12 datasets found
  1. A

    ‘2018 CT Data Catalog (GIS)’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Jan 26, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘2018 CT Data Catalog (GIS)’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-gov-2018-ct-data-catalog-gis-8148/4aa04a6c/?iid=001-843&v=presentation
    Explore at:
    Dataset updated
    Jan 26, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Connecticut
    Description

    Analysis of ‘2018 CT Data Catalog (GIS)’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/5a93e011-4ea8-40b1-a888-0f573e6b785d on 26 January 2022.

    --- Dataset description provided by original source is as follows ---

    Catalog of high value data inventories produced by Connecticut executive branch agencies and compiled by the Office of Policy and Management. This catalog contains information on high value GIS data only. A catalog of high value non-GIS data may be found at the following link: https://data.ct.gov/Government/CT-Data-Catalog-Non-GIS-/ghmx-93jn

    As required by Public Act 18-175, executive branch agencies must annually conduct a high value data inventory to capture information about the high value data that they collect.

    High value data is defined as any data that the department head determines (A) is critical to the operation of an executive branch agency; (B) can increase executive branch agency accountability and responsiveness; (C) can improve public knowledge of the executive branch agency and its operations; (D) can further the core mission of the executive branch agency; (E) can create economic opportunity; (F) is frequently requested by the public; (G) responds to a need and demand as identified by the agency through public consultation; or (H) is used to satisfy any legislative or other reporting requirements.

    This dataset was last updated 1/2/2019 and will continue to be updated as high value data inventories are submitted to OPM.

    --- Original source retains full ownership of the source dataset ---

  2. A

    ‘PLACES: County Data (GIS Friendly Format), 2020 release’ analyzed by...

    • analyst-2.ai
    Updated Feb 12, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘PLACES: County Data (GIS Friendly Format), 2020 release’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-gov-places-county-data-gis-friendly-format-2020-release-a8b4/097ae860/?iid=033-290&v=presentation
    Explore at:
    Dataset updated
    Feb 12, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘PLACES: County Data (GIS Friendly Format), 2020 release’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/d85c2f1c-0aa1-4eb6-a383-7a82f4aa7f6b on 12 February 2022.

    --- Dataset description provided by original source is as follows ---

    This dataset contains model-based county-level estimates for the PLACES project 2020 release in GIS-friendly format. The PLACES project is the expansion of the original 500 Cities project and covers the entire United States—50 states and the District of Columbia (DC)—at county, place, census tract, and ZIP Code tabulation Areas (ZCTA) levels. It represents a first-of-its kind effort to release information uniformly on this large scale for local areas at 4 geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. The project was funded by the Robert Wood Johnson Foundation (RWJF) in conjunction with the CDC Foundation. Data sources used to generate these model-based estimates include Behavioral Risk Factor Surveillance System (BRFSS) 2018 or 2017 data, Census Bureau 2018 or 2017 county population estimates, and American Community Survey (ACS) 2014-2018 or 2013-2017 estimates. The 2020 release uses 2018 BRFSS data for 23 measures and 2017 BRFSS data for 4 measures (high blood pressure, taking high blood pressure medication, high cholesterol, and cholesterol screening). Four measures are based on the 2017 BRFSS data because the relevant questions are only asked every other year in the BRFSS. These data can be joined with the census 2015 county boundary file in a GIS system to produce maps for 27 measures at the county level. An ArcGIS Online feature service is also available at https://www.arcgis.com/home/item.html?id=8eca985039464f4d83467b8f6aeb1320 for users to make maps online or to add data to desktop GIS software.

    --- Original source retains full ownership of the source dataset ---

  3. A

    ‘2019 CT Data Catalog (Non GIS)’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Aug 4, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2020). ‘2019 CT Data Catalog (Non GIS)’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-gov-2019-ct-data-catalog-non-gis-40ea/9e9f6cfc/?iid=001-820&v=presentation
    Explore at:
    Dataset updated
    Aug 4, 2020
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Connecticut
    Description

    Analysis of ‘2019 CT Data Catalog (Non GIS)’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/63dbeae9-0f9d-41d7-9ad9-edc2e4fdea74 on 26 January 2022.

    --- Dataset description provided by original source is as follows ---

    Catalog of high value data inventories produced by Connecticut executive branch agencies and compiled by the Office of Policy and Management, updated in 2019. This catalog does not contain information about high value GIS data, which is compiled in a separate data inventory at the following link: https://data.ct.gov/Government/2019-CT-Data-Catalog-GIS-/kr39-sdfm

    As required by Public Act 18-175, executive branch agencies must annually conduct a high value data inventory to capture information about the high value data that they collect.

    High value data is defined as any data that the department head determines (A) is critical to the operation of an executive branch agency; (B) can increase executive branch agency accountability and responsiveness; (C) can improve public knowledge of the executive branch agency and its operations; (D) can further the core mission of the executive branch agency; (E) can create economic opportunity; (F) is frequently requested by the public; (G) responds to a need and demand as identified by the agency through public consultation; or (H) is used to satisfy any legislative or other reporting requirements.

    This dataset was last updated 2/6/2020 and will continue to be updated as high value data inventories are submitted to OPM.

    The 2018 high value data inventories for Non-GIS and GIS data can be found at the following links: CT Data Catalog (Non GIS): https://data.ct.gov/Government/CT-Data-Catalog-Non-GIS-/ghmx-93jn/ CT Data Catalog (GIS): https://data.ct.gov/Government/CT-Data-Catalog-GIS-/p7we-na27

    --- Original source retains full ownership of the source dataset ---

  4. d

    Contour Dataset of the Potentiometric Surface of Groundwater-Level Altitudes...

