10 datasets found
  1. M

    Vital Signs: List Rents – by city

    • open-data-demo.mtc.ca.gov
    • data.bayareametro.gov
    application/rdfxml +5
    Updated Jan 19, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    real Answers (2017). Vital Signs: List Rents – by city [Dataset]. https://open-data-demo.mtc.ca.gov/dataset/Vital-Signs-List-Rents-by-city/vpmm-yh3p/about
    Explore at:
    tsv, csv, json, xml, application/rdfxml, application/rssxmlAvailable download formats
    Dataset updated
    Jan 19, 2017
    Dataset authored and provided by
    real Answers
    Description

    VITAL SIGNS INDICATOR List Rents (EC9)

    FULL MEASURE NAME List Rents

    LAST UPDATED October 2016

    DESCRIPTION List rent refers to the advertised rents for available rental housing and serves as a measure of housing costs for new households moving into a neighborhood, city, county or region.

    DATA SOURCE real Answers (1994 – 2015) no link

    Zillow Metro Median Listing Price All Homes (2010-2016) http://www.zillow.com/research/data/

    CONTACT INFORMATION vitalsigns.info@mtc.ca.gov

    METHODOLOGY NOTES (across all datasets for this indicator) List rents data reflects median rent prices advertised for available apartments rather than median rent payments; more information is available in the indicator definition above. Regional and local geographies rely on data collected by real Answers, a research organization and database publisher specializing in the multifamily housing market. real Answers focuses on collecting longitudinal data for individual rental properties through quarterly surveys. For the Bay Area, their database is comprised of properties with 40 to 3,000+ housing units. Median list prices most likely have an upward bias due to the exclusion of smaller properties. The bias may be most extreme in geographies where large rental properties represent a small portion of the overall rental market. A map of the individual properties surveyed is included in the Local Focus section.

    Individual properties surveyed provided lower- and upper-bound ranges for the various types of housing available (studio, 1 bedroom, 2 bedroom, etc.). Median lower- and upper-bound prices are determined across all housing types for the regional and county geographies. The median list price represented in Vital Signs is the average of the median lower- and upper-bound prices for the region and counties. Median upper-bound prices are determined across all housing types for the city geographies. The median list price represented in Vital Signs is the median upper-bound price for cities. For simplicity, only the mean list rent is displayed for the individual properties. The metro areas geography rely upon Zillow data, which is the median price for rentals listed through www.zillow.com during the month. Like the real Answers data, Zillow's median list prices most likely have an upward bias since small properties are underrepresented in Zillow's listings. The metro area data for the Bay Area cannot be compared to the regional Bay Area data. Due to afore mentioned data limitations, this data is suitable for analyzing the change in list rents over time but not necessarily comparisons of absolute list rents. Metro area boundaries reflects today’s metro area definitions by county for consistency, rather than historical metro area boundaries.

    Due to the limited number of rental properties surveyed, city-level data is unavailable for Atherton, Belvedere, Brisbane, Calistoga, Clayton, Cloverdale, Cotati, Fairfax, Half Moon Bay, Healdsburg, Hillsborough, Los Altos Hills, Monte Sereno, Moranga, Oakley, Orinda, Portola Valley, Rio Vista, Ross, San Anselmo, San Carlos, Saratoga, Sebastopol, Windsor, Woodside, and Yountville.

    Inflation-adjusted data are presented to illustrate how rents have grown relative to overall price increases; that said, the use of the Consumer Price Index does create some challenges given the fact that housing represents a major chunk of consumer goods bundle used to calculate CPI. This reflects a methodological tradeoff between precision and accuracy and is a common concern when working with any commodity that is a major component of CPI itself. Percent change in inflation-adjusted median is calculated with respect to the median price from the fourth quarter or December of the base year.

  2. V

    Virginia Fair Market Rent for 2024 - 2025

    • data.virginia.gov
    xlsx
    Updated Dec 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Other (2024). Virginia Fair Market Rent for 2024 - 2025 [Dataset]. https://data.virginia.gov/dataset/virginia-fair-market-rent-for-2021
    Explore at:
    xlsx(26912)Available download formats
    Dataset updated
    Dec 9, 2024
    Dataset authored and provided by
    Other
    Area covered
    Virginia
    Description

    Virginia (VA) has the 19th highest rent in the country out of 56 states and territories. The Fair Market Rent in Virginia ranges from $701 for a 2-bedroom apartment in Grayson County, VA to $1,765 for a 2-bedroom unit in Washington-Arlington-Alexandria, DC-VA-MD HUD Metro FMR Area.

