100+ datasets found
  1. Average data use of leading navigation apps in the U.S. 2020

    • statista.com
    Updated Oct 15, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2020). Average data use of leading navigation apps in the U.S. 2020 [Dataset]. https://www.statista.com/statistics/1186009/data-use-leading-us-navigation-apps/
    Explore at:
    Dataset updated
    Oct 15, 2020
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Oct 2020
    Area covered
    United States
    Description

    As of October 2020, the average amount of mobile data used by Apple Maps per 20 minutes was 1.83 MB, while Google maps used only 0.73 MB. Waze, which is also owned by Google, used the least amount at 0.23 MB per 20 minutes.

  2. Google Maps Dataset

    • brightdata.com
    .json, .csv, .xlsx
    Updated Jan 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2023). Google Maps Dataset [Dataset]. https://brightdata.com/products/datasets/google-maps
    Explore at:
    .json, .csv, .xlsxAvailable download formats
    Dataset updated
    Jan 8, 2023
    Dataset authored and provided by
    Bright Datahttps://brightdata.com/
    License

    https://brightdata.com/licensehttps://brightdata.com/license

    Area covered
    Worldwide
    Description

    The Google Maps dataset is ideal for getting extensive information on businesses anywhere in the world. Easily filter by location, business type, and other factors to get the exact data you need. The Google Maps dataset includes all major data points: timestamp, name, category, address, description, open website, phone number, open_hours, open_hours_updated, reviews_count, rating, main_image, reviews, url, lat, lon, place_id, country, and more.

  3. Most popular navigation apps in the U.S. 2023, by downloads

    • statista.com
    Updated Feb 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Most popular navigation apps in the U.S. 2023, by downloads [Dataset]. https://www.statista.com/statistics/865413/most-popular-us-mapping-apps-ranked-by-audience/
    Explore at:
    Dataset updated
    Feb 15, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    In 2023, Google Maps was the most downloaded map and navigation app in the United States, despite being a standard pre-installed app on Android smartphones. Waze followed, with 9.89 million downloads in the examined period. The app, which comes with maps and the possibility to access information on traffic via users reports, was developed in 2006 by the homonymous Waze company, acquired by Google in 2013.

    Usage of navigation apps in the U.S. As of 2021, less than two in 10 U.S. adults were using a voice assistant in their cars, in order to place voice calls or follow voice directions to a destination. Navigation apps generally offer the possibility for users to download maps to access when offline. Native iOS app Apple Maps, which does not offer this possibility, was by far the navigation app with the highest data consumption, while Google-owned Waze used only 0.23 MB per 20 minutes.

    Usage of navigation apps worldwide In July 2022, Google Maps was the second most popular Google-owned mobile app, with 13.35 million downloads from global users during the examined month. In China, the Gaode Map app, which is operated along with other navigation services by the Alibaba owned AutoNavi, had approximately 730 million monthly active users as of September 2022.

  4. 🌎 Location Intelligence Data | From Google Map

    • kaggle.com
    zip
    Updated Apr 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Azhar Saleem (2024). 🌎 Location Intelligence Data | From Google Map [Dataset]. https://www.kaggle.com/datasets/azharsaleem/location-intelligence-data-from-google-map
    Explore at:
    zip(1911275 bytes)Available download formats
    Dataset updated
    Apr 21, 2024
    Authors
    Azhar Saleem
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    👨‍💻 Author: Azhar Saleem

    "https://github.com/azharsaleem18" target="_blank"> https://img.shields.io/badge/GitHub-Profile-blue?style=for-the-badge&logo=github" alt="GitHub Profile"> "https://www.kaggle.com/azharsaleem" target="_blank"> https://img.shields.io/badge/Kaggle-Profile-blue?style=for-the-badge&logo=kaggle" alt="Kaggle Profile"> "https://www.linkedin.com/in/azhar-saleem/" target="_blank"> https://img.shields.io/badge/LinkedIn-Profile-blue?style=for-the-badge&logo=linkedin" alt="LinkedIn Profile">
    "https://www.youtube.com/@AzharSaleem19" target="_blank"> https://img.shields.io/badge/YouTube-Profile-red?style=for-the-badge&logo=youtube" alt="YouTube Profile"> "https://www.facebook.com/azhar.saleem1472/" target="_blank"> https://img.shields.io/badge/Facebook-Profile-blue?style=for-the-badge&logo=facebook" alt="Facebook Profile"> "https://www.tiktok.com/@azhar_saleem18" target="_blank"> https://img.shields.io/badge/TikTok-Profile-blue?style=for-the-badge&logo=tiktok" alt="TikTok Profile">
    "https://twitter.com/azhar_saleem18" target="_blank"> https://img.shields.io/badge/Twitter-Profile-blue?style=for-the-badge&logo=twitter" alt="Twitter Profile"> "https://www.instagram.com/azhar_saleem18/" target="_blank"> https://img.shields.io/badge/Instagram-Profile-blue?style=for-the-badge&logo=instagram" alt="Instagram Profile"> "mailto:azharsaleem6@gmail.com"> https://img.shields.io/badge/Email-Contact%20Me-red?style=for-the-badge&logo=gmail" alt="Email Contact">

