100+ datasets found
  1. T

    United States House Price Index YoY

    • tradingeconomics.com
    • fa.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated May 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States House Price Index YoY [Dataset]. https://tradingeconomics.com/united-states/house-price-index-yoy
    Explore at:
    json, excel, xml, csvAvailable download formats
    Dataset updated
    May 27, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1992 - Apr 30, 2025
    Area covered
    United States
    Description

    House Price Index YoY in the United States decreased to 3 percent in April from 3.90 percent in March of 2025. This dataset includes a chart with historical data for the United States FHFA House Price Index YoY.

  2. d

    All-Transactions House Price Index for Connecticut

    • catalog.data.gov
    • fred.stlouisfed.org
    • +1more
    Updated Jul 12, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ct.gov (2025). All-Transactions House Price Index for Connecticut [Dataset]. https://catalog.data.gov/dataset/all-transactions-house-price-index-for-connecticut
    Explore at:
    Dataset updated
    Jul 12, 2025
    Dataset provided by
    data.ct.gov
    Area covered
    Connecticut
    Description

    The FHFA House Price Index (FHFA HPI®) is the nation’s only collection of public, freely available house price indexes that measure changes in single-family home values based on data from all 50 states and over 400 American cities that extend back to the mid-1970s. The FHFA HPI incorporates tens of millions of home sales and offers insights about house price fluctuations at the national, census division, state, metro area, county, ZIP code, and census tract levels. FHFA uses a fully transparent methodology based upon a weighted, repeat-sales statistical technique to analyze house price transaction data. ​ What does the FHFA HPI represent? The FHFA HPI is a broad measure of the movement of single-family house prices. The FHFA HPI is a weighted, repeat-sales index, meaning that it measures average price changes in repeat sales or refinancings on the same properties. This information is obtained by reviewing repeat mortgage transactions on single-family properties whose mortgages have been purchased or securitized by Fannie Mae or Freddie Mac since January 1975. The FHFA HPI serves as a timely, accurate indicator of house price trends at various geographic levels. Because of the breadth of the sample, it provides more information than is available in other house price indexes. It also provides housing economists with an improved analytical tool that is useful for estimating changes in the rates of mortgage defaults, prepayments and housing affordability in specific geographic areas. U.S. Federal Housing Finance Agency, All-Transactions House Price Index for Connecticut [CTSTHPI], retrieved from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/CTSTHPI, August 2, 2023.

  3. Median house prices for administrative geographies: HPSSA dataset 9

    • ons.gov.uk
    • cy.ons.gov.uk
    xls
    Updated Sep 20, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2023). Median house prices for administrative geographies: HPSSA dataset 9 [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/housing/datasets/medianhousepricefornationalandsubnationalgeographiesquarterlyrollingyearhpssadataset09
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Sep 20, 2023
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Median price paid for residential property in England and Wales, by property type and administrative geographies. Annual data.

  4. T

    United States New Home Average Sales Price

    • tradingeconomics.com
    • it.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated May 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States New Home Average Sales Price [Dataset]. https://tradingeconomics.com/united-states/average-house-prices
    Explore at:
    excel, csv, xml, jsonAvailable download formats
    Dataset updated
    May 27, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1975 - May 31, 2025
    Area covered
    United States
    Description

    Average House Prices in the United States increased to 522200 USD in May from 511200 USD in April of 2025. This dataset includes a chart with historical data for the United States New Home Average Sales Price.

  5. Price Paid Data

    • gov.uk
    Updated Jun 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    HM Land Registry (2025). Price Paid Data [Dataset]. https://www.gov.uk/government/statistical-data-sets/price-paid-data-downloads
    Explore at:
    Dataset updated
    Jun 27, 2025
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    HM Land Registry
    Description

    Our Price Paid Data includes information on all property sales in England and Wales that are sold for value and are lodged with us for registration.