    • catalog.data.gov
    • data.usgs.gov
    • +2more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Contour Dataset of the Potentiometric Surface of Groundwater-Level Altitudes Near the Planned Highway 270 Bypass, East of Hot Springs, Arkansas, July-August 2017 [Dataset]. https://catalog.data.gov/dataset/contour-dataset-of-the-potentiometric-surface-of-groundwater-level-altitudes-near-the-plan
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Arkansas, Hot Springs
    Description

    This dataset contains 50-ft contours for the Hot Springs shallowest unit of the Ouachita Mountains aquifer system potentiometric-surface map. The potentiometric-surface shows altitude at which the water level would have risen in tightly-cased wells and represents synoptic conditions during the summer of 2017. Contours were constructed from 59 water-level measurements measured in selected wells (locations in the well point dataset). Major streams and creeks were selected in the study area from the USGS National Hydrography Dataset (U.S. Geological Survey, 2017), and the spring point dataset with 18 spring altitudes calculated from 10-meter digital elevation model (DEM) data (U.S. Geological Survey, 2015; U.S. Geological Survey, 2016). After collecting, processing, and plotting the data, a potentiometric surface was generated using the interpolation method Topo to Raster in ArcMap 10.5 (Esri, 2017a). This tool is specifically designed for the creation of digital elevation models and imposes constraints that ensure a connected drainage structure and a correct representation of the surface from the provided contour data (Esri, 2017a). Once the raster surface was created, 50-ft contour interval were generated using Contour (Spatial Analyst), a spatial analyst tool (available through ArcGIS 3D Analyst toolbox) that creates a line-feature class of contours (isolines) from the raster surface (Esri, 2017b). The Topo to Raster and contouring done by ArcMap 10.5 is a rapid way to interpolate data, but computer programs do not account for hydrologic connections between groundwater and surface water. For this reason, some contours were manually adjusted based on topographical influence, a comparison with the potentiometric surface of Kresse and Hays (2009), and data-point water-level altitudes to more accurately represent the potentiometric surface. Select References: Esri, 2017a, How Topo to Raster works—Help | ArcGIS Desktop, accessed December 5, 2017, at ArcGIS Pro at http://pro.arcgis.com/en/pro-app/tool-reference/3d-analyst/how-topo-to-raster-works.htm. Esri, 2017b, Contour—Help | ArcGIS Desktop, accessed December 5, 2017, at ArcGIS Pro Raster Surface toolset at http://pro.arcgis.com/en/pro-app/tool-reference/3d-analyst/contour.htm. Kresse, T.M., and Hays, P.D., 2009, Geochemistry, Comparative Analysis, and Physical and Chemical Characteristics of the Thermal Waters East of Hot Springs National Park, Arkansas, 2006-09: U.S. Geological Survey 2009–5263, 48 p., accessed November 28, 2017, at https://pubs.usgs.gov/sir/2009/5263/. U.S. Geological Survey, 2015, USGS NED 1 arc-second n35w094 1 x 1 degree ArcGrid 2015, accessed December 5, 2017, at The National Map: Elevation at https://nationalmap.gov/elevation.html. U.S. Geological Survey, 2016, USGS NED 1 arc-second n35w093 1 x 1 degree ArcGrid 2016, accessed December 5, 2017, at The National Map: Elevation at https://nationalmap.gov/elevation.html.

  5. A

    ‘PLACES: Census Tract Data (GIS Friendly Format), 2021 release’ analyzed by...

    • analyst-2.ai
    Updated Feb 12, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘PLACES: Census Tract Data (GIS Friendly Format), 2021 release’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-gov-places-census-tract-data-gis-friendly-format-2021-release-06e2/291be1df/?iid=023-703&v=presentation
    Explore at:
    Dataset updated
    Feb 12, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘PLACES: Census Tract Data (GIS Friendly Format), 2021 release’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/023e0c0a-9abf-4582-8531-c4577cc58160 on 12 February 2022.

    --- Dataset description provided by original source is as follows ---

    This dataset contains model-based census tract level estimates for the PLACES 2021 release in GIS-friendly format. PLACES is the expansion of the original 500 Cities project and covers the entire United States—50 states and the District of Columbia (DC)—at county, place, census tract, and ZIP Code Tabulation Area (ZCTA) levels. It represents a first-of-its kind effort to release information uniformly on this large scale for local areas at 4 geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. PLACES was funded by the Robert Wood Johnson Foundation (RWJF) in conjunction with the CDC Foundation. Data sources used to generate these model-based estimates include Behavioral Risk Factor Surveillance System (BRFSS) 2019 or 2018 data, Census Bureau 2010 population estimates, and American Community Survey (ACS) 2015–2019 or 2014–2018 estimates. The 2021 release uses 2019 BRFSS data for 22 measures and 2018 BRFSS data for 7 measures (all teeth lost, dental visits, mammograms, cervical cancer screening, colorectal cancer screening, core preventive services among older adults, and sleeping less than 7 hours a night). Seven measures are based on the 2018 BRFSS data because the relevant questions are only asked every other year in the BRFSS. These data can be joined with the census tract 2015 boundary file in a GIS system to produce maps for 29 measures at the census tract level. An ArcGIS Online feature service is also available for users to make maps online or to add data to desktop GIS software. https://cdcarcgis.maps.arcgis.com/home/item.html?id=3b7221d4e47740cab9235b839fa55cd7

    --- Original source retains full ownership of the source dataset ---

  6. A

    ‘2020 CT Data Catalog’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Jan 26, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘2020 CT Data Catalog’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-gov-2020-ct-data-catalog-b976/latest
    Explore at:
    Dataset updated
    Jan 26, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Connecticut
    Description

    Analysis of ‘2020 CT Data Catalog’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/afea21e7-1798-4666-982c-5c6dde221499 on 26 January 2022.

    --- Dataset description provided by original source is as follows ---

    Catalog of high value data inventories produced by Connecticut executive branch agencies and compiled by the Office of Policy and Management, updated in 2020.

    Connecticut General Statutes Section 4-67p requires executive branch agencies to annually conduct an inventory of the high value data that they collect. High value data is defined as any data that the department head determines (A) is critical to the operation of an executive branch agency; (B) can increase executive branch agency accountability and responsiveness; (C) can improve public knowledge of the executive branch agency and its operations; (D) can further the core mission of the executive branch agency; (E) can create economic opportunity; (F) is frequently requested by the public; (G) responds to a need and demand as identified by the agency through public consultation; or (H) is used to satisfy any legislative or other reporting requirements.