    For FY 2024, the Washington-Arlington-Alexandria, DC-VA-MD HUD Metro FMR Area (Arlington County) rent for a studio or efficiency is $1,772 per month and $3,015 per month to rent a house or an apartment with 4 bedrooms. The average Fair Market Rent for a 2-bedroom home in Virginia is $1,056 per month.

    Approximately 15% of Americans qualify for some level of housing assistance. The population in Virginia is around 2,038,847 people. So, there are around 305,827 people in Virginia who could be receiving housing benefits from the HUD. For FY 2025, the Washington-Arlington-Alexandria, DC-VA-MD HUD Metro FMR Area (Arlington County) rent for a studio or efficiency is $2,012 per month and $3,413 per month to rent a house or an apartment with 4 bedrooms. The average Fair Market Rent for a 2-bedroom home in Virginia is $1,059 per month.

  3. Rental Pricing Dataset, Malaysia

    • kaggle.com
    Updated Mar 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ariewijaya (2023). Rental Pricing Dataset, Malaysia [Dataset]. https://www.kaggle.com/datasets/ariewijaya/rent-pricing-kuala-lumpur-malaysi
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 21, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    ariewijaya
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Malaysia
    Description

    Context

    This dataset contains information on rent pricing surrounding Kuala Lumpur and Selangor region, Malaysia. The information was scraped from mudah.my

    Content

    There are 13 features with one unique ids (ads_id) and one target feature (monthly_rent)

    • ads_id: the listing ids (unique)
    • prop_name: name of the building/ property
    • completion_year: completion/ established year of the property
    • monthly_rent: monthly rent in ringgit malaysia (RM)
    • location: property location in Kuala Lumpur region
    • property_type:property type such as apartment, condominium, flat, duplex, studio, etc
    • rooms: number of rooms in the unit
    • parking: number of parking space for the unit
    • bathroom: number of bathrooms in the unit
    • size: total area of the unit in square feet
    • furnished: furnishing status of the unit (fully, partial, non-furnished)
    • facilities: main facilities available
    • additional_facilities: additional facilities (proximity to attraction area, mall, school, shopping, railways, etc)

    Acknowledgements The data was scraped from mudah.my

    Inspiration I have been living in Kuala Lumpur, Malaysia since 2017, and in the past there was no easy way to understand whether certain unit pricing is making sense or not. With this dataset, I wanted to be able to answer the following questions:

    • What are the biggest factor affecting the unit/rent pricing?
    • Which location in Kuala Lumpur/ Selangor region that has the highest rent price? etc?
  4. Real Estate Price Prediction Data

    • figshare.com
    txt
    Updated Aug 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mohammad Shbool; Rand Al-Dmour; Bashar Al-Shboul; Nibal Albashabsheh; Najat Almasarwah (2024). Real Estate Price Prediction Data [Dataset]. http://doi.org/10.6084/m9.figshare.26517325.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Aug 8, 2024
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Mohammad Shbool; Rand Al-Dmour; Bashar Al-Shboul; Nibal Albashabsheh; Najat Almasarwah
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Overview: This dataset was collected and curated to support research on predicting real estate prices using machine learning algorithms, specifically Support Vector Regression (SVR) and Gradient Boosting Machine (GBM). The dataset includes comprehensive information on residential properties, enabling the development and evaluation of predictive models for accurate and transparent real estate appraisals.Data Source: The data was sourced from Department of Lands and Survey real estate listings.Features: The dataset contains the following key attributes for each property:Area (in square meters): The total living area of the property.Floor Number: The floor on which the property is located.Location: Geographic coordinates or city/region where the property is situated.Type of Apartment: The classification of the property, such as studio, one-bedroom, two-bedroom, etc.Number of Bathrooms: The total number of bathrooms in the property.Number of Bedrooms: The total number of bedrooms in the property.Property Age (in years): The number of years since the property was constructed.Property Condition: A categorical variable indicating the condition of the property (e.g., new, good, fair, needs renovation).Proximity to Amenities: The distance to nearby amenities such as schools, hospitals, shopping centers, and public transportation.Market Price (target variable): The actual sale price or listed price of the property.Data Preprocessing:Normalization: Numeric features such as area and proximity to amenities were normalized to ensure consistency and improve model performance.Categorical Encoding: Categorical features like property condition and type of apartment were encoded using one-hot encoding or label encoding, depending on the specific model requirements.Missing Values: Missing data points were handled using appropriate imputation techniques or by excluding records with significant missing information.Usage: This dataset was utilized to train and test machine learning models, aiming to predict the market price of residential properties based on the provided attributes. The models developed using this dataset demonstrated improved accuracy and transparency over traditional appraisal methods.Dataset Availability: The dataset is available for public use under the [CC BY 4.0]. Users are encouraged to cite the related publication when using the data in their research or applications.Citation: If you use this dataset in your research, please cite the following publication:[Real Estate Decision-Making: Precision in Price Prediction through Advanced Machine Learning Algorithms].