    Get up to date with the permitted use of our Price Paid Data:
    check what to consider when using or publishing our Price Paid Data

    Using or publishing our Price Paid Data

    If you use or publish our Price Paid Data, you must add the following attribution statement:

    Contains HM Land Registry data © Crown copyright and database right 2021. This data is licensed under the Open Government Licence v3.0.

    Price Paid Data is released under the http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/" class="govuk-link">Open Government Licence (OGL). You need to make sure you understand the terms of the OGL before using the data.

    Under the OGL, HM Land Registry permits you to use the Price Paid Data for commercial or non-commercial purposes. However, OGL does not cover the use of third party rights, which we are not authorised to license.

    Price Paid Data contains address data processed against Ordnance Survey’s AddressBase Premium product, which incorporates Royal Mail’s PAF® database (Address Data). Royal Mail and Ordnance Survey permit your use of Address Data in the Price Paid Data:

    • for personal and/or non-commercial use
    • to display for the purpose of providing residential property price information services

    If you want to use the Address Data in any other way, you must contact Royal Mail. Email address.management@royalmail.com.

    Address data

    The following fields comprise the address data included in Price Paid Data:

    • Postcode
    • PAON Primary Addressable Object Name (typically the house number or name)
    • SAON Secondary Addressable Object Name – if there is a sub-building, for example, the building is divided into flats, there will be a SAON
    • Street
    • Locality
    • Town/City
    • District
    • County

    May 2025 data (current month)

    The May 2025 release includes:

    • the first release of data for May 2025 (transactions received from the first to the last day of the month)
    • updates to earlier data releases
    • Standard Price Paid Data (SPPD) and Additional Price Paid Data (APPD) transactions

    As we will be adding to the April data in future releases, we would not recommend using it in isolation as an indication of market or HM Land Registry activity. When the full dataset is viewed alongside the data we’ve previously published, it adds to the overall picture of market activity.

    Your use of Price Paid Data is governed by conditions and by downloading the data you are agreeing to those conditions.

    Google Chrome (Chrome 88 onwards) is blocking downloads of our Price Paid Data. Please use another internet browser while we resolve this issue. We apologise for any inconvenience caused.

    We update the data on the 20th working day of each month. You can download the:

    Single file

    These include standard and additional price paid data transactions received at HM Land Registry from 1 January 1995 to the most current monthly data.

    Your use of Price Paid Data is governed by conditions and by downloading the data you are agreeing to those conditions.

    The data is updated monthly and the average size of this file is 3.7 GB, you can download:

    • <a re

  6. House price data: annual tables

    • ons.gov.uk
    • cy.ons.gov.uk
    xls
    Updated Mar 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2025). House price data: annual tables [Dataset]. https://www.ons.gov.uk/economy/inflationandpriceindices/datasets/housepriceindexannualtables2039
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Mar 26, 2025
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Annual house price data based on a sub-sample of the Regulated Mortgage Survey.

  7. T

    United States Existing Home Sales Prices

    • tradingeconomics.com
    • zh.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated May 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Existing Home Sales Prices [Dataset]. https://tradingeconomics.com/united-states/single-family-home-prices
    Explore at:
    xml, excel, json, csvAvailable download formats
    Dataset updated
    May 15, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1968 - May 31, 2025
    Area covered
    United States
    Description

    Single Family Home Prices in the United States increased to 422800 USD in May from 414000 USD in April of 2025. This dataset provides - United States Existing Single Family Home Prices- actual values, historical data, forecast, chart, statistics, economic calendar and news.

  8. house-price-predictions

    • kaggle.com
    Updated Apr 22, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Khaja Syed (2020). house-price-predictions [Dataset]. https://www.kaggle.com/datasets/khajasyedml/housepricepredictions/metadata
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 22, 2020
    Dataset provided by
    Kaggle
    Authors
    Khaja Syed
    Description

    (https://www.kaggle.com/c/house-prices-advanced-regression-techniques) About this Dataset Start here if... You have some experience with R or Python and machine learning basics. This is a perfect competition for data science students who have completed an online course in machine learning and are looking to expand their skill set before trying a featured competition.

