an individual layer or for the service itself, which will return the current start and end times of available data, in epoch time format (milliseconds since 00:00 January 1, 1970). To see an example, click on the "Return Updates" link at the bottom of this page under "Supported Operations". Refer to the ArcGIS REST API Map Service Documentation for more information.
    2. Issue an Identify (ArcGIS REST) or GetFeatureInfo (WMS) request against the proper layer corresponding with the target dataset. For raster data, this would be the "Image Footprints with Time Attributes" layer in the same group as the target "Image" layer being displayed. For vector (point, line, or polygon) data, the target layer can be queried directly. In either case, the attributes returned for the matching raster(s) or vector feature(s) will include the following:
      • validtime: Valid timestamp.
      • starttime: Display start time.
      • endtime: Display end time.
      • reftime: Reference time (sometimes reffered to as issuance time, cycle time, or initialization time).
      • projmins: Number of minutes from reference time to valid time.
      • desigreftime: Designated reference time; used as a common reference time for all items when individual reference times do not match.
      • desigprojmins: Number of minutes from designated reference time to valid time.
    3. Query the nowCOAST LayerInfo web service, which has been created to provide additional information about each data layer in a service, including a list of all available "time stops" (i.e. "valid times"), individual timestamps, or the valid time of a layer's latest available data (i.e. "Product Time"). For more information about the LayerInfo web service, including examples of various types of requests, refer to the nowCOAST help documentation at:https://new.nowcoast.noaa.gov/help/#section=layerinfo
    References
    • Fowler, D. and C. Ware, 1989: Strokes for Representing Vector Field Maps. Proceedings: Graphics Interface '98 249-253.
    • Jobard, B and W. Lefer,1977: Creating evenly spaced streamlines of arbitrary density. Proceedings: Eurographics workshop on Visualization in Scientific Computing. 43-55.
    • Mitchell, P.W., 2007: The Perceptual optimization of 2D Flow Visualizations Using Human in the Loop Local Hill Climbing. University of New Hampshire Masters Thesis. Department of Computer Science.
    • NWS, 2013: About Global RTOFS, NCEP/EMC/MMAB, College Park, MD (Available at https://polar.ncep.noaa.gov/global/about/).
    • Chassignet, E.P., H.E. Hurlburt, E.J. Metzger, O.M. Smedstad, J. Cummings, G.R. Halliwell, R. Bleck, R. Baraille, A.J. Wallcraft, C. Lozano, H.L. Tolman, A. Srinivasan, S. Hankin, P. Cornillon, R. Weisberg, A. Barth, R. He, F. Werner, and J. Wilkin, 2009: U.S. GODAE: Global Ocean Prediction with the HYbrid Coordinate Ocean Model (HYCOM). Oceanography, 22(2), 64-75.
    • Mehra, A, I. Rivin, H. Tolman, T. Spindler, and B. Balasubramaniyan, 2011: A Real-Time Operational Global Ocean Forecast System, Poster, GODAE OceanView –GSOP-CLIVAR Workshop in Observing System Evaluation and Intercomparisons, Santa Cruz, CA.
  15. A

    Surface (2m AGL) Relative Humidity (%)

    • data.amerigeoss.org
    csv, esri rest +2
    Updated Jul 5, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmeriGEO ArcGIS (2017). Surface (2m AGL) Relative Humidity (%) [Dataset]. https://data.amerigeoss.org/vi/dataset/surface-2m-agl-relative-humidity
    Explore at:
    geojson, csv, html, esri restAvailable download formats
    Dataset updated
    Jul 5, 2017
    Dataset provided by
    AmeriGEO ArcGIS
    Description

    Map Information

    This nowCOAST time-enabled map service provides maps depicting NWS gridded forecasts of the following selected sensible surface weather variables or elements: air temperature (including daily maximum and minimum), apparent air temperature, dew point temperature, relative humidity, wind velocity, wind speed, wind gust, total sky cover, and significant wave height for the next 6-7 days. Additional forecast maps are available for 6-hr quantitative precipitation (QPF), 6-hr quantitative snowfall, and 12-hr probability of precipitation. These NWS forecasts are from the National Digital Forecast Database (NDFD) at a 2.5 km horizontal spatial resolution. Surface is defined as 10 m (33 feet) above ground level (AGL) for wind variables and 2 m (5.5 ft) AGL for air temperature, dew point temperature, and relative humidity variables. The forecasts extend out to 7 days from 0000 UTC on Day 1 (current day). The forecasts are updated in the nowCOAST map service four times per day. For more detailed information about the update schedule, please see: http://new.nowcoast.noaa.gov/help/#section=updateschedule

    The forecast projection availability times listed below are generally accurate, however forecast interval and forecast horizon vary by region and variable. For the most up-to-date information, please see http://www.nws.noaa.gov/ndfd/resources/NDFD_element_status.pdf and http://graphical.weather.gov/docs/datamanagement.php.

    The forecasts of the air, apparent, and dew point temperatures are displayed using different colors at 2 degree Fahrenheit increments from -30 to 130 degrees F in order to use the same color legend throughout the year for the United States. This is the same color scale used for displaying the NDFD maximum and minimum air temperature forecasts. Air and dew point temperature forecasts are available every hour out to +36 hours from forecast issuance time, at 3-hour intervals from +36 to +72 hours, and at 6-hour intervals from +72 to +168 hours (7 days). Maximum and minimum air temperature forecasts are each available every 24 hours out to +168 hours (7 days) from 0000 UTC on Day 1 (current day).