  5. c

    Housing Receiving Incentives Open Data

    • opendata.cityofboise.org
    • housing-data-portal-boise.hub.arcgis.com
    Updated Jul 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Boise, Idaho (2023). Housing Receiving Incentives Open Data [Dataset]. https://opendata.cityofboise.org/documents/1423afcc749646649c82d7cdc718e4f5
    Explore at:
    Dataset updated
    Jul 5, 2023
    Dataset authored and provided by
    City of Boise, Idaho
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Thumbnail image by Tony Moody.This dataset includes all housing developments approved by the City of Boise’s (“city”) Planning Division since 2020 that are known by the city to have received or are expected to receive support or incentives from a government entity. Each row represents one development. Data may be unavailable for some projects and details are subject to change until construction is complete. Addresses are excluded for projects with fewer than five homes for privacy reasons.

    The dataset includes details on the number of “homes” in a development. We use the word "home" to refer to any single unit of housing regardless of size, type, or whether it is rented or owned. For example, a building with 40 apartments counts as 40 homes, and a single detached house counts as one home.

    The dataset includes details about the phase of each project. The process for build a new development is as follows: First, one must receive approval from the city’s Planning Division, which is also known as being “entitled.” Next, one must apply for and receive a permit from the city’s Building Division before beginning construction. Finally, once construction is complete and all city inspections have been passed, the building can be occupied.

    The dataset also includes data on the affordability level of each development. To receive a government incentive, a developer is typically required to rent or sell a specified number of homes to households that have an income below limits set by the government and their housing cost must not exceed 30% of their income. The federal government determines income limits based on a standard called “area median income.” The city considers housing affordable if is targeted to households earning at or below 80% of the area median income. For a three-person household in Boise, that equates to an annual income of $60,650 and monthly rent or mortgage of $1,516. See Boise Income Guidelines for more details.Project Address(es) – Includes all addresses that are included as part of the development project.Address – The primary address for the development.Parcel Number(s) – The identification code for all parcels of land included in the development.Acreage – The number of acres for the parcel(s) included in the project.Planning Permit Number – The identification code for all permits the development has received from the Planning Division for the City of Boise. The number and types of permits required vary based on the location and type of development.Date Entitled – The date a development was approved by the City’s Planning Division.Building Permit Number – The identification code for all permits the development has received from the city’s Building Division.Date Building Permit Issued – Building permits are required to begin construction on a development.Date Final Certificate of Occupancy Issued – A certificate of occupancy is the final approval by the city for a development, once construction is complete. Not all developments require a certificate of occupancy.Studio – The number of homes in the development that are classified as a studio. A studio is typically defined as a home in which there is no separate bedroom. A single room serves as both a bedroom and a living room.1-Bedroom – The number of homes in a development that have exactly one bedroom.2-Bedroom – The number of homes in a development that have exactly two bedrooms.3-Bedroom – The number of homes in a development that have exactly three bedrooms.4+ Bedroom – The number of homes in a development that have four or more bedrooms.# of Total Project Units – The total number of homes in the development.# of units toward goals – The number of homes in a development that contribute to either the city’s goal to produce housing affordable at or under 60% of area median income, or the city’s goal to create permanent supportive housing for households experiencing homelessness.Rent at or under 60% AMI - The number of homes in a development that are required to be rented at or below 60% of area median income. See the description of the dataset above for an explanation of area median income or see Boise Income Guidelines for more details. Boise defines a home as “affordable” if it is rented or sold at or below 80% of area median income.Rent 61-80% AMI – The number of homes in a development that are required to be rented at between 61% and 80% of area median income. See the description of the dataset above for an explanation of area median income or see Boise Income Guidelines for more details. Boise defines a home as “affordable” if it is rented or sold at or below 80% of area median income.Rent 81-120% AMI - The number of homes in a development that are required to be rented at between 81% and 120% of area median income. See the description of the dataset above for an explanation of area median income or see Boise Income Guidelines for more details.Own at or under 60% AMI - The number of homes in a development that are required to be sold at or below 60% of area median income. See the description of the dataset above for an explanation of area median income or see Boise Income Guidelines for more details. Boise defines a home as “affordable” if it is rented or sold at or below 80% of area median income.Own 61-80% AMI – The number of homes in a development that are required to be sold at between 61% and 80% of area median income. See the description of the dataset above for an explanation of area median income or see Boise Income Guidelines for more details. Boise defines a home as “affordable” if it is rented or sold at or below 80% of area median income.Own 81-120% AMI - The number of homes in a development that are required to be sold at between 81% and 120% of area median income. See the description of the dataset above for an explanation of area median income or see Boise Income Guidelines for more details.Housing Land Trust – “Yes” if a development receives or is expected to receive this incentive. The Housing Land Trust is a model in which the city owns land that it leases to a developer to build affordable housing.City Investment – “Yes” if the city invests funding or contributes land to an affordable development.Zoning Incentive - The city's zoning code provides incentives for developers to create affordable housing. Incentives may include the ability to build an extra floor or be subject to reduced parking requirements. “Yes” if a development receives or is expected to receive one of these incentives.Project Management - The city provides a developer and their design team a single point of contact who works across city departments to simplify the permitting process, and assists the applicants in understanding the city’s requirements to avoid possible delays. “Yes” if a development receives or is expected to receive this incentive.Low-Income Housing Tax Credit (LIHTC) - A federal tax credit available to some new affordable housing developments. The Idaho Housing and Finance Association is a quasi-governmental agency that administers these federal tax credits. “Yes” if a development receives or is expected to receive this incentive.CCDC Investment - The Capital City Development Corp (CCDC) is a public agency that financially supports some affordable housing development in Urban Renewal Districts. “Yes” if a development receives or is expected to receive this incentive. If “Yes” the field identifies the Urban Renewal District associated with the development.City Goal – The city has set goals to produce housing affordable to households at or below 60% of area median income, and to create permanent supportive housing for households experiencing homelessness. This field identifies whether a development contributes to one of those goals.Project Phase - The process for build a new development is as follows: First, one must receive approval from the city’s Planning Division, which is also known as being “entitled.” Next, one must apply for and receive a permit from the city’s Building Division before beginning construction. Finally, once construction is complete and all city inspections have been passed, the building can be occupied.