    Competition Description

    Ask a home buyer to describe their dream house, and they probably won't begin with the height of the basement ceiling or the proximity to an east-west railroad. But this playground competition's dataset proves that much more influences price negotiations than the number of bedrooms or a white-picket fence.

    With 79 explanatory variables describing (almost) every aspect of residential homes in Ames, Iowa, this competition challenges you to predict the final price of each home.

    Practice Skills Creative feature engineering Advanced regression techniques like random forest and gradient boosting Acknowledgments The Ames Housing dataset was compiled by Dean De Cock for use in data science education. It's an incredible alternative for data scientists looking for a modernized and expanded version of the often cited Boston Housing dataset.

    Context

    There's a story behind every dataset and here's your opportunity to share yours.

    Content

    What's inside is more than just rows and columns. Make it easy for others to get started by describing how you acquired the data and what time period it represents, too.

    Acknowledgements

    We wouldn't be here without the help of others. If you owe any attributions or thanks, include them here along with any citations of past research.

    Inspiration

    Your data will be in front of the world's largest data science community. What questions do you want to see answered?

  9. F

    Median Sales Price of Houses Sold for the United States

    • fred.stlouisfed.org
    json
    Updated Apr 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Median Sales Price of Houses Sold for the United States [Dataset]. https://fred.stlouisfed.org/series/MSPUS
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Apr 23, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    United States
    Description

    Graph and download economic data for Median Sales Price of Houses Sold for the United States (MSPUS) from Q1 1963 to Q1 2025 about sales, median, housing, and USA.

  10. UK House Price Index: data downloads January 2022

    • gov.uk
    • s3.amazonaws.com
    Updated Mar 23, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    HM Land Registry (2022). UK House Price Index: data downloads January 2022 [Dataset]. https://www.gov.uk/government/statistical-data-sets/uk-house-price-index-data-downloads-january-2022
    Explore at:
    Dataset updated
    Mar 23, 2022
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    HM Land Registry
    Area covered
    United Kingdom
    Description

    The UK House Price Index is a National Statistic.

    Create your report

    Download the full UK House Price Index data below, or use our tool to https://landregistry.data.gov.uk/app/ukhpi?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=tool&utm_term=9.30_23_03_22" class="govuk-link">create your own bespoke reports.

    Download the data

    Datasets are available as CSV files. Find out about republishing and making use of the data.

    Google Chrome is blocking downloads of our UK HPI data files (Chrome 88 onwards). Please use another internet browser while we resolve this issue. We apologise for any inconvenience caused.

    Full file

    This file includes a derived back series for the new UK HPI. Under the UK HPI, data is available from 1995 for England and Wales, 2004 for Scotland and 2005 for Northern Ireland. A longer back series has been derived by using the historic path of the Office for National Statistics HPI to construct a series back to 1968.

    Download the full UK HPI background file:

    Individual attributes files

    If you are interested in a specific attribute, we have separated them into these CSV files:

  11. T

    United States FHFA House Price Index

    • tradingeconomics.com
    • ko.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, United States FHFA House Price Index [Dataset]. https://tradingeconomics.com/united-states/housing-index
    Explore at:
    xml, excel, json, csvAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1991 - Apr 30, 2025
    Area covered
    United States
    Description

    Housing Index in the United States decreased to 434.90 points in April from 436.70 points in March of 2025. This dataset provides the latest reported value for - United States House Price Index MoM Change - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  12. Median house prices by ward: HPSSA dataset 37

    • ons.gov.uk
    • cy.ons.gov.uk
    zip
    Updated Sep 20, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2023). Median house prices by ward: HPSSA dataset 37 [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/housing/datasets/medianpricepaidbywardhpssadataset37
    Explore at:
    zipAvailable download formats
    Dataset updated
    Sep 20, 2023
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Median price paid for residential property in England and Wales by property type and electoral ward. Annual data.