    The 2019 high value data inventories for Non-GIS and GIS data can be found at the following links: CT Data Catalog (Non GIS): https://data.ct.gov/Government/2019-CT-Data-Catalog-Non-GIS-/f6rf-n3ke CT Data Catalog (GIS): https://data.ct.gov/Government/2019-CT-Data-Catalog-GIS-/kr39-sdfm

    --- Original source retains full ownership of the source dataset ---

  7. w

    Industrial Jobs Projections (TAZ) - RTP 2023

    • data.wfrc.org
    • data-wfrc.opendata.arcgis.com
    Updated May 16, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wasatch Front Regional Council (2024). Industrial Jobs Projections (TAZ) - RTP 2023 [Dataset]. https://data.wfrc.org/datasets/5f34c1d4f12f4f319f0c29677dd3461c
    Explore at:
    Dataset updated
    May 16, 2024
    Dataset authored and provided by
    Wasatch Front Regional Council
    Description

    Every four years, the Wasatch Front’s two metropolitan planning organizations (MPOs), Wasatch Front Regional Council (WFRC) and Mountainland Association of Governments (MAG), collaborate to update a set of annual small area -- traffic analysis zone and ‘city area’, see descriptions below) -- population and employment projections for the Salt Lake City-West Valley City (WFRC), Ogden-Layton (WFRC), and Provo-Orem (MAG) urbanized areas.

    These projections are primarily developed for the purpose of informing long-range transportation infrastructure and services planning done as part of the 4 year Regional Transportation Plan update cycle, as well as Utah’s Unified Transportation Plan, 2023-2050. Accordingly, the foundation for these projections is largely data describing existing conditions for a 2019 base year, the first year of the latest RTP process. The projections are included in the official travel models, which are publicly released at the conclusion of the RTP process.

    Projections within the Wasatch Front urban area ( SUBAREAID = 1) were produced with using the Real Estate Market Model as described below. Socioeconomic forecasts produced for Cache MPO (Cache County, SUBAREAID = 2), Dixie MPO (Washington County, SUBAREAID = 3), Summit County (SUBAREAID = 4), and UDOT (other areas of the state, SUBAREAID = 0) all adhere to the University of Utah Gardner Policy Institute's county-level projection controls, but other modeling methods are used to arrive at the TAZ-level forecasts for these areas.

    As these projections may be a valuable input to other analyses, this dataset is made available here as a public service for informational purposes only. It is solely the responsibility of the end user to determine the appropriate use of this dataset for other purposes.

    Wasatch Front Real Estate Market Model (REMM) Projections

    WFRC and MAG have developed a spatial statistical model using the UrbanSim modeling platform to assist in producing these annual projections. This model is called the Real Estate Market Model, or REMM for short. REMM is used for the urban portion of Weber, Davis, Salt Lake, and Utah counties. REMM relies on extensive inputs to simulate future development activity across the greater urbanized region. Key inputs to REMM include:

    Demographic data from the decennial census
    County-level population and employment projections -- used as REMM control totals -- are produced by the University of Utah’s Kem C. Gardner Policy Institute (GPI) funded by the Utah State Legislature
    Current employment locational patterns derived from the Utah Department of Workforce Services
    Land use visioning exercises and feedback, especially in regard to planned urban and local center development, with city and county elected officials and staff
    Current land use and valuation GIS-based parcel data stewarded by County Assessors
    Traffic patterns and transit service from the regional Travel Demand Model that together form the landscape of regional accessibility to workplaces and other destinations
    Calibration of model variables to balance the fit of current conditions and dynamics at the county and regional level
    

    ‘Traffic Analysis Zone’ Projections

    The annual projections are forecasted for each of the Wasatch Front’s 3,546 Traffic Analysis Zone (TAZ) geographic units. TAZ boundaries are set along roads, streams, and other physical features and average about 600 acres (0.94 square miles). TAZ sizes vary, with some TAZs in the densest areas representing only a single city block (25 acres).

    ‘City Area’ Projections

    The TAZ-level output from the model is also available for ‘city areas’ that sum the projections for the TAZ geographies that roughly align with each city’s current boundary. As TAZs do not align perfectly with current city boundaries, the ‘city area’ summaries are not projections specific to a current or future city boundary, but the ‘city area’ summaries may be suitable surrogates or starting points upon which to base city-specific projections.

    Summary Variables in the Datasets

    Annual projection counts are available for the following variables (please read Key Exclusions note below):

    Demographics

    Household Population Count (excludes persons living in group quarters) 
    Household Count (excludes group quarters) 
    

    Employment

    Typical Job Count (includes job types that exhibit typical commuting and other travel/vehicle use patterns)
    Retail Job Count (retail, food service, hotels, etc)
    Office Job Count (office, health care, government, education, etc)
    Industrial Job Count (manufacturing, wholesale, transport, etc)
    Non-Typical Job Count* (includes agriculture, construction, mining, and home-based jobs) This can be calculated by subtracting Typical Job Count from All Employment Count 
    All Employment Count* (all jobs, this sums jobs from typical and non-typical sectors).
    
    • These variables includes REMM’s attempt to estimate construction jobs in areas that experience new and re-development activity. Areas may see short-term fluctuations in Non-Typical and All Employment counts due to the temporary location of construction jobs.

    Key Exclusions from TAZ and ‘City Area’ Projections

    As the primary purpose for the development of these population and employment projections is to model future travel in the region, REMM-based projections do not include population or households that reside in group quarters (prisons, senior centers, dormitories, etc), as residents of these facilities typically have a very low impact on regional travel. USTM-based projections also excludes group quarter populations. Group quarters population estimates are available at the county-level from GPI and at various sub-county geographies from the Census Bureau.

    Statewide Projections

    Population and employment projections for the Wasatch Front area can be combined with those developed by Dixie MPO (St. George area), Cache MPO (Logan area), and the Utah Department of Transportation (for the remainder of the state) into one database for use in the Utah Statewide Travel Model (USTM). While projections for the areas outside of the Wasatch Front use different forecasting methods, they contain the same summary-level population and employment projections making similar TAZ and ‘City Area’ data available statewide. WFRC plans, in the near future, to add additional areas to these projections datasets by including the projections from the USTM model.