  6. A

    ‘Housing Prices in London’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Jan 28, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘Housing Prices in London’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-housing-prices-in-london-0285/latest
    Explore at:
    Dataset updated
    Jan 28, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    London
    Description

    Analysis of ‘Housing Prices in London’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/arnavkulkarni/housing-prices-in-london on 28 January 2022.

    --- Dataset description provided by original source is as follows ---

    Content

    This dataset comprises of various house listings in London and neighbouring region. It also encompasses the parameters listed below, the definitions of which are quite self-explanatory. • Property Name • Price • House Type - Contains one of the following types of houses (House, Flat/Apartment, New Development, Duplex, Penthouse, Studio, Bungalow, Mews) • Area in sq ft • No. of Bedrooms • No. of Bathrooms • No. of Receptions • Location • City/County - Includes London, Essex, Middlesex, Hertfordshire, Kent, and Surrey. • Postal Code

    Inspiration

    This dataset has various parameters for each house listing which can be used to conduct Exploratory Data Analysis. It can also be used to predict the house prices in various regions of London by means of Regression Analysis or other learning methods.

    --- Original source retains full ownership of the source dataset ---

  7. c

    Home For Everyone Tracker Open Data

    • opendata.cityofboise.org
    • city-of-boise.opendata.arcgis.com
    • +1more
    Updated Jul 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Boise, Idaho (2023). Home For Everyone Tracker Open Data [Dataset]. https://opendata.cityofboise.org/datasets/boise::home-for-everyone-tracker-open-data
    Explore at:
    Dataset updated
    Jul 5, 2023
    Dataset authored and provided by
    City of Boise, Idaho
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    A Home for Everyone is the City of Boise’s (city) initiative to address needs in the community by supporting the development and preservation of housing affordable to residents on Boise budgets. A Home for Everyone has three core goals: produce new homes affordable at 60% of area median income, create permanent supportive housing for households experiencing homelessness, and preserve home affordable at 80% of area median income. This dataset includes information about all homes that count toward the city’s Home for Everyone goals.

    While the “produce affordable housing” and “create permanent supportive housing” goals are focused on supporting the development of new housing, the preservation goal is focused on maintaining existing housing affordable. As a result, many of the data fields related to new development are not relevant to preservation projects. For example, zoning incentives are only applicable to new construction projects.

    Data may be unavailable for some projects and details are subject to change until construction is complete. Addresses are excluded for projects with fewer than five homes for privacy reasons.