    The relative humidity (RH) forecasts are depicted using different colors for every 5-percent interval. The increment and color scale used to display the RH forecasts were developed to highlight NWS local fire weather watch/red flag warning RH criteria at the low end (e.g. 15, 25, & 35% thresholds) and important high end RH thresholds for other users (e.g. agricultural producers) such as 95%. The RH forecasts are available every hour out to +36 hours from 0000 UTC on Day 1 (current day), at 3-hour intervals from +36 to +72 hours, and at 6-hour intervals from +72 to +168 hours (7 days).

    The 6-hr total precipitation amount forecasts or QPFs are symbolized using different colors at 0.01, 0.10, 0.25 inch intervals, at 1/4 inch intervals up to 4.0 (e.g. 0.50, 0.75, 1.00, 1.25, etc.), at 1-inch intervals from 4 to 10 inches and then at 2-inch intervals up to 14 inches. The increments from 0.01 to 1.00 or 2.00 inches are similar to what are used on NCEP/Weather Prediction Center's QPF products and the NWS River Forecast Center (RFC) daily precipitation analysis. Precipitation forecasts are available for each 6-hour period out to +72 hours (3 days) from 0000 UTC on Day 1 (current day).

    The 6-hr total snowfall amount forecasts are depicted using different colors at 1-inch intervals for snowfall greater than 0.01 inches. Snowfall forecasts are available for each 6-hour period out to +48 hours (2 days) from 0000 UTC on Day 1 (current day).

    The 12-hr probability of precipitation (PoP) forecasts are displayed for probabilities over 10 percent using different colors at 10, 20, 30, 60, and 85+ percent. The probability of precipitation forecasts are available for each 12-hour period out to +72 hours (3 days) from 0000 UTC on Day 1 (current day).

    The wind speed and wind gust forecasts are depicted using different colors at 5 knots increment up to 115 knots. The legend includes tick marks for both knots and miles per hour. The same color scale is used for displaying the RTMA surface wind speed forecasts. The wind velocity is depicted by curved wind barbs along streamlines. The direction of the wind is indicated with an arrowhead on the wind barb. The flags on the wind barb are the standard meteorological convention in units of knots. The wind speed and wind velocity forecasts are available hourly out to +36 hours from 00:00 UTC on Day 1 (current day), at 3-hour intervals out to +72 hours, and at 6-hour intervals from +72 to +168 hours (7 days). The wind gust forecasts are available hourly out to +36 hours from 0000 UTC on Day 1 (current day) and at 3-hour intervals out to +72 hours (3 days).

    The total sky cover forecasts are displayed using progressively darker shades of gray for 10, 30, 60, and 80+ percentage values. Sky cover values under 10 percent are shown as transparent. The sky cover forecasts are available for each hour out to +36 hours from 0000 UTC on Day 1 (current day), every 3 hours from +36 to +72 hours, and every 6 hours from +72 to +168 hours (7 days).

    The significant wave height forecasts are symbolized with different colors at 1-foot intervals up to 20 feet and at 5-foot intervals from 20 feet to 35+ feet. The significant wave height forecasts are available for each hour out to +36 hours from 0000 UTC on Day 1 (current day), every 3 hours from +36 to +72 hours, and every 6 hours from +72 to +144 hours (6 days).

    Background Information

    The NDFD is a seamless composite or mosaic of gridded forecasts from individual NWS Weather Forecast Offices (WFOs) from around the U.S. as well as the NCEP/Ocean Prediction Center and National Hurricane Center/TAFB. NDFD has a spatial resolution of 2.5 km. The 2.5km resolution NDFD forecasts are presently experimental, but are scheduled to become operational in May/June 2014. The time resolution of forecast projections varies by variable (element) based on user needs, forecast skill, and forecaster workload. Each WFO prepares gridded NDFD forecasts for their specific geographic area of responsibility. When these locally generated forecasts are merged into a national mosaic, occasionally areas of discontinuity will be evident. Staff at NWS forecast offices attempt to resolve discontinuities along the boundaries of the forecasts by coordinating with forecasters at surrounding WFOs and using workstation forecast tools that identify and resolve some of these differences. The NWS is making progress in this area, and recognizes that this is a significant issue in which improvements are still needed. The NDFD was developed by NWS Meteorological Development Laboratory.

    As mentioned above, a curved wind barb with an arrow head is used to display the wind velocity forecasts instead of the traditional wind barb. The curved wind barb was developed and evaluated at the Data Visualization Laboratory of the NOAA-UNH Joint Hydrographic Center/Center for Coastal and Ocean Mapping (Ware et al., 2014). The curved wind barb combines the best features of the wind barb, that it displays speed in a readable form, with the best features of the streamlines which shows wind patterns. The arrow head helps to convey the flow direction.

    Time Information

    This map is time-enabled, meaning that each individual layer contains time-varying data and can be utilized by clients capable of making map requests that include a time component.

    This particular service can be queried with or without the use of a time component. If the time parameter is specified in a request, the data or imagery most relevant to the provided time value, if any, will be returned. If the time parameter is not specified in a request, the latest data or imagery valid for the present system time will be returned to the client. If the time parameter is not specified and no data or imagery is available for the present time, no data will be returned.