  8. A

    ‘Loudoun 2020 Census Blocks’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Sep 23, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2018). ‘Loudoun 2020 Census Blocks’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-gov-loudoun-2020-census-blocks-df96/c5a0d210/?iid=001-981&v=presentation
    Explore at:
    Dataset updated
    Sep 23, 2018
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Loudoun County
    Description

    Analysis of ‘Loudoun 2020 Census Blocks’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/6b9c0749-8be5-4cdc-a242-ad2b9de838b7 on 27 January 2022.

    --- Dataset description provided by original source is as follows ---

    This GIS layer contains the geographical boundaries of the 2020 census blocks for Loudoun County, Virginia. The 2020 Census block boundaries were used for statistical data collection and tabulation purposes for the 2020 Decennial Census. Census blocks are the smallest geographic area for publishing data from the decennial Census. The geographical area covered by this geographic feature class is generally very small in densely settled areas, for instance one city block. In sparsely settled areas they may cover several square miles. Census blocks nest within every 2020 Census geographic area (i.e. block groups, tracts, census designated places, and local, state, and federal election districts). This nesting of blocks allows Census Bureau statistical data to be tabulated to the appropriate geographic areas by aggregating the block data up. Census blocks are uniquely numbered within census tracts, with the blocks valid range being 1 to 9999 with leading zeros added (i.e. 0001, 0023) when necessary to create a four digit unique identifier. This 2010 Census block layer is based on the U.S. Census Bureau Census 2020 TIGER/Line files. The boundaries are an extract of aerial photography and cartographic information, such as roads and streams, from the Loudoun County GIS system. Census Blocks are bounded on all sides by visible features, such as roads, streams, lakes, power lines, and railroad tracks, and/or by non-visible boundaries such as town and county boundaries, and short line-of-sight extensions of streets and roads.

    --- Original source retains full ownership of the source dataset ---

  9. A

    ‘Offshore Oil Leases’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Sep 9, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2018). ‘Offshore Oil Leases’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-gov-offshore-oil-leases-fa10/9597f263/?iid=002-187&v=presentation
    Explore at:
    Dataset updated
    Sep 9, 2018
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Offshore Oil Leases’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/7dbfeba0-c6d3-4ccd-9885-9e6751da10c4 on 27 January 2022.

    --- Dataset description provided by original source is as follows ---

    California State Lands Commission Offshore Oil Leases in the vicinity of Santa Barbara, Ventura, and Orange County.

    The polygons in this layer show the position of Offshore Oil Leases as documented by former State Lands Senior Boundary Determination Officer, Cris N. Perez and as reviewed and updated by GIS and Boundary staff.

    Background:

    This layer represents active offshore oil and gas agreements in California waters, which are what remain of the more than 60 originally issued. These leases were issued prior to the catastrophic 1969 oil spill from Platform A in federal waters off Santa Barbara County, and some predate the formation of the Commission. Between 2010 and 2014, the bulk of the approximately $300 million generated annually for the state's General Fund from oil and gas agreements was from these offshore leases.

    In 1921, the Legislature created the first tidelands oil and gas leasing program. Between 1921 and 1929, approximately 100 permits and leases were issued and over 850 wells were drilled in Santa Barbara and Ventura Counties. In 1929, the Legislature prohibited any new leases or permits. In 1933, however, the prohibition was partially lifted in response to an alleged theft of tidelands oil in Huntington Beach. It wasn't until 1938, and again in 1955, that the Legislature would allow new offshore oil and gas leasing. Except for limited circumstances, the Legislature has consistently placed limits on the areas that the Commission may offer for lease and in 1994, placed the entirety of California's coast off-limits to new oil and gas leases.

    Layer Creation Process:

    In 1997 Cris N. Perez, Senior Boundary Determination Officer of the Southern California Section of the State Lands Division, prepared a report on the Commission’s Offshore Oil Leases to:

    A. Show the position of Offshore Oil Leases.

    B. Produce a hard copy of 1927 NAD Coordinates for each lease.

    C. Discuss any problems evident after plotting the leases.

    Below are some of the details Cris included in the report:

    I have plotted the leases that were supplied to me by the Long Beach Office and computed 1927 NAD California Coordinates for each one. Where the Mean High Tide Line (MHTL) was called for and not described in the deed, I have plotted the California State Lands Commission CB Map Coordinates, from the actual field surveys of the Mean High Water Line and referenced them wherever used.

    Where the MHTL was called for and not described in the deed and no California State Lands Coordinates were available, I digitized the maps entitled, “Map of the Offshore Ownership Boundary of the State of California Drawn pursuant to the Supplemental Decree of the U.S. Supreme Court in the U.S. V. California, 382 U.S. 448 (1966), Scale 1:10000 Sheets 1-161.” The shore line depicted on these maps is the Mean Lower Low Water (MLLW) Line as shown on the Hydrographic or Topographic Sheets for the coastline. If a better fit is needed, a field survey to position this line will need to be done.

    The coordinates listed in Cris’ report were retrieved through Optical Character Recognition (OCR) and used to produce GIS polygons using Esri ArcGIS software. Coordinates were checked after the OCR process when producing the polygons in ArcMap to ensure accuracy. Original Coordinate systems (NAD 1927 California State Plane Zones 5 and 6) were used initially, with each zone being reprojected to NAD 83 Teale Albers Meters and merged after the review process.

    While Cris’ expertise and documentation were relied upon to produce this GIS Layer, certain polygons were reviewed further for any potential updates since Cris’ document and for any unusual geometry. Boundary Determination Officers addressed these issues and plotted leases currently listed as active, but not originally in Cris’ report.

    On December 24, 2014, the SLA boundary offshore of California was fixed (permanently immobilized) by a decree issued by the U.S. Supreme Court United States v. California, 135 S. Ct. 563 (2014). Offshore leases were clipped so as not to exceed the limits of this fixed boundary.

    Lease Notes:

    PRC 1482

    The “lease area” for this lease is based on the Compensatory Royalty Agreement dated 1-21-1955 as found on the CSLC Insider. The document spells out the distinction between “leased lands” and “state lands”. The leased lands are between two private companies and the agreement only makes a claim to the State’s interest as those lands as identified and surveyed per the map Tract 893, Bk 27 Pg 24. The map shows the State’s interest as being confined to the meanders of three sloughs, one of which is severed from the bay (Anaheim) by a Tideland sale. It should be noted that the actual sovereign tide and or submerged lands for this area is all those historic tide and submerged lands minus and valid tide land sales patents. The three parcels identified were also compared to what the Orange County GIS land records system has for their parcels. Shapefiles were downloaded from that site as well as two centerline monuments for 2 roads covered by the Tract 893. It corresponded well, so their GIS linework was held and clipped or extended to make a parcel.