    The dataset includes details on the number of “homes”. We use the word "home" to refer to any single unit of housing regardless of size, type, or whether it is rented or owned. For example, a building with 40 apartments counts as 40 homes, and a single detached house counts as one home.

    The dataset includes details about the phase of each project when a project involves constructing new housing. The process for building a new development is as follows: First, one must receive approval from the city’s Planning Division, which is also known as being “entitled.” Next, one must apply for and receive a permit from the city’s Building Division before beginning construction. Finally, once construction is complete and all city inspections have been passed, the building can be occupied.

    To contribute to a city goal, homes must meet affordability requirements based on a standard called area median income. The city considers housing affordable if is targeted to households earning at or below 80% of the area median income. For a three-person household in Boise, that equates to an annual income of $60,650 and monthly housing cost of $1,516. Deeply affordable housing sets the income limit at 60% of area median income, or even 30% of area median income. See Boise Income Guidelines for more details.Project Name – The name of each project. If a row is related to the Home Improvement Loan program, that row aggregates data for all homes that received a loan in that quarter or year. Primary Address – The primary address for the development. Some developments encompass multiple addresses.Project Address(es) – Includes all addresses that are included as part of the development project.Parcel Number(s) – The identification code for all parcels of land included in the development.Acreage – The number of acres for the parcel(s) included in the project.Planning Permit Number – The identification code for all permits the development has received from the Planning Division for the City of Boise. The number and types of permits required vary based on the location and type of development.Date Entitled – The date a development was approved by the City’s Planning Division.Building Permit Number – The identification code for all permits the development has received from the city’s Building Division.Date Building Permit Issued – Building permits are required to begin construction on a development.Date Final Certificate of Occupancy Issued – A certificate of occupancy is the final approval by the city for a development, once construction is complete. Not all developments require a certificate of occupancy.Studio – The number of homes in the development that are classified as a studio. A studio is typically defined as a home in which there is no separate bedroom. A single room serves as both a bedroom and a living room.1-Bedroom – The number of homes in a development that have exactly one bedroom.2-Bedroom – The number of homes in a development that have exactly two bedrooms.3-Bedroom – The number of homes in a development that have exactly three bedrooms.4+ Bedroom – The number of homes in a development that have four or more bedrooms.# of Total Project Units – The total number of homes in the development.# of units toward goals – The number of homes in a development that contribute to either the city’s goal to produce housing affordable at or under 60% of area median income, or the city’s goal to create permanent supportive housing for households experiencing homelessness. Rent at or under 60% AMI - The number of homes in a development that are required to be rented at or below 60% of area median income. See the description of the dataset above for an explanation of area median income or see Boise Income Guidelines for more details. Boise defines a home as “affordable” if it is rented or sold at or below 80% of area median income.Rent 61-80% AMI – The number of homes in a development that are required to be rented at between 61% and 80% of area median income. See the description of the dataset above for an explanation of area median income or see Boise Income Guidelines for more details. Boise defines a home as “affordable” if it is rented or sold at or below 80% of area median income.Rent 81-120% AMI - The number of homes in a development that are required to be rented at between 81% and 120% of area median income. See the description of the dataset above for an explanation of area median income or see Boise Income Guidelines for more details.Own at or under 60% AMI - The number of homes in a development that are required to be sold at or below 60% of area median income. See the description of the dataset above for an explanation of area median income or see Boise Income Guidelines for more details. Boise defines a home as “affordable” if it is rented or sold at or below 80% of area median income.

  8. B

    2016 Census of Canada - Housing Suitability and Shelter-cost-to-income Ratio...

    • borealisdata.ca
    • open.library.ubc.ca
    Updated Apr 9, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2021). 2016 Census of Canada - Housing Suitability and Shelter-cost-to-income Ratio by Status of Primary Household Maintainer for BC CSDs [custom tabulation] [Dataset]. http://doi.org/10.5683/SP2/6OEKPA
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 9, 2021
    Dataset provided by
    Borealis
    Authors
    Statistics Canada
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Area covered
    British Columbia, Canada
    Description