    In addition to ArcGIS Server REST access, time-enabled OGC WMS 1.3.0 access is also provided by this service.

    Due to software limitations, the time extent of the service and map layers displayed below does not provide the most up-to-date start and end times of available data. Instead, users have three options for determining the latest time information about the service:

    1. Issue a returnUpdates=true request for an individual layer or for the service itself, which will return the current start and end times of available data, in epoch time format (milliseconds since 00:00 January 1, 1970). To see an example, click on the "Return Updates" link at the bottom of this page under "Supported Operations". Refer to the ArcGIS REST API Map Service Documentation for more information.
    2. Issue an Identify (ArcGIS REST) or GetFeatureInfo (WMS) request against the proper layer corresponding with the target dataset. For raster data, this would be the "Image Footprints with Time Attributes" layer in the same group as the target "Image" layer being displayed. For vector (point, line, or polygon) data, the target layer can be queried directly. In either case, the attributes

  16. n

    NOAA ALL Storm Reports (past week)

    • prep-response-portal.napsgfoundation.org
    • geodata.colorado.gov
    • +12more
    Updated Jun 12, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2019). NOAA ALL Storm Reports (past week) [Dataset]. https://prep-response-portal.napsgfoundation.org/datasets/esri2::usa-storm-reports?layer=4
    Explore at:
    Dataset updated
    Jun 12, 2019
    Dataset authored and provided by
    Esri
    Area covered
    Description

    This map contains continuously updated U.S. tornado reports, wind storm reports and hail storm reports. Click each feature to receive information about the specific location and read a short description about the issue.Now contains ALL available Incident Report types, for a total of 15, not just Hail; Wind; and Tornados.See new layer for details or Feature Layer Item with exclusive Past 24-Hour ALL Storm Reports Layer.Each layer is updated 4 times hourly from data provided by NOAA’s National Weather Service Storm Prediction Center.A full archive of storm events can be accessed from the NOAA National Centers for Environmental Information.SourceNOAA Storm Prediction Center https://www.spc.noaa.gov/climo/reportsNOAA ALL Storm Reports layer https://www.spc.noaa.gov/exper/reportsSample DataSee Sample Layer Item for sample data during inactive periods!Update FrequencyThe service is updated every 15 minutes using the Aggregated Live Feeds MethodologyArea CoveredCONUS (Contiguous United States)What can you do with this layer?This map service is suitable for data discovery and visualization.Change the symbology of each layer using single or bi-variate smart mapping. For instance, use size or color to indicate the intensity of a tornado.Click each feature to receive information about the specific location and read a short description about the issue.Query the attributes to show only specific event types or locations.Revisions:Aug 10, 2021: Updated Classic Layers to use new Symbols. Corrected Layer Order Presentation. Updated Thumbnail.Aug 8, 2021: Update to layer-popups, correcting link URLs. Expanded length of 'Comment' fields to 1kb of text. New Layer added that includes ALL available Incident Types and Age in 'Hours Old'.This map is provided for informational purposes and is not monitored 24/7 for accuracy and currency.If you would like to be alerted to potential issues or simply see when this service will update next, please visit our Live Feed Status Page.

  17. Image Footprints with Time Attributes

    • data.amerigeoss.org
    Updated Sep 8, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA GeoPlatform (2020). Image Footprints with Time Attributes [Dataset]. https://data.amerigeoss.org/is/dataset/image-footprints-with-time-attributes32
    Explore at:
    kml, geojson, csv, zip, ogc wms, arcgis geoservices rest api, htmlAvailable download formats
    Dataset updated
    Sep 8, 2020
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Description
    Map Information

    This nowCOAST time-enabled map service provides maps depicting the latest global forecast guidance of water currents, water temperature, and salinity at forecast projections: 0, 12, 24, 36, 48, 60, 72, 84, and 96-hours from the NWS/NCEP Global Real-Time Ocean Forecast System (GRTOFS). The surface water currents velocity maps displays the direction using white or black streaklets. The magnitude of the current is indicated by the length and width of the streaklet. The maps of the GRTOFS surface forecast guidance are updated on the nowCOAST map service once per day. For more detailed information about the update schedule, see: https://new.nowcoast.noaa.gov/help/#section=updateschedule

    Background Information

    GRTOFS is based on the Hybrid Coordinates Ocean Model (HYCOM), an eddy resolving, hybrid coordinate numerical ocean prediction model. GRTOFS has global coverge and a horizontal resolution of 1/12 degree and 32 hybrid vertical layers. It has one forecast cycle per day (i.e. 0000 UTC) which generates forecast guidance out to 144 hours (6 days). However, nowCOAST only provides guidance out to 96 hours (4 days). The forecast cycle uses 3-hourly momentum and radiation fluxes along with precipitation predictions from the NCEP Global Forecast System (GFS). Each forecast cycle is preceded with a 48-hr long nowcast cycle. The nowcast cycle uses daily initial 3-D fields from the NAVOCEANO operational HYCOM-based forecast system which assimilates situ profiles of temperature and salinity from a variety of sources and remotely sensed SST, SSH and sea-ice concentrations. GRTOFS was developed by NCEP/EMC/Marine Modeling and Analysis Programs. GRTOFS is run once per day (0000 UTC forecast cycle) on the NOAA Weather and Climate Operational Supercomputer System (WCOSS) operated by NWS/NCEP Central Operations.