    MJF Boundary Determination Officer 12/19/16

    PRC 3455

    The “lease area” for this lease is based on the Tract No. 2 Agreement, Long Beach Unit, Wilmington Oil Field, CA dated 4/01/1965 and found on the CSLC insider (also recorded March 12, 1965 in Book M 1799, Page 801).

    Unit Operating Agreement, Long Beach Unit recorded March 12, 1965 in Book M 1799 page 599.

    “City’s Portion of the Offshore Area” shall mean the undeveloped portion of the Long Beach tidelands as defined in Section 1(f) of Chapter 138, and includes Tract No. 1”

    “State’s Portion of the Offshore Area” shall mean that portion of the Alamitos Beach Park Lands, as defined in Chapter 138, included within the Unit Area and includes Tract No. 2.”

    “Alamitos Beach Park Lands” means those tidelands and submerged lands, whether filled or unfilled, described in that certain Judgment After Remittitur in The People of the State of California v. City of Long Beach, Case No. 683824 in the Superior Court of the State of California for the County of Los Angeles, dated May 8, 1962, and entered on May 15, 1962 in Judgment Book 4481, at Page 76, of the Official Records of the above entitled court”

    *The description for Tract 2 has an EXCEPTING (statement) “therefrom that portion lying Southerly of the Southerly line of the Boundary of Subsidence Area, as shown on Long Beach Harbor Department {LBHD} Drawing No. D-98. This map could not be found in records nor via a PRA request to the LBHD directly. Some maps were located that show the extents of subsidence in this area being approximately 700 feet waterward of the MHTL as determined by SCC 683824. Although the “EXCEPTING” statement appears to exclude most of what would seem like the offshore area (out to 3 nautical miles from the MHTL which is different than the actual CA offshore boundary measured from MLLW) the 1964, ch 138 grant (pg25) seems to reference the lands lying seaward of that MHTL and ”westerly of the easterly boundary of the undeveloped portion of the Long Beach tidelands, the latter of which is the same boundary (NW) of tract 2. This appears to then indicate that the “EXCEPTING” area is not part of the Lands Granted to City of Long Beach and appears to indicate that this portion might be then the “State’s Portion of the Offshore Area” as referenced in the Grant and the Unit Operating Agreement. Section “f” in the CSLC insider document (pg 9) defines the Contract Lands: means Tract No. 2 as described in Exhibit “A” to the Unit Agreement, and as shown on Exhibit “B” to the Unit Agreement, together with all other lands within the State’s Portion of the Offshore Area.

    Linework has been plotted in accordance with the methods used to produce this layer, with record lines rotated to those as listed in the descriptions. The main boundaries being the MHTL(north/northeast) that appears to be fixed for most of the area (projected to the city boundary on the east/southeast); 3 nautical miles from said MHTL on the south/southwest; and the prolongation of the NWly line of Block 50 of Alamitos Bay Tract.

    MJF Boundary Determination Officer 12-27-16

    PRC

  10. A

    ‘Offshore Oil Leases’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Sep 9, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2018). ‘Offshore Oil Leases’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-gov-offshore-oil-leases-99a0/56b4b7b6/
    Explore at:
    Dataset updated
    Sep 9, 2018
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Offshore Oil Leases’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/4986e7ed-aae8-40fe-87d8-87f8462d3145 on 27 January 2022.

    --- Dataset description provided by original source is as follows ---

    California State Lands Commission Offshore Oil Leases in the vicinity of Santa Barbara, Ventura, and Orange County.

    The polygons in this layer show the position of Offshore Oil Leases as documented by former State Lands Senior Boundary Determination Officer, Cris N. Perez and as reviewed and updated by GIS and Boundary staff.

    Background:

    This layer represents active offshore oil and gas agreements in California waters, which are what remain of the more than 60 originally issued. These leases were issued prior to the catastrophic 1969 oil spill from Platform A in federal waters off Santa Barbara County, and some predate the formation of the Commission. Between 2010 and 2014, the bulk of the approximately $300 million generated annually for the state's General Fund from oil and gas agreements was from these offshore leases.

    In 1921, the Legislature created the first tidelands oil and gas leasing program. Between 1921 and 1929, approximately 100 permits and leases were issued and over 850 wells were drilled in Santa Barbara and Ventura Counties. In 1929, the Legislature prohibited any new leases or permits. In 1933, however, the prohibition was partially lifted in response to an alleged theft of tidelands oil in Huntington Beach. It wasn't until 1938, and again in 1955, that the Legislature would allow new offshore oil and gas leasing. Except for limited circumstances, the Legislature has consistently placed limits on the areas that the Commission may offer for lease and in 1994, placed the entirety of California's coast off-limits to new oil and gas leases.

    Layer Creation Process:

    In 1997 Cris N. Perez, Senior Boundary Determination Officer of the Southern California Section of the State Lands Division, prepared a report on the Commission’s Offshore Oil Leases to:

    A. Show the position of Offshore Oil Leases.

    B. Produce a hard copy of 1927 NAD Coordinates for each lease.

    C. Discuss any problems evident after plotting the leases.

    Below are some of the details Cris included in the report:

    I have plotted the leases that were supplied to me by the Long Beach Office and computed 1927 NAD California Coordinates for each one. Where the Mean High Tide Line (MHTL) was called for and not described in the deed, I have plotted the California State Lands Commission CB Map Coordinates, from the actual field surveys of the Mean High Water Line and referenced them wherever used.

    Where the MHTL was called for and not described in the deed and no California State Lands Coordinates were available, I digitized the maps entitled, “Map of the Offshore Ownership Boundary of the State of California Drawn pursuant to the Supplemental Decree of the U.S. Supreme Court in the U.S. V. California, 382 U.S. 448 (1966), Scale 1:10000 Sheets 1-161.” The shore line depicted on these maps is the Mean Lower Low Water (MLLW) Line as shown on the Hydrographic or Topographic Sheets for the coastline. If a better fit is needed, a field survey to position this line will need to be done.

