15 datasets found
  1. Apple (AAPL) Historical Stock Data

    • kaggle.com
    zip
    Updated Feb 29, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tarun Paparaju (2020). Apple (AAPL) Historical Stock Data [Dataset]. https://www.kaggle.com/datasets/tarunpaparaju/apple-aapl-historical-stock-data
    Explore at:
    zip(50651 bytes)Available download formats
    Dataset updated
    Feb 29, 2020
    Authors
    Tarun Paparaju
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This dataset contains Apple's (AAPL) stock data for the last 10 years (from 2010 to date). I believe insights from this data can be used to build useful price forecasting algorithms to aid investment. I would like to thank Nasdaq for providing access to this rich dataset. I will make sure I update this dataset every few months.

  2. Apple iPhone sales worldwide 2007-2024

    • statista.com
    Updated Nov 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Apple iPhone sales worldwide 2007-2024 [Dataset]. https://www.statista.com/statistics/276306/global-apple-iphone-sales-since-fiscal-year-2007/
    Explore at:
    Dataset updated
    Nov 19, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    The number of Apple iPhone unit sales dramatically increased between 2007 and 2024. Indeed, in 2007, when the iPhone was first introduced, Apple shipped around **** million smartphones. By 2024, this number reached over ***** million units. The newest models and iPhone’s lasting popularity Apple has ventured into its 17th smartphone generation with its Phone ** lineup, which, released in September 2025, includes the **, ** Plus, ** Pro and Pro Max. Powered by the A19 bionic chip and running on iOS **, these models present improved displays, cameras, and functionalities. On the one hand, such features come, however, with hefty price tags, namely, an average of ***** U.S. dollars. On the other hand, they contribute to making Apple among the leading smartphone vendors worldwide, along with Samsung and Xiaomi. In the first quarter of 2024, Samsung shipped over ** million smartphones, while Apple recorded shipments of roughly ** million units. Success of Apple’s other products Apart from the iPhone, which is Apple’s most profitable product, Apple is also the inventor of other heavy-weight players in the consumer electronics market. The Mac computer and the iPad, like the iPhone, are both pioneers in their respective markets and have helped popularize the use of PCs and tablets. The iPad is especially successful, having remained as the largest vendor in the tablet market ever since its debut. The hottest new Apple gadget is undoubtedly the Apple Watch, which is a line of smartwatches that has fitness tracking capabilities and can be integrated via iOS with other Apple products and services. The Apple Watch has also been staying ahead of other smart watch vendors since its initial release and secures around ** percent of the market share as of the latest quarter.

  3. N

    Income Distribution by Quintile: Mean Household Income in Apple Valley, CA...

    • neilsberg.com
    csv, json
    Updated Mar 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Income Distribution by Quintile: Mean Household Income in Apple Valley, CA // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/481130c9-f81d-11ef-a994-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Mar 3, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Apple Valley, California
    Variables measured
    Income Level, Mean Household Income
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It delineates income distributions across income quintiles (mentioned above) following an initial analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the mean household income for each of the five quintiles in Apple Valley, CA, as reported by the U.S. Census Bureau. The dataset highlights the variation in mean household income across quintiles, offering valuable insights into income distribution and inequality.

    Key observations

    • Income disparities: The mean income of the lowest quintile (20% of households with the lowest income) is 17,471, while the mean income for the highest quintile (20% of households with the highest income) is 216,856. This indicates that the top earners earn 12 times compared to the lowest earners.
    • *Top 5%: * The mean household income for the wealthiest population (top 5%) is 344,652, which is 158.93% higher compared to the highest quintile, and 1972.71% higher compared to the lowest quintile.
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Income Levels:

    • Lowest Quintile
    • Second Quintile
    • Third Quintile
    • Fourth Quintile
    • Highest Quintile
    • Top 5 Percent

    Variables / Data Columns

    • Income Level: This column showcases the income levels (As mentioned above).
    • Mean Household Income: Mean household income, in 2023 inflation-adjusted dollars for the specific income level.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Apple Valley median household income. You can refer the same here

  4. N

    Income Distribution by Quintile: Mean Household Income in Apple River,...

    • neilsberg.com
    csv, json
    Updated Jan 11, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Income Distribution by Quintile: Mean Household Income in Apple River, Wisconsin [Dataset]. https://www.neilsberg.com/research/datasets/9457ac76-7479-11ee-949f-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Jan 11, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Apple River, Wisconsin
    Variables measured
    Income Level, Mean Household Income
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. It delineates income distributions across income quintiles (mentioned above) following an initial analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the mean household income for each of the five quintiles in Apple River, Wisconsin, as reported by the U.S. Census Bureau. The dataset highlights the variation in mean household income across quintiles, offering valuable insights into income distribution and inequality.