    The maps are generated using a visualization technique was developed by the Data Visualization Research Lab at The University of New Hampshire Center for Coastal and Ocean Mapping (https://www.ccom.unh.edu/vislab/). The method combines two techniques. First, equally spaced streamlines are computed in the flow field using Jobard and Lefer's (1977) algorithm. Second, a series of "streaklets" are rendered head to tail along each streamline to show the direction of flow. Each of these varies along its length in size, color and transparency using a method developed by Fowler and Ware (1989), and later refined by Mr. Pete Mitchell and Dr. Colin Ware (Mitchell, 2007).

    Time Information

    This map is time-enabled, meaning that each individual layer contains time-varying data and can be utilized by clients capable of making map requests that include a time component.

    This particular service can be queried with or without the use of a time component. If the time parameter is specified in a request, the data or imagery most relevant to the provided time value, if any, will be returned. If the time parameter is not specified in a request, the latest data or imagery valid for the present system time will be returned to the client. If the time parameter is not specified and no data or imagery is available for the present time, no data will be returned.

    In addition to ArcGIS Server REST access, time-enabled OGC WMS 1.3.0 access is also provided by this service.

    Due to software limitations, the time extent of the service and map layers displayed below does not provide the most up-to-date start and end times of available data. Instead, users have three options for determining the latest time information about the service:

    1. Issue a returnUpdates=true request for an individual layer or for the service itself, which will return the current start and end times of available data, in epoch time format (milliseconds since 00:00 January 1, 1970). To see an example, click on the "Return Updates" link at the bottom of this page under "Supported Operations". Refer to the ArcGIS REST API Map Service Documentation for more information.
    2. Issue an Identify (ArcGIS REST) or GetFeatureInfo (WMS) request against the proper layer corresponding with the target dataset. For raster data, this would be the "Image Footprints with Time Attributes" layer in the same group as the target "Image" layer being displayed. For vector (point, line, or polygon) data, the target layer can be queried directly. In either case, the attributes returned for the matching raster(s) or vector feature(s) will include the following:
      • validtime: Valid timestamp.
      • starttime: Display start time.
      • endtime: Display end time.
      • reftime: Reference time (sometimes reffered to as issuance time, cycle time, or initialization time).
      • projmins: Number of minutes from reference time to valid time.
      • desigreftime: Designated reference time; used as a common reference time for all items when individual reference times do not match.
      • desigprojmins: Number of minutes from designated reference time to valid time.
    3. Query the nowCOAST LayerInfo web service, which has been created to provide additional information about each data layer in a service, including a list of all available "time stops" (i.e. "valid times"), individual timestamps, or the valid time of a layer's latest available data (i.e. "Product Time"). For more information about the LayerInfo web service, including examples of various types of requests, refer to the nowCOAST help documentation at:https://new.nowcoast.noaa.gov/help/#section=layerinfo
    References
    • Fowler, D. and C. Ware, 1989: Strokes for Representing Vector Field Maps. Proceedings: Graphics Interface '98 249-253.
    • Jobard, B and W. Lefer,1977: Creating evenly spaced streamlines of arbitrary density. Proceedings: Eurographics workshop on Visualization in Scientific Computing. 43-55.
    • Mitchell, P.W., 2007: The Perceptual optimization of 2D Flow Visualizations Using Human in the Loop Local Hill Climbing. University of New Hampshire Masters Thesis. Department of Computer Science.
    • NWS, 2013: About Global RTOFS, NCEP/EMC/MMAB, College Park, MD (Available at https://polar.ncep.noaa.gov/global/about/).
    • Chassignet, E.P., H.E. Hurlburt, E.J. Metzger, O.M. Smedstad, J. Cummings, G.R. Halliwell, R. Bleck, R. Baraille, A.J. Wallcraft, C. Lozano, H.L. Tolman, A. Srinivasan, S. Hankin, P. Cornillon, R. Weisberg, A. Barth, R. He, F. Werner, and J. Wilkin, 2009: U.S. GODAE: Global Ocean Prediction with the HYbrid Coordinate Ocean Model (HYCOM). Oceanography, 22(2), 64-75.
    • Mehra, A, I. Rivin, H. Tolman, T. Spindler, and B. Balasubramaniyan, 2011: A Real-Time Operational Global Ocean Forecast System, Poster, GODAE OceanView –GSOP-CLIVAR Workshop in Observing System Evaluation and Intercomparisons, Santa Cruz, CA.
  18. A

    Boundary

    • data.amerigeoss.org
    • gis.data.alaska.gov
    • +8more
    Updated Sep 2, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA GeoPlatform (2020). Boundary [Dataset]. https://data.amerigeoss.org/ca/dataset/boundary30
    Explore at:
    geojson, kml, html, arcgis geoservices rest api, ogc wms, zip, csvAvailable download formats
    Dataset updated
    Sep 2, 2020
    Dataset provided by
    NOAA GeoPlatform
    Description