    The coordinates listed in Cris’ report were retrieved through Optical Character Recognition (OCR) and used to produce GIS polygons using Esri ArcGIS software. Coordinates were checked after the OCR process when producing the polygons in ArcMap to ensure accuracy. Original Coordinate systems (NAD 1927 California State Plane Zones 5 and 6) were used initially, with each zone being reprojected to NAD 83 Teale Albers Meters and merged after the review process.

    While Cris’ expertise and documentation were relied upon to produce this GIS Layer, certain polygons were reviewed further for any potential updates since Cris’ document and for any unusual geometry. Boundary Determination Officers addressed these issues and plotted leases currently listed as active, but not originally in Cris’ report.

    On December 24, 2014, the SLA boundary offshore of California was fixed (permanently immobilized) by a decree issued by the U.S. Supreme Court United States v. California, 135 S. Ct. 563 (2014). Offshore leases were clipped so as not to exceed the limits of this fixed boundary.

    Lease Notes:

    PRC 1482

    The “lease area” for this lease is based on the Compensatory Royalty Agreement dated 1-21-1955 as found on the CSLC Insider. The document spells out the distinction between “leased lands” and “state lands”. The leased lands are between two private companies and the agreement only makes a claim to the State’s interest as those lands as identified and surveyed per the map Tract 893, Bk 27 Pg 24. The map shows the State’s interest as being confined to the meanders of three sloughs, one of which is severed from the bay (Anaheim) by a Tideland sale. It should be noted that the actual sovereign tide and or submerged lands for this area is all those historic tide and submerged lands minus and valid tide land sales patents. The three parcels identified were also compared to what the Orange County GIS land records system has for their parcels. Shapefiles were downloaded from that site as well as two centerline monuments for 2 roads covered by the Tract 893. It corresponded well, so their GIS linework was held and clipped or extended to make a parcel.

    MJF Boundary Determination Officer 12/19/16

    PRC 3455

    The “lease area” for this lease is based on the Tract No. 2 Agreement, Long Beach Unit, Wilmington Oil Field, CA dated 4/01/1965 and found on the CSLC insider (also recorded March 12, 1965 in Book M 1799, Page 801).

    Unit Operating Agreement, Long Beach Unit recorded March 12, 1965 in Book M 1799 page 599.

    “City’s Portion of the Offshore Area” shall mean the undeveloped portion of the Long Beach tidelands as defined in Section 1(f) of Chapter 138, and includes Tract No. 1”

    “State’s Portion of the Offshore Area” shall mean that portion of the Alamitos Beach Park Lands, as defined in Chapter 138, included within the Unit Area and includes Tract No. 2.”

    “Alamitos Beach Park Lands” means those tidelands and submerged lands, whether filled or unfilled, described in that certain Judgment After Remittitur in The People of the State of California v. City of Long Beach, Case No. 683824 in the Superior Court of the State of California for the County of Los Angeles, dated May 8, 1962, and entered on May 15, 1962 in Judgment Book 4481, at Page 76, of the Official Records of the above entitled court”

    *The description for Tract 2 has an EXCEPTING (statement) “therefrom that portion lying Southerly of the Southerly line of the Boundary of Subsidence Area, as shown on Long Beach Harbor Department {LBHD} Drawing No. D-98. This map could not be found in records nor via a PRA request to the LBHD directly. Some maps were located that show the extents of subsidence in this area being approximately 700 feet waterward of the MHTL as determined by SCC 683824. Although the “EXCEPTING” statement appears to exclude most of what would seem like the offshore area (out to 3 nautical miles from the MHTL which is different than the actual CA offshore boundary measured from MLLW) the 1964, ch 138 grant (pg25) seems to reference the lands lying seaward of that MHTL and ”westerly of the easterly boundary of the undeveloped portion of the Long Beach tidelands, the latter of which is the same boundary (NW) of tract 2. This appears to then indicate that the “EXCEPTING” area is not part of the Lands Granted to City of Long Beach and appears to indicate that this portion might be then the “State’s Portion of the Offshore Area” as referenced in the Grant and the Unit Operating Agreement. Section “f” in the CSLC insider document (pg 9) defines the Contract Lands: means Tract No. 2 as described in Exhibit “A” to the Unit Agreement, and as shown on Exhibit “B” to the Unit Agreement, together with all other lands within the State’s Portion of the Offshore Area.

    Linework has been plotted in accordance with the methods used to produce this layer, with record lines rotated to those as listed in the descriptions. The main boundaries being the MHTL(north/northeast) that appears to be fixed for most of the area (projected to the city boundary on the east/southeast); 3 nautical miles from said MHTL on the south/southwest; and the prolongation of the NWly line of Block 50 of Alamitos Bay Tract.