    This dataset includes one dataset which was custom ordered from Statistics Canada.The table includes information on housing suitability and shelter-cost-to-income ratio by number of bedrooms, housing tenure, status of primary household maintainer, household type, and income quartile ranges for census subdivisions in British Columbia. The dataset is in Beyond 20/20 (.ivt) format. The Beyond 20/20 browser is required in order to open it. This software can be freely downloaded from the Statistics Canada website: https://www.statcan.gc.ca/eng/public/beyond20-20 (Windows only). For information on how to use Beyond 20/20, please see: http://odesi2.scholarsportal.info/documentation/Beyond2020/beyond20-quickstart.pdf https://wiki.ubc.ca/Library:Beyond_20/20_Guide Custom order from Statistics Canada includes the following dimensions and variables: Geography: Non-reserve CSDs in British Columbia - 299 geographies The global non-response rate (GNR) is an important measure of census data quality. It combines total non-response (households) and partial non-response (questions). A lower GNR indicates a lower risk of non-response bias and, as a result, a lower risk of inaccuracy. The counts and estimates for geographic areas with a GNR equal to or greater than 50% are not published in the standard products. The counts and estimates for these areas have a high risk of non-response bias, and in most cases, should not be released. All the geographies requested for this tabulation have been cleared for the release of income data and have a GNR under 50%. Housing Tenure Including Presence of Mortgage (5) 1. Total – Private non-band non-farm off-reserve households with an income greater than zero by housing tenure 2. Households who own 3. With a mortgage1 4. Without a mortgage 5. Households who rent Note: 1) Presence of mortgage - Refers to whether the owner households reported mortgage or loan payments for their dwelling. 2015 Before-tax Household Income Quartile Ranges (5) 1. Total – Private households by quartile ranges1, 2, 3 2. Count of households under or at quartile 1 3. Count of households between quartile 1 and quartile 2 (median) (including at quartile 2) 4. Count of households between quartile 2 (median) and quartile 3 (including at quartile 3) 5. Count of households over quartile 3 Notes: 1) A private household will be assigned to a quartile range depending on its CSD-level location and depending on its tenure (owned and rented). Quartile ranges for owned households in a specific CSD are delimited by the 2015 before-tax income quartiles of owned households with an income greater than zero and residing in non-farm off-reserve dwellings in that CSD. Quartile ranges for rented households in a specific CSD are delimited by the 2015 before-tax income quartiles of rented households with an income greater than zero and residing in non-farm off-reserve dwellings in that CSD. 2) For the income quartiles dollar values (the delimiters) please refer to Table 1. 3) Quartiles 1 to 3 are suppressed if the number of actual records used in the calculation (not rounded or weighted) is less than 16. For cases in which the renters’ quartiles or the owners’ quartiles (figures from Table 1) of a CSD are suppressed the CSD is assigned to a quartile range depending on the provincial renters’ or owners’ quartile figures. Number of Bedrooms (Unit Size) (6) 1. Total – Private households by number of bedrooms1 2. 0 bedrooms (Bachelor/Studio) 3. 1 bedroom 4. 2 bedrooms 5. 3 bedrooms 6. 4 bedrooms Note: 1) Dwellings with 5 bedrooms or more included in the total count only. Housing Suitability (6) 1. Total - Housing suitability 2. Suitable 3. Not suitable 4. One bedroom shortfall 5. Two bedroom shortfall 6. Three or more bedroom shortfall Note: 1) 'Housing suitability' refers to whether a private household is living in suitable accommodations according to the National Occupancy Standard (NOS); that is, whether the dwelling has enough bedrooms for the size and composition of the household. A household is deemed to be living in suitable accommodations if its dwelling has enough bedrooms, as calculated using the NOS. 'Housing suitability' assesses the required number of bedrooms for a household based on the age, sex, and relationships among household members. An alternative variable, 'persons per room,' considers all rooms in a private dwelling and the number of household members. Housing suitability and the National Occupancy Standard (NOS) on which it is based were developed by Canada Mortgage and Housing Corporation (CMHC) through consultations with provincial housing agencies. Shelter-cost-to-income-ratio (4) 1. Total – Private non-band non-farm off-reserve households with an income greater than zero 2. Spending less than 30% of households total income on shelter costs 3. Spending 30% or more of households total income on shelter costs 4. Spending 50% or more of households total income on shelter costs Note: 'Shelter-cost-to-income...

  9. EcoVillage: A Net Zero Energy Ready Community - Ithaca Crawlspace

    • osti.gov
    • data.openei.org
    • +2more
    Updated Apr 27, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DOE Open Energy Data Initiative (OEDI) (2016). EcoVillage: A Net Zero Energy Ready Community - Ithaca Crawlspace [Dataset]. http://doi.org/10.25984/2204255
    Explore at:
    Dataset updated
    Apr 27, 2016
    Dataset provided by
    United States Department of Energyhttp://energy.gov/
    Office of Energy Efficiency and Renewable Energyhttp://energy.gov/eere
    DOE Open Energy Data Initiative (OEDI)
    Steven Winter Associates of the Consortium for Advanced Residential Buildings
    Area covered
    Ithaca
    Description