    Map Information

    This nowCOAST time-enabled map service provides maps depicting NWS gridded forecasts of the following selected sensible surface weather variables or elements: air temperature (including daily maximum and minimum), apparent air temperature, dew point temperature, relative humidity, wind velocity, wind speed, wind gust, total sky cover, and significant wave height for the next 6-7 days. Additional forecast maps are available for 6-hr quantitative precipitation (QPF), 6-hr quantitative snowfall, and 12-hr probability of precipitation. These NWS forecasts are from the National Digital Forecast Database (NDFD) at a 2.5 km horizontal spatial resolution. Surface is defined as 10 m (33 feet) above ground level (AGL) for wind variables and 2 m (5.5 ft) AGL for air temperature, dew point temperature, and relative humidity variables. The forecasts extend out to 7 days from 0000 UTC on Day 1 (current day). The forecasts are updated in the nowCOAST map service four times per day. For more detailed information about the update schedule, please see: https://new.nowcoast.noaa.gov/help/#section=updateschedule

    The forecast projection availability times listed below are generally accurate, however forecast interval and forecast horizon vary by region and variable. For the most up-to-date information, please see https://graphical.weather.gov/docs/datamanagement.php.

    The forecasts of the air, apparent, and dew point temperatures are displayed using different colors at 2 degree Fahrenheit increments from -30 to 130 degrees F in order to use the same color legend throughout the year for the United States. This is the same color scale used for displaying the NDFD maximum and minimum air temperature forecasts. Air and dew point temperature forecasts are available every hour out to +36 hours from forecast issuance time, at 3-hour intervals from +36 to +72 hours, and at 6-hour intervals from +72 to +168 hours (7 days). Maximum and minimum air temperature forecasts are each available every 24 hours out to +168 hours (7 days) from 0000 UTC on Day 1 (current day).

    The relative humidity (RH) forecasts are depicted using different colors for every 5-percent interval. The increment and color scale used to display the RH forecasts were developed to highlight NWS local fire weather watch/red flag warning RH criteria at the low end (e.g. 15, 25, & 35% thresholds) and important high end RH thresholds for other users (e.g. agricultural producers) such as 95%. The RH forecasts are available every hour out to +36 hours from 0000 UTC on Day 1 (current day), at 3-hour intervals from +36 to +72 hours, and at 6-hour intervals from +72 to +168 hours (7 days).

    The 6-hr total precipitation amount forecasts or QPFs are symbolized using different colors at 0.01, 0.10, 0.25 inch intervals, at 1/4 inch intervals up to 4.0 (e.g. 0.50, 0.75, 1.00, 1.25, etc.), at 1-inch intervals from 4 to 10 inches and then at 2-inch intervals up to 14 inches. The increments from 0.01 to 1.00 or 2.00 inches are similar to what are used on NCEP/Weather Prediction Center's QPF products and the NWS River Forecast Center (RFC) daily precipitation analysis. Precipitation forecasts are available for each 6-hour period out to +72 hours (3 days) from 0000 UTC on Day 1 (current day).

    The 6-hr total snowfall amount forecasts are depicted using different colors at 1-inch intervals for snowfall greater than 0.01 inches. Snowfall forecasts are available for each 6-hour period out to +48 hours (2 days) from 0000 UTC on Day 1 (current day).

    The 12-hr probability of precipitation (PoP) forecasts are displayed for probabilities over 10 percent using different colors at 10, 20, 30, 60, and 85+ percent. The probability of precipitation forecasts are available for each 12-hour period out to +72 hours (3 days) from 0000 UTC on Day 1 (current day).

    The wind speed and wind gust forecasts are depicted using different colors at 5 knots increment up to 115 knots. The legend includes tick marks for both knots and miles per hour. The same color scale is used for displaying the RTMA surface wind speed forecasts. The wind velocity is depicted by curved wind barbs along streamlines. The direction of the wind is indicated with an arrowhead on the wind barb. The flags on the wind barb are the standard meteorological convention in units of knots. The wind speed and wind velocity forecasts are available hourly out to +36 hours from 00:00 UTC on Day 1 (current day), at 3-hour intervals out to +72 hours, and at 6-hour intervals from +72 to +168 hours (7 days). The wind gust forecasts are available hourly out to +36 hours from 0000 UTC on Day 1 (current day) and at 3-hour intervals out to +72 hours (3 days).

    The total sky cover forecasts are displayed using progressively darker shades of gray for 10, 30, 60, and 80+ percentage values. Sky cover values under 10 percent are shown as transparent. The sky cover forecasts are available for each hour out to +36 hours from 0000 UTC on Day 1 (current day), every 3 hours from +36 to +72 hours, and every 6 hours from +72 to +168 hours (7 days).

    The significant wave height forecasts are symbolized with different colors at 1-foot intervals up to 20 feet and at 5-foot intervals from 20 feet to 35+ feet. The significant wave height forecasts are available for each hour out to +36 hours from 0000 UTC on Day 1 (current day), every 3 hours from +36 to +72 hours, and every 6 hours from +72 to +144 hours (6 days).

    Background Information

    The NDFD is a seamless composite or mosaic of gridded forecasts from individual NWS Weather Forecast Offices (WFOs) from around the U.S. as well as the NCEP/Ocean Prediction Center and National Hurricane Center/TAFB. NDFD has a spatial resolution of 2.5 km. The 2.5km resolution NDFD forecasts are presently experimental, but are scheduled to become operational in May/June 2014. The time resolution of forecast projections varies by variable (element) based on user needs, forecast skill, and forecaster workload. Each WFO prepares gridded NDFD forecasts for their specific geographic area of responsibility. When these locally generated forecasts are merged into a national mosaic, occasionally areas of discontinuity will be evident. Staff at NWS forecast offices attempt to resolve discontinuities along the boundaries of the forecasts by coordinating with forecasters at surrounding WFOs and using workstation forecast tools that identify and resolve some of these differences. The NWS is making progress in this area, and recognizes that this is a significant issue in which improvements are still needed. The NDFD was developed by NWS Meteorological Development Laboratory.