    MJF Boundary Determination Officer 12-27-16

    PRC

  11. a

    Typical Jobs Projections (TAZ) - RTP 2019

    • data-wfrc.opendata.arcgis.com
    • data.wfrc.org
    Updated Apr 17, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wasatch Front Regional Council (2019). Typical Jobs Projections (TAZ) - RTP 2019 [Dataset]. https://data-wfrc.opendata.arcgis.com/datasets/f0f0595eaf6c449197340d2c726dd956
    Explore at:
    Dataset updated
    Apr 17, 2019
    Dataset authored and provided by
    Wasatch Front Regional Council
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    Important Dataset Update 6/24/2020:Summit and Wasatch Counties updated.Important Dataset Update 6/12/2020:MAG area updated.Important Dataset Update 7/15/2019: This dataset now includes projections for all populated statewide traffic analysis zones (TAZs). Projections within the Wasatch Front urban area ( SUBAREAID = 1) were produced with using the Real Estate Market Model as described below. Socioeconomic forecasts produced for Cache MPO (Cache County, SUBAREAID = 2), Dixie MPO (Washington County, SUBAREAID = 3), Summit County (SUBAREAID = 4), and UDOT (other areas of the state, SUBAREAID = 0) all adhere to the University of Utah Gardner Policy Institute's county-level projection controls, but other modeling methods are used to arrive at the TAZ-level forecasts for these areas.As with any dataset that presents projections into the future, it is important to have a full understanding of the data before using it. Before using this data, you are strongly encouraged to read the metadata description below and direct any questions or feedback about this data to analytics@wfrc.org. Every four years, the Wasatch Front’s two metropolitan planning organizations (MPOs), Wasatch Front Regional Council (WFRC) and Mountainland Association of Governments (MAG), collaborate to update a set of annual small area -- traffic analysis zone and ‘city area’, see descriptions below) -- population and employment projections for the Salt Lake City-West Valley City (WFRC), Ogden-Layton (WFRC), and Provo-Orem (MAG) urbanized areas. These projections are primarily developed for the purpose of informing long-range transportation infrastructure and services planning done as part of the 4 year Regional Transportation Plan update cycle, as well as Utah’s Unified Transportation Plan, 2019-2050. Accordingly, the foundation for these projections is largely data describing existing conditions for a 2015 base year, the first year of the latest RTP process. The projections are included in the official travel models, which are publicly released at the conclusion of the RTP process. As these projections may be a valuable input to other analyses, this dataset is made available at http://data.wfrc.org/search?q=projections as a public service for informational purposes only. It is solely the responsibility of the end user to determine the appropriate use of this dataset for other purposes. Wasatch Front Real Estate Market Model (REMM) ProjectionsWFRC and MAG have developed a spatial statistical model using the UrbanSim modeling platform to assist in producing these annual projections. This model is called the Real Estate Market Model, or REMM for short. REMM is used for the urban portion of Weber, Davis, Salt Lake, and Utah counties. REMM relies on extensive inputs to simulate future development activity across the greater urbanized region. Key inputs to REMM include:Demographic data from the decennial census;County-level population and employment projections -- used as REMM control totals -- are produced by the University of Utah’s Kem C. Gardner Policy Institute (GPI) funded by the Utah State Legislature;Current employment locational patterns derived from the Utah Department of Workforce Services; Land use visioning exercises and feedback, especially in regard to planned urban and local center development, with city and county elected officials and staff;Current land use and valuation GIS-based parcel data stewarded by County Assessors;Traffic patterns and transit service from the regional Travel Demand Model that together form the landscape of regional accessibility to workplaces and other destinations; andCalibration of model variables to balance the fit of current conditions and dynamics at the county and regional level.‘Traffic Analysis Zone’ ProjectionsThe annual projections are forecasted for each of the Wasatch Front’s 2,800+ Traffic Analysis Zone (TAZ) geographic units. TAZ boundaries are set along roads, streams, and other physical features and average about 600 acres (0.94 square miles). TAZ sizes vary, with some TAZs in the densest areas representing only a single city block (25 acres). ‘City Area’ ProjectionsThe TAZ-level output from the model is also available for ‘city areas’ that sum the projections for the TAZ geographies that roughly align with each city’s current boundary. As TAZs do not align perfectly with current city boundaries, the ‘city area’ summaries are not projections specific to a current or future city boundary, but the ‘city area’ summaries may be suitable surrogates or starting points upon which to base city-specific projections.Summary Variables in the DatasetsAnnual projection counts are available for the following variables (please read Key Exclusions note below):DemographicsHousehold Population Count (excludes persons living in group quarters)Household Count (excludes group quarters)EmploymentTypical Job Count (includes job types that exhibit typical commuting and other travel/vehicle use patterns)Retail Job Count (retail, food service, hotels, etc)Office Job Count (office, health care, government, education, etc)Industrial Job Count (manufacturing, wholesale, transport, etc)Non-Typical Job Count* (includes agriculture, construction, mining, and home-based jobs) This can be calculated by subtracting Typical Job Count from All Employment Count.All Employment Count* (all jobs, this sums jobs from typical and non-typical sectors).* These variable includes REMM’s attempt to estimate construction jobs in areas that experience new and re-development activity. Areas may see short-term fluctuations in Non-Typical and All Employment counts due to the temporary location of construction jobs.Population and employment projections for the Wasatch Front area can be combined with those developed by Dixie MPO (St. George area), Cache MPO (Logan area), and the Utah Department of Transportation (for the remainder of the state) into one database for use in the Utah Statewide Travel Model (USTM). While projections for the areas outside of the Wasatch Front use different forecasting methods, they contain the same summary-level population and employment projections making similar TAZ and ‘City Area’ data available statewide. WFRC plans, in the near future, to add additional areas to these projections datasets by including the projections from the USTM model.Key Exclusions from TAZ and ‘City Area’ ProjectionsAs the primary purpose for the development of these population and employment projections is to model future travel in the region, REMM-based projections do not include population or households that reside in group quarters (prisons, senior centers, dormitories, etc), as residents of these facilities typically have a very low impact on regional travel. USTM-based projections also excludes group quarter populations. Group quarters population estimates are available at the county-level from GPI and at various sub-county geographies from the Census Bureau.

  12. a

    All Jobs Projections (City Area) - RTP 2023

    • data-wfrc.opendata.arcgis.com
    • data.wfrc.org
    Updated May 16, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wasatch Front Regional Council (2024). All Jobs Projections (City Area) - RTP 2023 [Dataset]. https://data-wfrc.opendata.arcgis.com/maps/wfrc::all-jobs-projections-city-area-rtp-2023
    Explore at:
    Dataset updated
    May 16, 2024
    Dataset authored and provided by
    Wasatch Front Regional Council
    Area covered
    Description

    Every four years, the Wasatch Front’s two metropolitan planning organizations (MPOs), Wasatch Front Regional Council (WFRC) and Mountainland Association of Governments (MAG), collaborate to update a set of annual small area -- traffic analysis zone and ‘city area’, see descriptions below) -- population and employment projections for the Salt Lake City-West Valley City (WFRC), Ogden-Layton (WFRC), and Provo-Orem (MAG) urbanized areas.

    These projections are primarily developed for the purpose of informing long-range transportation infrastructure and services planning done as part of the 4 year Regional Transportation Plan update cycle, as well as Utah’s Unified Transportation Plan, 2023-2050. Accordingly, the foundation for these projections is largely data describing existing conditions for a 2019 base year, the first year of the latest RTP process. The projections are included in the official travel models, which are publicly released at the conclusion of the RTP process.