    Dataset Overview

    Welcome to the Google Places Comprehensive Business Dataset! This dataset has been meticulously scraped from Google Maps and presents extensive information about businesses across several countries. Each entry in the dataset provides detailed insights into business operations, location specifics, customer interactions, and much more, making it an invaluable resource for data analysts and scientists looking to explore business trends, geographic data analysis, or consumer behaviour patterns.

    Key Features

    • Business Details: Includes unique identifiers, names, and contact information.
    • Geolocation Data: Precise latitude and longitude for pinpointing business locations on a map.
    • Operational Timings: Detailed opening and closing hours for each day of the week, allowing analysis of business activity patterns.
    • Customer Engagement: Data on review counts and ratings, offering insights into customer satisfaction and business popularity.
    • Additional Attributes: Links to business websites, time zone information, and country-specific details enrich the dataset for comprehensive analysis.

    Potential Use Cases

    This dataset is ideal for a variety of analytical projects, including: - Market Analysis: Understand business distribution and popularity across different regions. - Customer Sentiment Analysis: Explore relationships between customer ratings and business characteristics. - Temporal Trend Analysis: Analyze patterns of business activity throughout the week. - Geospatial Analysis: Integrate with mapping software to visualise business distribution or cluster businesses based on location.

    Dataset Structure

    The dataset contains 46 columns, providing a thorough profile for each listed business. Key columns include:

    • business_id: A unique Google Places identifier for each business, ensuring distinct entries.
    • phone_number: The contact number associated with the business. It provides a direct means of communication.
    • name: The official name of the business as listed on Google Maps.
    • full_address: The complete postal address of the business, including locality and geographic details.
    • latitude: The geographic latitude coordinate of the business location, useful for mapping and spatial analysis.
    • longitude: The geographic longitude coordinate of the business location.
    • review_count: The total number of reviews the business has received on Google Maps.
    • rating: The average user rating out of 5 for the business, reflecting customer satisfaction.
    • timezone: The world timezone the business is located in, important for temporal analysis.
    • website: The official website URL of the business, providing further information and contact options.
    • category: The category or type of service the business provides, such as restaurant, museum, etc.
    • claim_status: Indicates whether the business listing has been claimed by the owner on Google Maps.
    • plus_code: A sho...
  5. d

    Outscraper Google Maps Scraper

    • datarade.ai
    .json, .csv, .xls
    Updated Dec 9, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). Outscraper Google Maps Scraper [Dataset]. https://datarade.ai/data-products/outscraper-google-maps-scraper-outscraper
    Explore at:
    .json, .csv, .xlsAvailable download formats
    Dataset updated
    Dec 9, 2021
    Area covered
    United States
    Description

    Are you looking to identify B2B leads to promote your business, product, or service? Outscraper Google Maps Scraper might just be the tool you've been searching for. This powerful software enables you to extract business data directly from Google's extensive database, which spans millions of businesses across countless industries worldwide.

    Outscraper Google Maps Scraper is a tool built with advanced technology that lets you scrape a myriad of valuable information about businesses from Google's database. This information includes but is not limited to, business names, addresses, contact information, website URLs, reviews, ratings, and operational hours.

    Whether you are a small business trying to make a mark or a large enterprise exploring new territories, the data obtained from the Outscraper Google Maps Scraper can be a treasure trove. This tool provides a cost-effective, efficient, and accurate method to generate leads and gather market insights.

    By using Outscraper, you'll gain a significant competitive edge as it allows you to analyze your market and find potential B2B leads with precision. You can use this data to understand your competitors' landscape, discover new markets, or enhance your customer database. The tool offers the flexibility to extract data based on specific parameters like business category or geographic location, helping you to target the most relevant leads for your business.