  13. Real Estate Price Prediction Data

    • figshare.com
    txt
    Updated Aug 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mohammad Shbool; Rand Al-Dmour; Bashar Al-Shboul; Nibal Albashabsheh; Najat Almasarwah (2024). Real Estate Price Prediction Data [Dataset]. http://doi.org/10.6084/m9.figshare.26517325.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Aug 8, 2024
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Mohammad Shbool; Rand Al-Dmour; Bashar Al-Shboul; Nibal Albashabsheh; Najat Almasarwah
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Overview: This dataset was collected and curated to support research on predicting real estate prices using machine learning algorithms, specifically Support Vector Regression (SVR) and Gradient Boosting Machine (GBM). The dataset includes comprehensive information on residential properties, enabling the development and evaluation of predictive models for accurate and transparent real estate appraisals.Data Source: The data was sourced from Department of Lands and Survey real estate listings.Features: The dataset contains the following key attributes for each property:Area (in square meters): The total living area of the property.Floor Number: The floor on which the property is located.Location: Geographic coordinates or city/region where the property is situated.Type of Apartment: The classification of the property, such as studio, one-bedroom, two-bedroom, etc.Number of Bathrooms: The total number of bathrooms in the property.Number of Bedrooms: The total number of bedrooms in the property.Property Age (in years): The number of years since the property was constructed.Property Condition: A categorical variable indicating the condition of the property (e.g., new, good, fair, needs renovation).Proximity to Amenities: The distance to nearby amenities such as schools, hospitals, shopping centers, and public transportation.Market Price (target variable): The actual sale price or listed price of the property.Data Preprocessing:Normalization: Numeric features such as area and proximity to amenities were normalized to ensure consistency and improve model performance.Categorical Encoding: Categorical features like property condition and type of apartment were encoded using one-hot encoding or label encoding, depending on the specific model requirements.Missing Values: Missing data points were handled using appropriate imputation techniques or by excluding records with significant missing information.Usage: This dataset was utilized to train and test machine learning models, aiming to predict the market price of residential properties based on the provided attributes. The models developed using this dataset demonstrated improved accuracy and transparency over traditional appraisal methods.Dataset Availability: The dataset is available for public use under the [CC BY 4.0]. Users are encouraged to cite the related publication when using the data in their research or applications.Citation: If you use this dataset in your research, please cite the following publication:[Real Estate Decision-Making: Precision in Price Prediction through Advanced Machine Learning Algorithms].

  14. United States House Prices Growth

    • ceicdata.com
    Updated Nov 27, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2021). United States House Prices Growth [Dataset]. https://www.ceicdata.com/en/indicator/united-states/house-prices-growth
    Explore at:
    Dataset updated
    Nov 27, 2021
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 1, 2022 - Dec 1, 2024
    Area covered
    United States
    Description

    Key information about House Prices Growth

    • US house prices grew 5.2% YoY in Dec 2024, following an increase of 5.4% YoY in the previous quarter.
    • YoY growth data is updated quarterly, available from Mar 1992 to Dec 2024, with an average growth rate of 5.4%.
    • House price data reached an all-time high of 17.7% in Sep 2021 and a record low of -12.4% in Dec 2008.

    CEIC calculates House Prices Growth from quarterly House Price Index. Federal Housing Finance Agency provides House Price Index with base January 1991=100.

  15. T

    United States House Price Index MoM

    • tradingeconomics.com
    • ru.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated May 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States House Price Index MoM [Dataset]. https://tradingeconomics.com/united-states/house-price-index-mom
    Explore at:
    excel, xml, csv, jsonAvailable download formats
    Dataset updated
    May 27, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Feb 28, 1991 - Apr 30, 2025
    Area covered
    United States
    Description

    House Price Index MoM in the United States decreased to -0.40 percent in April from 0 percent in March of 2025. This dataset includes a chart with historical data for the United States FHFA House Price Index MoM.