    Projections within the Wasatch Front urban area ( SUBAREAID = 1) were produced with using the Real Estate Market Model as described below. Socioeconomic forecasts produced for Cache MPO (Cache County, SUBAREAID = 2), Dixie MPO (Washington County, SUBAREAID = 3), Summit County (SUBAREAID = 4), and UDOT (other areas of the state, SUBAREAID = 0) all adhere to the University of Utah Gardner Policy Institute's county-level projection controls, but other modeling methods are used to arrive at the TAZ-level forecasts for these areas.

    As these projections may be a valuable input to other analyses, this dataset is made available here as a public service for informational purposes only. It is solely the responsibility of the end user to determine the appropriate use of this dataset for other purposes.

    Wasatch Front Real Estate Market Model (REMM) Projections

    WFRC and MAG have developed a spatial statistical model using the UrbanSim modeling platform to assist in producing these annual projections. This model is called the Real Estate Market Model, or REMM for short. REMM is used for the urban portion of Weber, Davis, Salt Lake, and Utah counties. REMM relies on extensive inputs to simulate future development activity across the greater urbanized region. Key inputs to REMM include:

    Demographic data from the decennial census
    County-level population and employment projections -- used as REMM control totals -- are produced by the University of Utah’s Kem C. Gardner Policy Institute (GPI) funded by the Utah State Legislature
    Current employment locational patterns derived from the Utah Department of Workforce Services
    Land use visioning exercises and feedback, especially in regard to planned urban and local center development, with city and county elected officials and staff
    Current land use and valuation GIS-based parcel data stewarded by County Assessors
    Traffic patterns and transit service from the regional Travel Demand Model that together form the landscape of regional accessibility to workplaces and other destinations
    Calibration of model variables to balance the fit of current conditions and dynamics at the county and regional level
    

    ‘Traffic Analysis Zone’ Projections

    The annual projections are forecasted for each of the Wasatch Front’s 3,546 Traffic Analysis Zone (TAZ) geographic units. TAZ boundaries are set along roads, streams, and other physical features and average about 600 acres (0.94 square miles). TAZ sizes vary, with some TAZs in the densest areas representing only a single city block (25 acres).

    ‘City Area’ Projections

    The TAZ-level output from the model is also available for ‘city areas’ that sum the projections for the TAZ geographies that roughly align with each city’s current boundary. As TAZs do not align perfectly with current city boundaries, the ‘city area’ summaries are not projections specific to a current or future city boundary, but the ‘city area’ summaries may be suitable surrogates or starting points upon which to base city-specific projections.

    Summary Variables in the Datasets

    Annual projection counts are available for the following variables (please read Key Exclusions note below):

    Demographics

    Household Population Count (excludes persons living in group quarters) 
    Household Count (excludes group quarters) 
    

    Employment

    Typical Job Count (includes job types that exhibit typical commuting and other travel/vehicle use patterns)
    Retail Job Count (retail, food service, hotels, etc)
    Office Job Count (office, health care, government, education, etc)
    Industrial Job Count (manufacturing, wholesale, transport, etc)
    Non-Typical Job Count* (includes agriculture, construction, mining, and home-based jobs) This can be calculated by subtracting Typical Job Count from All Employment Count 
    All Employment Count* (all jobs, this sums jobs from typical and non-typical sectors).
    
    • These variables includes REMM’s attempt to estimate construction jobs in areas that experience new and re-development activity. Areas may see short-term fluctuations in Non-Typical and All Employment counts due to the temporary location of construction jobs.

    Key Exclusions from TAZ and ‘City Area’ Projections

    As the primary purpose for the development of these population and employment projections is to model future travel in the region, REMM-based projections do not include population or households that reside in group quarters (prisons, senior centers, dormitories, etc), as residents of these facilities typically have a very low impact on regional travel. USTM-based projections also excludes group quarter populations. Group quarters population estimates are available at the county-level from GPI and at various sub-county geographies from the Census Bureau.

    Statewide Projections

    Population and employment projections for the Wasatch Front area can be combined with those developed by Dixie MPO (St. George area), Cache MPO (Logan area), and the Utah Department of Transportation (for the remainder of the state) into one database for use in the Utah Statewide Travel Model (USTM). While projections for the areas outside of the Wasatch Front use different forecasting methods, they contain the same summary-level population and employment projections making similar TAZ and ‘City Area’ data available statewide. WFRC plans, in the near future, to add additional areas to these projections datasets by including the projections from the USTM model.

  13. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘2018 CT Data Catalog (GIS)’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-gov-2018-ct-data-catalog-gis-8148/4aa04a6c/?iid=001-843&v=presentation

‘2018 CT Data Catalog (GIS)’ analyzed by Analyst-2

Explore at:
Dataset updated
Jan 26, 2022
Dataset authored and provided by
Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Area covered
Connecticut
Description

Analysis of ‘2018 CT Data Catalog (GIS)’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/5a93e011-4ea8-40b1-a888-0f573e6b785d on 26 January 2022.

--- Dataset description provided by original source is as follows ---

Catalog of high value data inventories produced by Connecticut executive branch agencies and compiled by the Office of Policy and Management. This catalog contains information on high value GIS data only. A catalog of high value non-GIS data may be found at the following link: https://data.ct.gov/Government/CT-Data-Catalog-Non-GIS-/ghmx-93jn

As required by Public Act 18-175, executive branch agencies must annually conduct a high value data inventory to capture information about the high value data that they collect.

High value data is defined as any data that the department head determines (A) is critical to the operation of an executive branch agency; (B) can increase executive branch agency accountability and responsiveness; (C) can improve public knowledge of the executive branch agency and its operations; (D) can further the core mission of the executive branch agency; (E) can create economic opportunity; (F) is frequently requested by the public; (G) responds to a need and demand as identified by the agency through public consultation; or (H) is used to satisfy any legislative or other reporting requirements.

This dataset was last updated 1/2/2019 and will continue to be updated as high value data inventories are submitted to OPM.

--- Original source retains full ownership of the source dataset ---

Search
Clear search
Close search
Google apps
Main menu