    In a world that's growing increasingly data-driven, utilizing a tool like Outscraper Google Maps Scraper could be instrumental to your business' success. If you're looking to get ahead in your market and find B2B leads in a more efficient and precise manner, Outscraper is worth considering. It streamlines the data collection process, allowing you to focus on what truly matters – using the data to grow your business.

    https://outscraper.com/google-maps-scraper/

    As a result of the Google Maps scraping, your data file will contain the following details:

    Query Name Site Type Subtypes Category Phone Full Address Borough Street City Postal Code State Us State Country Country Code Latitude Longitude Time Zone Plus Code Rating Reviews Reviews Link Reviews Per Scores Photos Count Photo Street View Working Hours Working Hours Old Format Popular Times Business Status About Range Posts Verified Owner ID Owner Title Owner Link Reservation Links Booking Appointment Link Menu Link Order Links Location Link Place ID Google ID Reviews ID

    If you want to enrich your datasets with social media accounts and many more details you could combine Google Maps Scraper with Domain Contact Scraper.

    Domain Contact Scraper can scrape these details:

    Email Facebook Github Instagram Linkedin Phone Twitter Youtube

  6. m

    Google Map Data, Google Map Data Scraper, Business location Data- Scrape All...

    • apiscrapy.mydatastorefront.com
    Updated May 23, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    APISCRAPY (2022). Google Map Data, Google Map Data Scraper, Business location Data- Scrape All Publicly Available Data From Google Map & Other Platforms [Dataset]. https://apiscrapy.mydatastorefront.com/products/google-map-data-google-map-data-scraper-business-location-d-apiscrapy
    Explore at:
    Dataset updated
    May 23, 2022
    Dataset authored and provided by
    APISCRAPY
    Area covered
    Moldova, Luxembourg, Germany, United States Minor Outlying Islands, Liechtenstein, Greece, Lithuania, Latvia, Iceland, Romania
    Description

    Explore APISCRAPY, your AI-powered Google Map Data Scraper. Easily extract Business Location Data from Google Maps and other platforms. Seamlessly access and utilize publicly available map data for your business needs. Scrape All Publicly Available Data From Google Maps & Other Platforms.

  7. d

    POI Database Worldwide Coverage | Outscraper

    • datarade.ai
    .json, .csv, .xls
    Updated Jun 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). POI Database Worldwide Coverage | Outscraper [Dataset]. https://datarade.ai/data-products/outscraper-poi-database-worldwide-coverage-outscraper
    Explore at:
    .json, .csv, .xlsAvailable download formats
    Dataset updated
    Jun 3, 2023
    Area covered
    Svalbard and Jan Mayen, United Kingdom, United Arab Emirates, Barbados, Niger, Lebanon, Sao Tome and Principe, Zimbabwe, Kiribati, Turks and Caicos Islands
    Description

    Outscraper's Location Intelligence Service is a powerful and innovative tool that harnesses the rich data available from Google Maps to provide valuable Point of Interest (POI) data for businesses. This service is an excellent solution for local intelligence needs, using advanced technology to efficiently gather and analyze data from Google Maps, creating precise and relevant POI datasets​.

    This Location Intelligence Service is backed by reliable and up-to-date data, thanks to Outscraper's advanced web scraping technology. This ensures that the data extracted from Google Maps is both accurate and fresh, providing a dependable source of data for your business operations and strategic planning​.

    A key feature of Outscraper's Location Intelligence Service is its advanced filtering capabilities, enabling you to retrieve only the POI data you require. This means you can target specific categories, locations, and other criteria to get the most relevant and valuable data for your business needs, eliminating the need to sift through irrelevant records​.

    With Outscraper, you also get worldwide coverage for your POI data needs. The service's advanced data scraping technology allows you to collect data from any country and city without limitations, making it an invaluable tool for businesses with global operations or those seeking to expand internationally​.

    Outscraper provides a vast amount of data, offering the largest number of fields available to compile and enrich your POI data. With more than 40 data fields, you can create comprehensive and detailed datasets that provide deep insights into your areas of interest​.

    Outscraper's Location Intelligence Service is designed to be user-friendly, even for those without coding skills. Creating a Google Maps scraping task is quick and simple with the Outscraper App Dashboard, where you select a few parameters like category, location, limits, language, and file extension to scrape data from Google Maps​.

    Outscraper also offers API support, providing a fast and easy way to fetch Google Maps results in real-time. This feature is ideal for businesses that need to access location data quickly and efficiently​.