  16. Median house prices by lower layer super output area: HPSSA dataset 46

    • ons.gov.uk
    • cy.ons.gov.uk
    zip
    Updated Sep 20, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2023). Median house prices by lower layer super output area: HPSSA dataset 46 [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/housing/datasets/medianpricepaidbylowerlayersuperoutputareahpssadataset46
    Explore at:
    zipAvailable download formats
    Dataset updated
    Sep 20, 2023
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Median price paid for residential property in England and Wales, for all property types by lower layer super output area. Annual data..

  17. c

    House Price Index; existing own homes; 2010=100 1995-2017

    • cbs.nl
    • ckan.mobidatalab.eu
    • +3more
    xml
    Updated Feb 21, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centraal Bureau voor de Statistiek (2018). House Price Index; existing own homes; 2010=100 1995-2017 [Dataset]. https://www.cbs.nl/en-gb/figures/detail/81884ENG
    Explore at:
    xmlAvailable download formats
    Dataset updated
    Feb 21, 2018
    Dataset authored and provided by
    Centraal Bureau voor de Statistiek
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    The Netherlands
    Description

    The figures of existing own homes are related to the stock of existing own homes. Besides the price indices, figures are also published about the numbers sold, the average purchase price, and the total sum of the purchase prices of the sold dwellings. The House Price Index of existing own homes is based on a complete registration of sales of dwellings by the Dutch Land Registry Office (Kadaster) and the (WOZ) value of all dwellings in the Netherlands. Indices can fluctuate, for example when a limited number of dwellings of a certain type is sold. In such cases we recommended using the long-term figures. The average purchase price of existing own homes may differ from the price index of existing own homes. The change in the average purchase price, however, is not an indicator for price developments of existing own homes.

    Data available from: January 1995 - 2017

    Status of the figures: The figures are definitive.

    Changes as of 21 February 2014: Price information for 2008 onwards has been revised because of an improvement in the weighting scheme. The weighting scheme is based on the stock of existing own homes instead of the stock of all existing homes. The effect of the revision is very small.

    Changes as of 21 February 2018: None, this table has been discontinued. This table is followed by the table House Price Index; existing own homes 2015 = 100. See paragraph 3

    When will new figures be published? Does not apply.

  18. d

    Realtor.com Dataset | Property Listings | MLS Data | Real Estate Data |...

    • datarade.ai
    .json, .csv, .txt
    Updated Oct 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CrawlBee (2023). Realtor.com Dataset | Property Listings | MLS Data | Real Estate Data | Residential Data | Realtime Real Estate Market Data [Dataset]. https://datarade.ai/data-products/crawlbee-realtor-com-dataset-property-listings-mls-dat-crawlbee
    Explore at:
    .json, .csv, .txtAvailable download formats
    Dataset updated
    Oct 4, 2023
    Dataset authored and provided by
    CrawlBee
    Area covered
    United States of America
    Description

    Our Realtor.com (Multiple Listing Service) dataset represents one of the most exhaustive collections of real estate data available to the industry. It consolidates data from over 500 MLS aggregators across various regions, providing an unparalleled view of the property market.

    Features:

    Property Listings: Each listing provides comprehensive details about a property. This includes its physical address, number of bedrooms and bathrooms, square footage, lot size, type of property (e.g., single-family home, condo, townhome), and more.

    Photographs and Virtual Tours: Visuals are crucial in the property market. Most listings are accompanied by high-quality photographs and, in many cases, virtual or 3D tours that allow potential buyers to explore properties remotely.

    Pricing Information: Listings provide asking prices, and the dataset frequently updates to reflect price changes. Historical price data, which includes initial listing prices and any subsequent reductions or increases, is also available.

    Transaction Histories: For sold properties, the dataset provides information about the date of sale, the sale price, and any discrepancies between the listing and sale prices.

    Agent and Broker Information: Each listing typically has associated details about the property's real estate professional. This might include their name, contact details, and affiliated brokerage.