    The U.S. Department of Energy's (DOE) Building America team, Consortium for Residential Buildings (CARB), is working with the EcoVillage cohousing community in Ithaca, New York, on the Third Residential EcoVillage Experience neighborhood. This community-scale project consists of 40 housing units-15 apartments and 25 single-family residences. Units range in size from 450 ft2 to 1,664 ft2 and cost from $80,000 for a studio apartment to $235,000 for a three- or four-bedroom single-family home. The community is pursuing certifications for DOE Zero Energy Ready Home, U.S. Green Building Council Leadership in Energy and Environmental Design Gold, and ENERGY STAR for the entire project. Additionally, seven of the 25 homes, along with the four-story apartment building and community center, are being constructed to the Passive House (PH) design standard.

  10. n

    Constructing a Model to Identify Markets for Rooftop Solar on Multifamily...

    • data.niaid.nih.gov
    • datadryad.org
    zip
    Updated May 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Grace Bianchi; Cam Audras; Julia Bickford; Naomi Raal; Virginia Pan (2024). Constructing a Model to Identify Markets for Rooftop Solar on Multifamily Housing [Dataset]. http://doi.org/10.25349/D9XK7F
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 15, 2024
    Dataset provided by
    University of California, Santa Barbara
    Authors
    Grace Bianchi; Cam Audras; Julia Bickford; Naomi Raal; Virginia Pan
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    As the renewable energy transition accelerates, housing, due to its high energy demand, can play a critical role in the clean energy shift. Specifically, multifamily housing provides a unique opportunity for solar photovoltaic (PV) system adoption, given the existing competing interests between landlords and tenants which has historically slowed this transition. To address this transition gap, this project identified and ranked Metropolitan Statistical Areas (MSAs) in the United States for ZNE Capital (the client) to acquire multifamily housing to install solar PV systems. The group identified seven criteria to determine favorable markets for rooftop solar PV on multifamily housing: landlord policy favorability, real estate market potential, CO2 abatement potential, electricity generation potential, solar installation internal rate of return, climate risk avoidance, and health costs associated with primary air pollutants. A total investment favorability score is calculated based on criteria importance assigned by the user. Investment favorability scores were investigated for different preferences to demonstrate the robustness and generalizability of the framework. The data analysis and criteria calculations were conducted using RStudio, ultimately to provide reproducible code to be used for future projects. The results are presented in a ranked list from best to worst metro areas to invest in. Future studies can utilize the reproducible code to inform decisions on where to invest in solar PV on multifamily housing anywhere in the United States by changing weights within the model depending on preferences. Methods

    Collecting real estate and landlord data for metropolitan statistical areas (MSAs) from federal agency databases.

    Real estate metrics: Six indicator metrics were selected to represent areas with growing housing demands. The metrics included were population growth, employment growth, average annual occupancy, annual rent change, the ratios of median annual rent to median income, and median income to median home price. The population estimates and median income data was downloaded from the Census Bureau. Median rent data was downloaded from HUDuser. Median home price data was downloaded from National Association of REALTORS®. Students were provided temporary memberships to Yardi Systems Matrix to obtain multifamily occupancy rates, and this data will not be redistributed. All the real estate metrics were combined into a single dataset using CBSA codes, which each MSA has a unique 5-digit identifier. Income-to-home price and rent-to-income ratios were calculated in R Studio.

    Landlord data: the minimum security deposit and eviction notice data was collected for each state and manually compiled into an Excel. Security deposit information was provided as the number of months of rent. States with no maximum deposit limit received a score of 1.0, meaning it was the most favorable. Two month's rent was scored as 0.5, and one month's rent was given a score of 0.

    Using NREL's REopt web tool to 1) model solar PV system on multifamily buildings in various cities and 2) obtain data to represent energy generation, CO2 abatement potential, avoided health costs from emissions, and solar project financial criteria.

    An anchor city was identified within each MSA as the city with the highest population to input into the REopt tool. Default inputs were changed based on information provided by industry experts and changes in federal funding programs. Detailed instructions of inputs were created to ensure consistency when running the model for each city. The four outputs collected from the tool include: annual energy generation from renewables (%), lifecycle total CO2 emissions, health costs associated with primary air pollutants, and internal rate of return(%). The group divided up a list of cities, input the respective data for each one, obtained the outputs, then compiled it into a Google sheet. Outputs were checked by other members to ensure accuracy.

    Collecting climate risk data from FEMA's National Risk Index Map.