    As mentioned above, a curved wind barb with an arrow head is used to display the wind velocity forecasts instead of the traditional wind barb. The curved wind barb was developed and evaluated at the Data Visualization Laboratory of the NOAA-UNH Joint Hydrographic Center/Center for Coastal and Ocean Mapping (Ware et al., 2014). The curved wind barb combines the best features of the wind barb, that it displays speed in a readable form, with the best features of the streamlines which shows wind patterns. The arrow head helps to convey the flow direction.

    Time Information

    This map is time-enabled, meaning that each individual layer contains time-varying data and can be utilized by clients capable of making map requests that include a time component.

    This particular service can be queried with or without the use of a time component. If the time parameter is specified in a request, the data or imagery most relevant to the provided time value, if any, will be returned. If the time parameter is not specified in a request, the latest data or imagery valid for the present system time will be returned to the client. If the time parameter is not specified and no data or imagery is available for the present time, no data will be returned.

    In addition to ArcGIS Server REST access, time-enabled OGC WMS 1.3.0 access is also provided by this service.

    Due to software limitations, the time extent of the service and map layers displayed below does not provide the most up-to-date start and end times of available data. Instead, users have three options for determining the latest time information about the service:

    1. Issue a returnUpdates=true request for an individual layer or for the service itself, which will return the current start and end times of available data, in epoch time format (milliseconds since 00:00 January 1, 1970). To see an example, click on the "Return Updates" link at the bottom of this page under "Supported Operations". Refer to the ArcGIS REST API Map Service Documentation for more information.
    2. Issue an Identify (ArcGIS REST) or GetFeatureInfo (WMS) request against the proper layer corresponding with the target dataset. For raster data, this would be the "Image Footprints with Time Attributes" layer in the same group as the target "Image" layer being displayed. For vector (point, line, or polygon) data, the target layer can be queried directly. In either case, the attributes returned for the matching raster(s) or vector feature(s) will include the following:
      • validtime: Valid timestamp.
      • starttime: Display start time.
      • endtime: Display end

  19. Surface Meteorological and Hydrologic Analyses - Quantitative Precipitation...

    • gis-calema.opendata.arcgis.com
    Updated Sep 10, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CA Governor's Office of Emergency Services (2022). Surface Meteorological and Hydrologic Analyses - Quantitative Precipitation Estimates [Dataset]. https://gis-calema.opendata.arcgis.com/maps/d0eb629f909e490ab699371b2767b2ea
    Explore at:
    Dataset updated
    Sep 10, 2022
    Dataset provided by
    California Governor's Office of Emergency Services
    Authors
    CA Governor's Office of Emergency Services
    Area covered
    Description

    Map InformationThis nowCOAST time-enabled map service provides maps depicting the NWS Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimate mosaics for 1-, 3-, 6-, 12-, 24-, 48-, and 72-hr time periods at a 1 km (0.6 miles) horizontal resolution for CONUS and southern part of Canada. The precipitation estimates are based only on radar data. The total precipitation amount is indicated by different colors at 0.01, 0.10, 0.25 and then at 1/4 inch intervals up to 4.0 inches (e.g. 0.50, 0.75, 1.00, 1.25, etc.), at 1-inch intervals from 4 to 10 inches and then at 2-inch intervals up to 14 inches. The increments from 0.01 to 1.00 or 2.00 inches are similar to what are used on NCEP's Weather Prediction Center QPF products and the NWS River Forecast Center (RFC) daily precipitation analysis. The 1-hr mosaic is updated every 4 minutes with a latency on nowCOAST of about 6-7 minutes from valid time. The 3-, 6-, 12-, and 24-hr QPEs are updated on nowCOAST every hour for the period ending at the top of the hour. The 48- and 72-hr QPEs are generated daily for the period ending at 12 UTC (i.e. 7AM EST) and available on nowCOAST shortly afterwards. For more detailed information about the update schedule.Background InformationThe NWS Multi-Radar Multi-Sensor System (MRMS)/Q3 QPEs are radar-only based quantitative precipitation analyses. The 1-h precipitation accumulation is obtained by aggregating 12 instantaneous rate fields. Missing rate fields are filled with the neighboring rate fields if the data gap is not significantly large (e.g.<=15 minutes). The instantaneous rate is computed from the hybrid scan reflectivity and the precipitation flag fields. (Both are 2-D derivative products from the National 3-D Reflectivity Mosaic grid which has a 1-km horizontal resolution, 31 vertical levels and a 5-minute update cycle). The instantaneous rate currently uses four Z-R relationships (i.e. tropical, convective, stratiform, or snow). The particular ZR relationship used in any grid cell depends on precipitation type which is indicated by the precipitation flag. The other accumulation products are derived by aggregating the hourly accumulations. The 1-hr QPE are generated every 4 minutes, while the 3-,6-,12-, and 24-hr accumulations are generated every hour at the top of the hour. The 48- and 72-hr QPEs are updated daily at approximately 12 UTC. MRMS was developed by NOAA/OAR/National Severe Storms Laboratory and migrated into NWS operations at NOAA Integrated Dissemination Program.Time InformationThis map is time-enabled, meaning that each individual layer contains time-varying data and can be utilized by clients capable of making map requests that include a time component.This particular service can be queried with or without the use of a time component. If the time parameter is specified in a request, the data or imagery most relevant to the provided time value, if any, will be returned. If the time parameter is not specified in a request, the latest data or imagery valid for the present system time will be returned to the client. If the time parameter is not specified and no data or imagery is available for the present time, no data will be returned.In addition to ArcGIS Server REST access, time-enabled OGC WMS 1.3.0 access is also provided by this service.Due to software limitations, the time extent of the service and map layers displayed below does not provide the most up-to-date start and end times of available data. Instead, users have three options for determining the latest time information about the service:Issue a returnUpdates=true request for an individual layer or for the service itself, which will return the current start and end times of available data, in epoch time format (milliseconds since 00:00 January 1, 1970). To see an example, click on the "Return Updates" link at the bottom of this page under "Supported Operations". Refer to the ArcGIS REST API Map Service Documentation for more information.Issue an Identify (ArcGIS REST) or GetFeatureInfo (WMS) request against the proper layer corresponding with the target dataset. For raster data, this would be the "Image Footprints with Time Attributes" layer in the same group as the target "Image" layer being displayed. For vector (point, line, or polygon) data, the target layer can be queried directly. In either case, the attributes returned for the matching raster(s) or vector feature(s) will include the following:validtime: Valid timestamp.starttime: Display start time.endtime: Display end time.reftime: Reference time (sometimes reffered to as issuance time, cycle time, or initialization time).projmins: Number of minutes from reference time to valid time.desigreftime: Designated reference time; used as a common reference time for all items when individual reference times do not match.desigprojmins: Number of minutes from designated reference time to valid time.Query the nowCOAST LayerInfo web service, which has been created to provide additional information about each data layer in a service, including a list of all available "time stops" (i.e. "valid times"), individual timestamps, or the valid time of a layer's latest available data (i.e. "Product Time"). For more information about the LayerInfo web service, including examples of various types of requests, refer to the nowCOAST help documentation.References For more information about the MRMS/Q3 system.