  8. My Map Activity

    • library.ncge.org
    Updated Jul 27, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NCGE (2021). My Map Activity [Dataset]. https://library.ncge.org/documents/NCGE::my-map-activity--1/about
    Explore at:
    Dataset updated
    Jul 27, 2021
    Dataset provided by
    National Council for Geographic Educationhttp://www.ncge.org/
    Authors
    NCGE
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    Author: E Gunderson, educator, Minnesota Alliance for Geographic EducationGrade/Audience: grade 8, high schoolResource type: lessonSubject topic(s): gisRegion: united statesStandards: Minnesota Social Studies Standards

    Standard 1. People use geographic representations and geospatial technologies to acquire, process and report information within a spatial context.Objectives: Students will be able to:

    1. Create a custom map using Google Maps
    2. Collect and plot data using Google MapsSummary: Students will learn the basics of Google Maps while using geospatial data to create their neighborhood map with the places they spend time. They will also collect data of their choice from another source (website, book, personal life) and plot the data using Google Maps.
  9. d

    GapMaps Live Location Intelligence Platform | Map Data | Easy-to-use| One...

    • datarade.ai
    .csv
    Updated Aug 14, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GapMaps (2024). GapMaps Live Location Intelligence Platform | Map Data | Easy-to-use| One Login for Global access [Dataset]. https://datarade.ai/data-products/gapmaps-live-location-intelligence-platform-map-data-easy-gapmaps
    Explore at:
    .csvAvailable download formats
    Dataset updated
    Aug 14, 2024
    Dataset authored and provided by
    GapMaps
    Area covered
    Thailand, Morocco, Malaysia, India, United States of America, Oman, United Arab Emirates, Kenya, Egypt, Hong Kong
    Description

    GapMaps Live is an easy-to-use location intelligence platform available across 25 countries globally that allows you to visualise your own store data, combined with the latest demographic, economic and population movement intel right down to the micro level so you can make faster, smarter and surer decisions when planning your network growth strategy.

    With one single login, you can access the latest estimates on resident and worker populations, census metrics (eg. age, income, ethnicity), consuming class, retail spend insights and point-of-interest data across a range of categories including fast food, cafe, fitness, supermarket/grocery and more.

    Some of the world's biggest brands including McDonalds, Subway, Burger King, Anytime Fitness and Dominos use GapMaps Live Map Data as a vital strategic tool where business success relies on up-to-date, easy to understand, location intel that can power business case validation and drive rapid decision making.

    Primary Use Cases for GapMaps Live Map Data include:

    1. Retail Site Selection - Identify optimal locations for future expansion and benchmark performance across existing locations.
    2. Customer Profiling: get a detailed understanding of the demographic profile of your customers and where to find more of them.
    3. Analyse your catchment areas at a granular grid levels using all the key metrics
    4. Target Marketing: Develop effective marketing strategies to acquire more customers.
    5. Marketing / Advertising (Billboards/OOH, Marketing Agencies, Indoor Screens)
    6. Customer Profiling
    7. Target Marketing
    8. Market Share Analysis

    Some of features our clients love about GapMaps Live Map Data include: - View business locations, competitor locations, demographic, economic and social data around your business or selected location - Understand consumer visitation patterns (“where from” and “where to”), frequency of visits, dwell time of visits, profiles of consumers and much more. - Save searched locations and drop pins - Turn on/off all location listings by category - View and filter data by metadata tags, for example hours of operation, contact details, services provided - Combine public data in GapMaps with views of private data Layers - View data in layers to understand impact of different data Sources - Share maps with teams - Generate demographic reports and comparative analyses on different locations based on drive time, walk time or radius. - Access multiple countries and brands with a single logon - Access multiple brands under a parent login - Capture field data such as photos, notes and documents using GapMaps Connect and integrate with GapMaps Live to get detailed insights on existing and proposed store locations.

  10. Google Maps Restaurant Reviews

    • kaggle.com
    zip
    Updated Aug 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Deniz Bilgin (2023). Google Maps Restaurant Reviews [Dataset]. https://www.kaggle.com/datasets/denizbilginn/google-maps-restaurant-reviews
    Explore at:
    zip(688734651 bytes)Available download formats
    Dataset updated
    Aug 19, 2023
    Authors
    Deniz Bilgin
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Description

    Data includes reviews of different restaurants on Google Maps. There are 1100 comments in total and pictures of each comment in the data set. The data is labeled according to 4 classes (Taste, Menu, Indoor atmosphere, Outdoor atmosphere) for the artificial intelligence to predict. The dataset has been prepared in a way that can be used in both text processing and image processing fields.