    Key observations

    • Income disparities: The mean income of the lowest quintile (20% of households with the lowest income) is 23,428, while the mean income for the highest quintile (20% of households with the highest income) is 195,568. This indicates that the top earners earn 8 times compared to the lowest earners.
    • *Top 5%: * The mean household income for the wealthiest population (top 5%) is 288,888, which is 147.72% higher compared to the highest quintile, and 1233.09% higher compared to the lowest quintile.

    https://i.neilsberg.com/ch/apple-river-wi-mean-household-income-by-quintiles.jpeg" alt="Mean household income by quintiles in Apple River, Wisconsin (in 2022 inflation-adjusted dollars))">

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Income Levels:

    • Lowest Quintile
    • Second Quintile
    • Third Quintile
    • Fourth Quintile
    • Highest Quintile
    • Top 5 Percent

    Variables / Data Columns

    • Income Level: This column showcases the income levels (As mentioned above).
    • Mean Household Income: Mean household income, in 2022 inflation-adjusted dollars for the specific income level.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Apple River town median household income. You can refer the same here

  5. AAPL 1-Minute Historical Stock Data (2006-2024)

    • kaggle.com
    zip
    Updated May 14, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    StocksPhi (2024). AAPL 1-Minute Historical Stock Data (2006-2024) [Dataset]. https://www.kaggle.com/datasets/deltatrup/aapl-1-minute-historical-stock-data-2006-2024
    Explore at:
    zip(416180203 bytes)Available download formats
    Dataset updated
    May 14, 2024
    Authors
    StocksPhi
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    This comprehensive dataset curated by Stocksphi presents the 1-minute interval historical stock data for Apple Inc. (AAPL) spanning from 2006 to 2024. The dataset encapsulates key metrics such as opening price, high price, low price, closing price, adjusted close price, and trading volume for each minute of trading throughout this extensive period.

    Insights and Applications:

    Intraday Analysis: Delve into the intricate price movements and trading dynamics of AAPL stock on a minute-by-minute basis, gaining insights into short-term trends and patterns. Algorithmic Trading: Utilize the dataset to develop and backtest algorithmic trading strategies tailored for intraday trading, leveraging historical price and volume data. Quantitative Analysis: Conduct quantitative analysis to explore statistical properties, correlations, and anomalies within the dataset, facilitating data-driven decision-making. Financial Modeling: Employ the dataset for constructing predictive models and forecasting AAPL stock behavior at a fine-grained temporal resolution. Academic Research: Serve as a valuable resource for academic research in finance, enabling scholars to investigate market microstructure, liquidity dynamics, and other relevant topics. This meticulously curated dataset offers a wealth of information and opportunities for quantitative analysis, strategy development, financial research, and more, empowering traders, analysts, researchers, and enthusiasts to unlock valuable insights and enhance their understanding of AAPL stock dynamics over nearly two decades.

  6. b

    App Store Data (2025)

    • businessofapps.com
    Updated Aug 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Business of Apps (2025). App Store Data (2025) [Dataset]. https://www.businessofapps.com/data/app-stores/
    Explore at:
    Dataset updated
    Aug 1, 2025
    Dataset authored and provided by
    Business of Apps
    License

    Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
    License information was derived automatically

    Description

    Apple App Store Key StatisticsApps & Games in the Apple App StoreApps in the Apple App StoreGames in the Apple App StoreMost Popular Apple App Store CategoriesPaid vs Free Apps in Apple App...

  7. Google 2020-2025 Stock Market

    • kaggle.com
    zip
    Updated Jan 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Negin Moghadasi (2025). Google 2020-2025 Stock Market [Dataset]. https://www.kaggle.com/datasets/negmgh/google-2020-2025-stock-market
    Explore at:
    zip(23003 bytes)Available download formats
    Dataset updated
    Jan 13, 2025
    Authors
    Negin Moghadasi
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Google 2020-2025 Stock Price

    Alphabet Inc. is an American multinational technology conglomerate holding company headquartered in Mountain View, California. Alphabet is the world's second-largest technology company by revenue, after Apple, and one of the world's most valuable companies. It was created through a restructuring of Google on October 2, 2015, and became the parent holding company of Google and several former Google subsidiaries. It is considered one of the Big Five American information technology companies, alongside Amazon, Apple, Meta, and Microsoft.