    Open House Schedules: Open house dates and times are listed for properties that are actively being shown to potential buyers.

    1. Analytical Insights:

    Market Trends: By analyzing the dataset over time, one can glean insights into market dynamics, such as the rate of price appreciation or depreciation in certain areas, the average time properties stay on the market, and seasonality effects.

    Neighborhood Data: With comprehensive geographical data, it becomes possible to understand neighborhood-specific trends. This is invaluable for potential buyers or real estate investors looking to identify burgeoning markets.

    Price Comparisons: Realtors and potential buyers can benchmark properties against similar listings in the same area to determine if a property is priced appropriately.

    1. Utility:

    For Industry Professionals and Analysts: Beyond buyers and sellers, the dataset is a trove of information for real estate agents, brokers, analysts, and investors. They can harness this data to craft strategies, predict market movements, and serve their clients better.

  19. A

    ‘Jiffs house price prediction dataset’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Feb 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘Jiffs house price prediction dataset’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-jiffs-house-price-prediction-dataset-458f/1a7ff5ac/?iid=048-724&v=presentation
    Explore at:
    Dataset updated
    Feb 13, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Jiffs house price prediction dataset’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/elakiricoder/jiffs-house-price-prediction-dataset on 13 February 2022.

    --- Dataset description provided by original source is as follows ---

    Context

    I have previously shared a classification based dataset to classify the gender which is liked by those who are new to machine learning as it give a pretty good accuracy, which encouraged me to create a regression dataset to predict continues values. I have tried many real world datasets for regression problems which are predicting with lower accuracy and high error rate. As a beginner, I have struggled and worried why and how the dataset performs poorly. This is another main reason why I created this dataset. Although this is a made up dataset, I have considered all the features when deciding the price of the property. If you are a beginner, you would love to try this as the results are stunning..

    Content

    Since this is a populated data, I will straightaway explain the features and the label. FEATURES 1. land_size_sqm - This the total size of the land in square meters. 2. house_size_sqm - This is the area in which house is located within the land. This is measured in square meters. 3. no_of_rooms - This indicates the number of rooms available in the house. 4. no_of_bathrooms - This shows the number of total bathrooms made in the house. 5. large_living_room - This indicates whether the house includes a larger living room or not. The assumption is that all the houses contain a living room. This feature attempts to classify whether it's large or small where '1' means large and '0' means small. However in the categorical dataset, 1 and 0 are represented with 'yes' and 'No' respectively. 6. parking_space - This indicates whether there is a parking space or not. '1' represents the parking available while '0' represents no parking space available. However in the categorical dataset, 1 and 0 are represented with 'yes' and 'No' respectively. 7. front_garden - This shows whether there is a garden available in front of the house. '1' means the garden available and '0' means no garden available. However in the categorical dataset, 1 and 0 are represented with 'yes' and 'No' respectively. 8. swimming_pool - This shows the availability of the swimming pool at the house. 1 represents the availability of the swimming pool while 0 represents the non availability of the same. However in the categorical dataset, 1 and 0 are represented with 'yes' and 'No' respectively. 9. distance_to_school_km - This shows the distance from the house to the nearest school in Kilometers. 10. wall_fence - This shows whether there is a wall fence or not. '1' mean there is wall fence and '0' means no wall fence. However in the categorical dataset, 1 and 0 are represented with 'yes' and 'No' respectively. 11. **house_age_or_renovated **- This is either the age of the house in years or the period from the date of renovation. 12. water_front - this indicates whether the house is located in front of the water or not. 1 means waterfront and 0 means its not located near the water. However in the categorical dataset, 1 and 0 are represented with 'yes' and 'No' respectively. 13. distance_to_supermarket_km - what is the distance to the nearest supermarket in kilometers.