    The dataset contains the following columns: business_name, author_name, text, photo, rating, rating_category

    IMPORTANT: The rating_category column is related to the photo of the review. If you want to use this dataset for NLP, you need to label it yourself. I will label it for you when I am available.

  11. Digital Geologic-GIS Map of Sagamore Hill National Historic Site and...

    • catalog.data.gov
    Updated Oct 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Digital Geologic-GIS Map of Sagamore Hill National Historic Site and Vicinity, New York (NPS, GRD, GRI, SAHI, SAHI digital map) adapted from U.S. Geological Survey Water-Supply Paper maps by Isbister (1966) and Lubke (1964) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-sagamore-hill-national-historic-site-and-vicinity-new-york-nps
    Explore at:
    Dataset updated
    Oct 23, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    New York
    Description

    The Digital Geologic-GIS Map of Sagamore Hill National Historic Site and Vicinity, New York is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (sahi_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (sahi_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (sahi_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (sahi_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (sahi_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (sahi_geology_metadata_faq.pdf). Please read the sahi_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (sahi_geology_metadata.txt or sahi_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:62,500 and United States National Map Accuracy Standards features are within (horizontally) 31.8 meters or 104.2 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  12. UNESCO Cultural Heritage 3D Building Dataset

    • figshare.com
    zip
    Updated Aug 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yajing Wu (2025). UNESCO Cultural Heritage 3D Building Dataset [Dataset]. http://doi.org/10.6084/m9.figshare.28912334.v1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Aug 6, 2025
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Yajing Wu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Building footprint and height data were obtained from the latest global 3D building database. The building footprint data originated from Microsoft and Google datasets. Building height information was estimated using an XGBoost machine learning regression model that integrates multi-source remote sensing features. The height estimation model was trained using datasets from ONEGEO Map, Microsoft, Baidu, and EMU Analytics, utilizing 2020 data for the final estimations. Validation of this database demonstrates that the height estimation models perform exceptionally well at a global scale across both the Northern and Southern Hemispheres. The estimated heights closely match reference height data, especially for landmark buildings, showcasing superior accuracy compared to other global height products. The 3D building data that support this dataset are available in Zenodo DOI:10.5194/essd-16-5357-2024 (Che, Y., Li, X., Liu, X., Wang, Y., Liao, W., Zheng, X., Zhang, X., Xu, X., Shi, Q., Zhu, J., Yuan, H., and Dai, Y. 3D-GloBFP: the first global three-dimensional building footprint dataset. Earth System Science Data)Based on the 3D building database, we verify the locations and boundaries of individual cultural heritage sites and their buffer zones using UNESCO's heritage map platform (https://whc.unesco.org/), and categorize heritage into three groups for data extraction:Broad Scale Sites: For sites encompassing continuous building clusters or portions of cities (e.g., City of Bath), we extract buildings within the designated buffer zones provided by the UNESCO platform.Single Building Sites: For individual monuments or structures (e.g., Tower of London), we precisely extract the building footprints based on their exact coordinates.Multiple Dispersed Buildings: For sites consisting of multiple, non-contiguous structures (e.g., Wooden Churches of Southern Małopolska, Poland), we identify each location using the platform’s data and verify them through Google Maps before extracting the relevant buildings.A few linear heritage sites, such as extensive archaeological routes spanning over a thousand kilometers, are excluded due to the complexities associated with their vast spatial extent and the variability of climate conditions across different segments.The effective data coverage varies across continents: Europe and North America have an effective rate of 82.5%, Asia and the Pacific 68.3%, Latin America and the Caribbean 75.7%, Arab States 76.5%, and Africa 49.2%. This variability reflects differences in data availability. In less developed regions, remote sensing data tends to overlook non-urban heritage sites, and soil and rock structures common in Africa and Southeast Asia are more difficult to detect using satellite remote sensing techniques, leading to lower effective data coverage in these regions.This dataset accompanies the following published article:Chen, Zihua, Gao, Qian, Wu, Yajing, Li, Jiaxin, Li, Xiaowei, Li, Xiao, Wang, Zhenbo, & Cui, Haiyang (2025). World Cultural Heritage sites are under climate stress and no emissions mitigation pathways can uniformly protect them. Communications Earth & Environment, 6:628. https://doi.org/10.1038/s43247-025-02603-8

  13. H

    Tutorial: How to use Google Data Studio and ArcGIS Online to create an...