    Climate risk data was downloaded as a CSV file. The risk score was used to represent impacts of climate variability on long-term real estate investments. Risk scores were provided at the county level. The group identified the county each city resided in, to associate the correct score to each city in R Studio

    Normalizing the data

    Metrics were normalized by subtracting the minimum value for the metric from each value and dividing by the difference between the maximum and minimum values. This resulted in scores between 0 and 1 that were relative to the MSAs included in the analysis.

    Weighing the data

    Real Estate and Landlord Criteria metrics: these two criteria contained more than one metric, so the metrics within these criteria were weighted to produce real estate and landlord scores. Weights for each criterion sum to 1, in which higher weights indicate greater importance for multifamily real estate investments. Each weight was multiplied by the respective metric, then all weighted metrics within each criterion were summed to produce the criteria score. Investment Favorability Score: seven criteria were multiplied by respective weights based on the stakeholder's preferences. Weights sum to 1 to ensure consistency throughout the project. The sum of the seven weighted criteria is the investment favorability score.

  11. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
real Answers (2017). Vital Signs: List Rents – by city [Dataset]. https://open-data-demo.mtc.ca.gov/dataset/Vital-Signs-List-Rents-by-city/vpmm-yh3p/about

Vital Signs: List Rents – by city

Explore at:
tsv, csv, json, xml, application/rdfxml, application/rssxmlAvailable download formats
Dataset updated
Jan 19, 2017
Dataset authored and provided by
real Answers
Description

VITAL SIGNS INDICATOR List Rents (EC9)

FULL MEASURE NAME List Rents

LAST UPDATED October 2016

DESCRIPTION List rent refers to the advertised rents for available rental housing and serves as a measure of housing costs for new households moving into a neighborhood, city, county or region.

DATA SOURCE real Answers (1994 – 2015) no link

Zillow Metro Median Listing Price All Homes (2010-2016) http://www.zillow.com/research/data/

CONTACT INFORMATION vitalsigns.info@mtc.ca.gov

METHODOLOGY NOTES (across all datasets for this indicator) List rents data reflects median rent prices advertised for available apartments rather than median rent payments; more information is available in the indicator definition above. Regional and local geographies rely on data collected by real Answers, a research organization and database publisher specializing in the multifamily housing market. real Answers focuses on collecting longitudinal data for individual rental properties through quarterly surveys. For the Bay Area, their database is comprised of properties with 40 to 3,000+ housing units. Median list prices most likely have an upward bias due to the exclusion of smaller properties. The bias may be most extreme in geographies where large rental properties represent a small portion of the overall rental market. A map of the individual properties surveyed is included in the Local Focus section.

Individual properties surveyed provided lower- and upper-bound ranges for the various types of housing available (studio, 1 bedroom, 2 bedroom, etc.). Median lower- and upper-bound prices are determined across all housing types for the regional and county geographies. The median list price represented in Vital Signs is the average of the median lower- and upper-bound prices for the region and counties. Median upper-bound prices are determined across all housing types for the city geographies. The median list price represented in Vital Signs is the median upper-bound price for cities. For simplicity, only the mean list rent is displayed for the individual properties. The metro areas geography rely upon Zillow data, which is the median price for rentals listed through www.zillow.com during the month. Like the real Answers data, Zillow's median list prices most likely have an upward bias since small properties are underrepresented in Zillow's listings. The metro area data for the Bay Area cannot be compared to the regional Bay Area data. Due to afore mentioned data limitations, this data is suitable for analyzing the change in list rents over time but not necessarily comparisons of absolute list rents. Metro area boundaries reflects today’s metro area definitions by county for consistency, rather than historical metro area boundaries.

Due to the limited number of rental properties surveyed, city-level data is unavailable for Atherton, Belvedere, Brisbane, Calistoga, Clayton, Cloverdale, Cotati, Fairfax, Half Moon Bay, Healdsburg, Hillsborough, Los Altos Hills, Monte Sereno, Moranga, Oakley, Orinda, Portola Valley, Rio Vista, Ross, San Anselmo, San Carlos, Saratoga, Sebastopol, Windsor, Woodside, and Yountville.

Inflation-adjusted data are presented to illustrate how rents have grown relative to overall price increases; that said, the use of the Consumer Price Index does create some challenges given the fact that housing represents a major chunk of consumer goods bundle used to calculate CPI. This reflects a methodological tradeoff between precision and accuracy and is a common concern when working with any commodity that is a major component of CPI itself. Percent change in inflation-adjusted median is calculated with respect to the median price from the fourth quarter or December of the base year.

Search
Clear search
Close search
Google apps
Main menu