    LABEL property_value - This is the price of the property

    Following features are only available in the "house price dataset original v2 cleaned" and "house price dataset original v2 with categorical features" data only. 14. crime_rate - its in float and falls between 0 and 7. lesser the better 15. room_size - As the name suggests, it explains the size of the room. 0 is being 'small', 1 is being 'medium', 2 is 'large' and 3 is being 'Extra large'. However in the categorical dataset, these values are categorical and self explanatory.

    Acknowledgements

    I spent around 3 hours creating this dataset. Enjoy..

    Inspiration

    Share your notebooks to see which algorithm predicts the house price precisely.

    --- Original source retains full ownership of the source dataset ---

  20. Live tables on housing market and house prices

    • gov.uk
    Updated Jul 14, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ministry of Housing, Communities & Local Government (2018 to 2021) (2016). Live tables on housing market and house prices [Dataset]. https://www.gov.uk/government/statistical-data-sets/live-tables-on-housing-market-and-house-prices
    Explore at:
    Dataset updated
    Jul 14, 2016
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Ministry of Housing, Communities & Local Government (2018 to 2021)
    Description

    These statistics are no longer updated by DCLG.

    The equivalents of tables 581 to 588 are now published by the Office for National Statistics in the http://www.ons.gov.uk/peoplepopulationandcommunity/housing/bulletins/housepricestatisticsforsmallareas/previousReleases" class="govuk-link">house price statistics for small areas series and tables 576 to 578 in the https://www.ons.gov.uk/peoplepopulationandcommunity/housing/bulletins/housingaffordabilityinenglandandwales/previousReleases" class="govuk-link">housing affordability series.

    Discontinued tables

    Tables 531, 542, 563, 575 and 580 have been discontinued and are no longer being updated.

    https://assets.publishing.service.gov.uk/media/5a78fdd5ed915d0422066f21/141008.xls">Table 531: distribution of house prices, by new/other dwellings and type of buyer, United Kingdom, from 1990 (final version)

     <p class="gem-c-attachment_metadata"><span class="gem-c-attachment_attribute">MS Excel Spreadsheet</span>, <span class="gem-c-attachment_attribute">91 KB</span></p>
    
    
    
    
     <p class="gem-c-attachment_metadata">This file may not be suitable for users of assistive technology.</p>
     <details data-module="ga4-event-tracker" data-ga4-event='{"event_name":"select_content","type":"detail","text":"Request an accessible format.","section":"Request an accessible format.","index_section":1}' class="gem-c-details govuk-details govuk-!-margin-bottom-0" title="Request an accessible format.">
    

    Request an accessible format.

      If you use assistive technology (such as a screen reader) and need a version of this document in a more accessible format, please email <a href="mailto:alternativeformats@communities.gov.uk" target="_blank" class="govuk-link">alternativeformats@communities.gov.uk</a>. Please tell us what format you need. It will help us if you say what assistive technology you use.
    

    https://assets.publishing.service.gov.uk/media/5a7ee6cae5274a2e8ab48eba/Table_542_-_Discontinued.xls">Table 542: mortgage lending by type of lender, United Kingdom, from 1990 (final version)

     <p class="gem-c-attachment_metadata"><span class="gem-c-attachment_attribute">MS Excel Spreadsheet</
    
Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
TRADING ECONOMICS (2025). United States House Price Index YoY [Dataset]. https://tradingeconomics.com/united-states/house-price-index-yoy

United States House Price Index YoY

United States House Price Index YoY - Historical Dataset (1992-01-31/2025-04-30)

Explore at:
2 scholarly articles cite this dataset (View in Google Scholar)
json, excel, xml, csvAvailable download formats
Dataset updated
May 27, 2025
Dataset authored and provided by
TRADING ECONOMICS
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
Jan 31, 1992 - Apr 30, 2025
Area covered
United States
Description

House Price Index YoY in the United States decreased to 3 percent in April from 3.90 percent in March of 2025. This dataset includes a chart with historical data for the United States FHFA House Price Index YoY.

Search
Clear search
Close search
Google apps
Main menu