    • hydroshare.org
    • dataone.org
    • +1more
    zip
    Updated Jul 31, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sarah Beganskas (2020). Tutorial: How to use Google Data Studio and ArcGIS Online to create an interactive data portal [Dataset]. http://doi.org/10.4211/hs.9edae0ef99224e0b85303c6d45797d56
    Explore at:
    zip(2.9 MB)Available download formats
    Dataset updated
    Jul 31, 2020
    Dataset provided by
    HydroShare
    Authors
    Sarah Beganskas
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This tutorial will teach you how to take time-series data from many field sites and create a shareable online map, where clicking on a field location brings you to a page with interactive graph(s).

    The tutorial can be completed with a sample dataset (provided via a Google Drive link within the document) or with your own time-series data from multiple field sites.

    Part 1 covers how to make interactive graphs in Google Data Studio and Part 2 covers how to link data pages to an interactive map with ArcGIS Online. The tutorial will take 1-2 hours to complete.

    An example interactive map and data portal can be found at: https://temple.maps.arcgis.com/apps/View/index.html?appid=a259e4ec88c94ddfbf3528dc8a5d77e8

  14. D

    Digital Map Market Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Mar 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Digital Map Market Report [Dataset]. https://www.datainsightsmarket.com/reports/digital-map-market-12805
    Explore at:
    ppt, doc, pdfAvailable download formats
    Dataset updated
    Mar 12, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The digital map market, currently valued at $25.55 billion in 2025, is experiencing robust growth, projected to expand at a Compound Annual Growth Rate (CAGR) of 13.39% from 2025 to 2033. This expansion is fueled by several key drivers. The increasing adoption of location-based services (LBS) across diverse sectors like automotive, logistics, and smart city initiatives is a primary catalyst. Furthermore, advancements in technologies such as AI, machine learning, and high-resolution satellite imagery are enabling the creation of more accurate, detailed, and feature-rich digital maps. The shift towards cloud-based deployment models offers scalability and cost-effectiveness, further accelerating market growth. While data privacy concerns and the high initial investment costs for sophisticated mapping technologies present some challenges, the overall market outlook remains overwhelmingly positive. The competitive landscape is dynamic, with established players like Google, TomTom, and ESRI vying for market share alongside innovative startups offering specialized solutions. The segmentation of the market by solution (software and services), deployment (on-premise and cloud), and industry reveals significant opportunities for growth in sectors like automotive navigation, autonomous vehicle development, and precision agriculture, where real-time, accurate mapping data is crucial. The Asia-Pacific region, driven by rapid urbanization and technological advancements in countries like China and India, is expected to witness particularly strong growth. The market's future hinges on continuous innovation. We anticipate a rise in the demand for 3D maps, real-time updates, and integration with other technologies like the Internet of Things (IoT) and augmented reality (AR). Companies are focusing on enhancing the accuracy and detail of their maps, incorporating real-time traffic data, and developing tailored solutions for specific industry needs. The increasing adoption of 5G technology promises to further boost the market by enabling faster data transmission and real-time updates crucial for applications like autonomous driving and drone delivery. The development of high-precision mapping solutions catering to specialized sectors like infrastructure management and disaster response will also fuel future growth. Ultimately, the digital map market is poised for continued expansion, driven by technological advancements and increased reliance on location-based services across a wide spectrum of industries. Recent developments include: December 2022 - The Linux Foundation has partnered with some of the biggest technology companies in the world to build interoperable and open map data in what is an apparent move t. The Overture Maps Foundation, as the new effort is called, is officially hosted by the Linux Foundation. The ultimate aim of the Overture Maps Foundation is to power new map products through openly available datasets that can be used and reused across applications and businesses, with each member throwing their data and resources into the mix., July 27, 2022 - Google declared the launch of its Street View experience in India in collaboration with Genesys International, an advanced mapping solutions company, and Tech Mahindra, a provider of digital transformation, consulting, and business re-engineering solutions and services. Google, Tech Mahindra, and Genesys International also plan to extend this to more than around 50 cities by the end of the year 2022.. Key drivers for this market are: Growth in Application for Advanced Navigation System in Automotive Industry, Surge in Demand for Geographic Information System (GIS); Increased Adoption of Connected Devices and Internet. Potential restraints include: Complexity in Integration of Traditional Maps with Modern GIS System. Notable trends are: Surge in Demand for GIS and GNSS to Influence the Adoption of Digital Map Technology.