  20. A

    Total Cloud Cover (oktas) - Scale Band 1

    • data.amerigeoss.org
    • hurricane-tx-arcgisforem.hub.arcgis.com
    csv, esri rest +5
    Updated Jul 5, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmeriGEO ArcGIS (2017). Total Cloud Cover (oktas) - Scale Band 1 [Dataset]. https://data.amerigeoss.org/no/dataset/total-cloud-cover-oktas-scale-band-1
    Explore at:
    geojson, ogc wms, esri rest, kml, html, csv, zipAvailable download formats
    Dataset updated
    Jul 5, 2017
    Dataset provided by
    AmeriGEO ArcGIS
    Description
    Last Updated: January 2015
    Map Information

    This nowCOAST time-enabled map service provides map depicting the latest surface weather and marine weather observations at observing sites using the international station model. The station model is method for representing information collected at an observing station using symbols and numbers. The station model depicts current weather conditions, cloud cover, wind speed, wind direction, visibility, air temperature, dew point temperature, sea surface water temperature, significant wave height, air pressure adjusted to mean sea level, and the change in air pressure over the last 3 hours. The circle in the model is centered over the latitude and longitude coordinates of the station. The total cloud cover is expressed as a fraction of cloud covering the sky and is indicated by the amount of circle filled in. (Cloud cover is not presently displayed due to a problem with the source data. Present weather information is also not available for display at this time.) Wind speed and direction are represented by a wind barb whose line extends from the cover cloud circle towards the direction from which the wind is blowing. The short lines or flags coming off the end of the long line are called barbs. The barb indicates the wind speed in knots. Each normal barb represents 10 knots, while short barbs indicate 5 knots. A flag represents 50 knots. If there is no wind barb depicted, an outer circle around the cloud cover symbol indicates calm winds. The map of observations are updated in the nowCOAST map service approximately every 10 minutes. However, since the reporting frequency varies by network or station, the observation at a particular station may have not updated and may not update until after the next hour. For more detailed information about the update schedule, please see: http://new.nowcoast.noaa.gov/help/#section=updateschedule

    Background Information

    The maps of near-real-time surface weather and ocean observations are based on non-restricted data obtained from the NWS Family of Services courtesy of NESDIS/OPSD and also the NWS Meteorological Assimilation Data Ingest System (MADIS). The data includes observations from terrestrial and maritime observing from the U.S.A. and other countries. For terrestrial networks, the platforms including but not limited to ASOS, AWOS, RAWS, non-automated stations, U.S. Climate Reference Networks, many U.S. Geological Survey Stations via NWS HADS, several state DOT Road Weather Information Systems, and U.S. Historical Climatology Network-Modernization. For over maritime areas, the platforms include NOS/CO-OPS National Water Level Observation Network (NWLON), NOS/CO-OPS Physical Oceanographic Observing Network (PORTS), NWS/NDBC Fixed Buoys, NDBC Coastal-Marine Automated Network (C-MAN), drifting buoys, ferries, Regional Ocean Observing System (ROOS) coastal stations and buoys, and ships participating in the Voluntary Ship Observing (VOS) Program. Observations from MADIS are updated approximately every 10 minutes in the map service and those from NESDIS are updated every hour. However, not all stations report that frequently. Many stations only report once per hour sometime between 15 minutes before the hour and 30 minutes past the hour. For these stations, new observations will not appear until 22 minutes past top of the hour for land-based stations and 32 minutes past the top of the hour for maritime stations.