  15. Digital Geologic-GIS Map of San Miguel Island, California (NPS, GRD, GRI,...

    • catalog.data.gov
    • s.cnmilf.com
    • +1more
    Updated Nov 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Digital Geologic-GIS Map of San Miguel Island, California (NPS, GRD, GRI, CHIS, SMIS digital map) adapted from a American Association of Petroleum Geologists Field Trip Guidebook map by Weaver and Doerner (1969) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-san-miguel-island-california-nps-grd-gri-chis-smis-digital-map
    Explore at:
    Dataset updated
    Nov 25, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    San Miguel Island, California
    Description

    The Digital Geologic-GIS Map of San Miguel Island, California is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (smis_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (smis_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (smis_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (chis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (chis_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (smis_geology_metadata_faq.pdf). Please read the chis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: American Association of Petroleum Geologists. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (smis_geology_metadata.txt or smis_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  16. N

    lat and long google maps

    • data.cityofnewyork.us
    • data.wu.ac.at
    Updated Oct 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Police Department (NYPD) (2025). lat and long google maps [Dataset]. https://data.cityofnewyork.us/Public-Safety/lat-and-long-google-maps/rjv2-9zvt
    Explore at:
    xml, kml, xlsx, application/geo+json, csv, kmzAvailable download formats
    Dataset updated
    Oct 27, 2025
    Authors
    Police Department (NYPD)
    Description

    This dataset includes all valid felony, misdemeanor, and violation crimes reported to the New York City Police Department (NYPD) for all complete quarters so far this year (2017). For additional details, please see the attached data dictionary in the ‘About’ section.

  17. COVID-19 Community Mobility Reports

    • google.com
    • google.com.tr
    • +4more
    csv, pdf
    Updated Oct 17, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Google (2022). COVID-19 Community Mobility Reports [Dataset]. https://www.google.com/covid19/mobility/
    Explore at:
    csv, pdfAvailable download formats
    Dataset updated
    Oct 17, 2022
    Dataset authored and provided by
    Googlehttp://google.com/
    Description

    As global communities responded to COVID-19, we heard from public health officials that the same type of aggregated, anonymized insights we use in products such as Google Maps would be helpful as they made critical decisions to combat COVID-19. These Community Mobility Reports aimed to provide insights into what changed in response to policies aimed at combating COVID-19. The reports charted movement trends over time by geography, across different categories of places such as retail and recreation, groceries and pharmacies, parks, transit stations, workplaces, and residential.

  18. D

    Offline Maps For Travel Market Research Report 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Sep 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Offline Maps For Travel Market Research Report 2033 [Dataset]. https://dataintelo.com/report/offline-maps-for-travel-market
    Explore at:
    pptx, csv, pdfAvailable download formats
    Dataset updated
    Sep 30, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Offline Maps for Travel Market Outlook



    According to our latest research, the offline maps for travel market size reached USD 4.21 billion globally in 2024, registering a robust growth trajectory. The market is expected to expand at a CAGR of 11.8% from 2025 to 2033, with the forecasted market value projected to reach USD 11.74 billion by 2033. This significant growth is primarily driven by rising global travel activity, increasing smartphone penetration, and growing concerns over connectivity and data privacy during travel. As per the latest research, the demand for reliable, data-independent navigation solutions is shaping the future of the offline maps for travel market.




    One of the primary growth factors propelling the offline maps for travel market is the surge in international and domestic travel, particularly among millennials and Gen Z travelers. With the proliferation of budget airlines, improved visa policies, and the emergence of experiential travel trends, more individuals are exploring remote and off-the-grid destinations where internet connectivity is often unreliable or unavailable. In such scenarios, offline maps become indispensable tools, providing travelers with uninterrupted access to navigation, points of interest, and route planning. Furthermore, the increasing popularity of adventure tourism, including hiking, biking, and camping, is fueling the adoption of offline maps, as travelers seek to navigate challenging terrains with confidence, regardless of network availability.




    Another key driver is the advancement in smartphone technology and the integration of sophisticated offline mapping functionalities within mobile applications. Modern navigation apps now offer features such as turn-by-turn directions, offline search, and real-time location tracking without the need for an active data connection. These innovations have significantly enhanced the user experience, making offline maps not only a backup solution but a primary navigation tool for many travelers. Additionally, heightened concerns over data privacy, particularly when using public or unsecured Wi-Fi networks abroad, have led to a preference for offline solutions that minimize data exposure and potential cyber threats. This shift is further supported by the growing awareness among travelers regarding the risks associated with sharing location data with third-party services.