    Time Information

    This map is time-enabled, meaning that each individual layer contains time-varying data and can be utilized by clients capable of making map requests that include a time component.

    This particular service can be queried with or without the use of a time component. If the time parameter is specified in a request, the data or imagery most relevant to the provided time value, if any, will be returned. If the time parameter is not specified in a request, the latest data or imagery valid for the present system time will be returned to the client. If the time parameter is not specified and no data or imagery is available for the present time, no data will be returned.

    In addition to ArcGIS Server REST access, time-enabled OGC WMS 1.3.0 access is also provided by this service.

    Due to software limitations, the time extent of the service and map layers displayed below does not provide the most up-to-date start and end times of available data. Instead, users have three options for determining the latest time information about the service:

    1. Issue a returnUpdates=true request for an individual layer or for the service itself, which will return the current start and end times of available data, in epoch time format (milliseconds since 00:00 January 1, 1970). To see an example, click on the "Return Updates" link at the bottom of this page under "Supported Operations". Refer to the ArcGIS REST API Map Service Documentation for more information.
    2. Issue an Identify (ArcGIS REST) or GetFeatureInfo (WMS) request against the proper layer corresponding with the target dataset. For raster data, this would be the "Image Footprints with Time Attributes" layer in the same group as the target "Image" layer being displayed. For vector (point, line, or polygon) data, the target layer can be queried directly. In either case, the attributes returned for the matching raster(s) or vector feature(s) will include the following:
      • validtime: Valid timestamp.
      • starttime: Display start time.
      • endtime: Display end time.
      • reftime: Reference time (sometimes reffered to as issuance time, cycle time, or initialization time).
      • projmins: Number of minutes from reference time to valid time.
      • desigreftime: Designated reference time; used as a common reference time for all items when individual reference times do not match.
      • desigprojmins: Number of minutes from designated reference time to valid time.
    3. Query the nowCOAST LayerInfo web service, which has been created to provide additional information about each data layer in a service, including a list of all available "time stops" (i.e. "valid times"), individual timestamps, or the valid time of a layer's latest available data (i.e. "Product Time"). For more information about the LayerInfo web service, including examples of various types of requests, refer to the nowCOAST help documentation at: http://new.nowcoast.noaa.gov/help/#section=layerinfo
    References
Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2021). Outscraper Google Maps Scraper [Dataset]. https://datarade.ai/data-products/outscraper-google-maps-scraper-outscraper

Outscraper Google Maps Scraper

Explore at:
.csv, .xls, .jsonAvailable download formats
Dataset updated
Dec 9, 2021
Area covered
Guyana, Cameroon, Botswana, Mayotte, United States Minor Outlying Islands, Sint Eustatius and Saba, Egypt, Zimbabwe, Western Sahara, Uruguay
Description

Are you looking to identify B2B leads to promote your business, product, or service? Outscraper Google Maps Scraper might just be the tool you've been searching for. This powerful software enables you to extract business data directly from Google's extensive database, which spans millions of businesses across countless industries worldwide.

Outscraper Google Maps Scraper is a tool built with advanced technology that lets you scrape a myriad of valuable information about businesses from Google's database. This information includes but is not limited to, business names, addresses, contact information, website URLs, reviews, ratings, and operational hours.

Whether you are a small business trying to make a mark or a large enterprise exploring new territories, the data obtained from the Outscraper Google Maps Scraper can be a treasure trove. This tool provides a cost-effective, efficient, and accurate method to generate leads and gather market insights.

By using Outscraper, you'll gain a significant competitive edge as it allows you to analyze your market and find potential B2B leads with precision. You can use this data to understand your competitors' landscape, discover new markets, or enhance your customer database. The tool offers the flexibility to extract data based on specific parameters like business category or geographic location, helping you to target the most relevant leads for your business.

In a world that's growing increasingly data-driven, utilizing a tool like Outscraper Google Maps Scraper could be instrumental to your business' success. If you're looking to get ahead in your market and find B2B leads in a more efficient and precise manner, Outscraper is worth considering. It streamlines the data collection process, allowing you to focus on what truly matters – using the data to grow your business.

https://outscraper.com/google-maps-scraper/

As a result of the Google Maps scraping, your data file will contain the following details:

Query Name Site Type Subtypes Category Phone Full Address Borough Street City Postal Code State Us State Country Country Code Latitude Longitude Time Zone Plus Code Rating Reviews Reviews Link Reviews Per Scores Photos Count Photo Street View Working Hours Working Hours Old Format Popular Times Business Status About Range Posts Verified Owner ID Owner Title Owner Link Reservation Links Booking Appointment Link Menu Link Order Links Location Link Place ID Google ID Reviews ID

If you want to enrich your datasets with social media accounts and many more details you could combine Google Maps Scraper with Domain Contact Scraper.

Domain Contact Scraper can scrape these details:

Email Facebook Github Instagram Linkedin Phone Twitter Youtube

Search
Clear search
Close search
Google apps
Main menu