    The offline maps for travel market is also benefiting from strategic partnerships and collaborations between map developers, tourism boards, and local governments. Many destinations are now promoting the use of offline maps to enhance visitor experiences, reduce congestion at popular sites, and support sustainable tourism initiatives. For instance, tourism authorities are increasingly offering downloadable maps that highlight eco-friendly routes, cultural landmarks, and local businesses, thereby fostering economic growth within communities. These initiatives not only boost the adoption of offline maps but also align with broader trends in responsible and tech-enabled travel.




    From a regional perspective, the Asia Pacific region is emerging as a major growth engine for the offline maps for travel market, driven by the rapid expansion of the travel and tourism sector in countries such as China, India, Japan, and Southeast Asia. The region's vast and diverse geography, coupled with varying levels of internet infrastructure, underscores the need for reliable offline navigation solutions. North America and Europe also continue to hold significant market shares, supported by high smartphone adoption rates, advanced digital ecosystems, and a strong culture of independent travel. Meanwhile, Latin America, the Middle East, and Africa are witnessing increasing uptake of offline maps, spurred by growing mobile internet penetration and the rising popularity of adventure and eco-tourism.



    Product Type Analysis



    The product type segment of the offline maps for travel market is categorized into navigation apps, downloadable map software, and dedicated GPS devices. Navigation apps have emerged as the leading product type, owing to their widespread availability, user-friendly interfaces, and seamless integration with smartphones. These apps, such as Google Maps, Maps.me, and Sygic, allow users to download maps for offline use, providing essential navigation features even in areas with limited or no connectivity. The convenience of having a comprehensive navigation tool on

  19. e

    Land use map (Open data)

    • data.europa.eu
    esri shape, gml, kml +1
    Updated Jul 7, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). Land use map (Open data) [Dataset]. https://data.europa.eu/data/datasets/carta-uso-del-suolo-open-data?locale=en
    Explore at:
    zip, kml, esri shape, gmlAvailable download formats
    Dataset updated
    Jul 7, 2021
    Description

    Land use consists of reading and interpreting municipal land cover through the use of photo-cartographic documentation (orthophoto, cadastre, etc.) and software for cartography (Google Maps, Maps Street View, Google Earth, etc.).

    It represents a polygonisation of the municipal soil in which each polygon is assigned a nomenclature according to the international standard of codification of the European model CORINE Land Cover.

    The land use has been carried out by the Department of Systems, distributed IT and territory in collaboration with the Project Revision of the PRG.
    It is constantly updated and given the complexity of the data (more than 12000 polygons) are welcome reports of any inaccuracies or improvements by writing to infogis@comune.trento.it

  20. Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter...

    • catalog.data.gov
    • datasets.ai
    • +1more
    Updated Nov 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida (NPS, GRD, GRI, GUIS, GUIS_geomorphology digital map) adapted from U.S. Geological Survey Open File Report maps by Morton and Rogers (2009) and Morton and Montgomery (2010) [Dataset]. https://catalog.data.gov/dataset/digital-geomorphic-gis-map-of-gulf-islands-national-seashore-5-meter-accuracy-and-1-foot-r
    Explore at:
    Dataset updated
    Nov 25, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Guisguis Port Sariaya, Quezon
    Description

    The Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (guis_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (guis_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (guis_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (guis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (guis_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (guis_geomorphology_metadata_faq.pdf). Please read the guis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (guis_geomorphology_metadata.txt or guis_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:26,000 and United States National Map Accuracy Standards features are within (horizontally) 13.2 meters or 43.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2020). Average data use of leading navigation apps in the U.S. 2020 [Dataset]. https://www.statista.com/statistics/1186009/data-use-leading-us-navigation-apps/
Organization logo

Average data use of leading navigation apps in the U.S. 2020

Explore at:
Dataset updated
Oct 15, 2020
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
Oct 2020
Area covered
United States
Description

As of October 2020, the average amount of mobile data used by Apple Maps per 20 minutes was 1.83 MB, while Google maps used only 0.73 MB. Waze, which is also owned by Google, used the least amount at 0.23 MB per 20 minutes.

Search
Clear search
Close search
Google apps
Main menu