    The establishment of Alphabet Inc. was prompted by a desire to make the core Google business "cleaner and more accountable" while allowing greater autonomy to group companies that operate in businesses other than Internet services. Founders Larry Page and Sergey Brin announced their resignation from their executive posts in December 2019, with the CEO role to be filled by Sundar Pichai, who is also the CEO of Google. Page and Brin remain employees, board members, and controlling shareholders of Alphabet Inc.

    Source: https://en.wikipedia.org/wiki/Alphabet_Inc.

    Information about this dataset

    This dataset provides historical data of GOOG. stock (Google). The data is available at a daily level. Currency is USD.

    These terms are key indicators in stock market trading and analysis, providing information about a stock's price movements and trading activity over a specific period (e.g., a day, week, or month):

    Close Price:

    The final price at which a stock trades during a specific trading session (e.g., at the end of the day). This price is often used as a reference point for comparing daily price movements.

    Open Price:

    The first price at which a stock trades when the market opens for the day. It can be influenced by after-hours trading, news, or economic events.

    High Price:

    The highest price at which a stock trades during a specific trading session. It shows the maximum value reached by the stock in that period.

    Low Price:

    The lowest price at which a stock trades during a specific trading session. It represents the minimum value reached by the stock in that period.

    Volume:

    The total number of shares traded during a specific period. It indicates the level of interest or activity in a stock, with higher volumes often reflecting greater market interest or volatility.

  8. o

    Data from: Microsatellite/SSR dataset: pomological and molecular...

    • openagrar.de
    Updated Dec 20, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lea Broschewitz; Hans-Joachim Bannier; Stefanie Reim; Henryk Flachowsky; Monika Höfer (2023). Microsatellite/SSR dataset: pomological and molecular characterization of apple cultivars (Malus × domestica Borkh.) of the German Fruit Genebank [Dataset]. http://doi.org/10.5073/20231220-114634-0
    Explore at:
    Dataset updated
    Dec 20, 2023
    Dataset provided by
    Julius Kühn-Institute (JKI), Institut for Breeding Research on Fruit Crops, Germany
    Authors
    Lea Broschewitz; Hans-Joachim Bannier; Stefanie Reim; Henryk Flachowsky; Monika Höfer
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    The German Fruit Genebank (https://www.deutsche-genbank-obst.de/) is a decentralized network with focus on the coordination of the different germplasm collections in Germany to conserve and utilize genetic resources of native fruit species. Here, emphasis is put on the trueness-to-type of the genetic resources based on pomological and molecular characteristics. Over the years from 2009 to 2021, several projects were carried out to take an inventory of the germplasm collections in the apple (Malus ×domestica) network of the German Fruit Genebank. In a first step, at least two knowledgeable experts of the German Pomological Association characterized accessions pomologically. In a second step, a DNA fingerprint analysis was used for the molecular characterization. The DNA fingerprint analysis utilized a set of 17 simple sequence repeat (SSR) markers and 8 reference genotypes recommended by the European Cooperative Programme for Plant Genetic Resources (ECPGR; http://www.ecpgr.cgiar.org/) Malus/Pyrus working group and was performed by Microsynth ecogenics GmbH (Balgach, Switzerland). 8,184 samples (fruits/ leaves) of apple trees belonging to the German Fruit Genebank from eight network collections were investigated. 1,404 different fingerprints in correspondence to cultivars could be estimated for apple.

  9. Chai Time Data Science | CTDS.Show

    • kaggle.com
    zip
    Updated Jul 23, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vopani (2020). Chai Time Data Science | CTDS.Show [Dataset]. https://www.kaggle.com/rohanrao/chai-time-data-science
    Explore at:
    zip(2832219 bytes)Available download formats
    Dataset updated
    Jul 23, 2020
    Authors
    Vopani
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    Context

    Chai Time Data Science Show, is a podcast series by Sanyam Bhutani.

    The episodes are available as video, audio and blog posts.

    You can find the podcast on YouTube, Spotify, Apple Music and all major Podcast directories.

    The show consists of interviews with ML Heroes: Kagglers, Practitioners and Researchers. If you haven't yet watched an episode, you can find all of them via the links above. The podcast is a service to the community and contains no ads, just 75+ episodes with a bi-weekly release schedule.

    Content

    The dataset consists of metadata of all episodes like title, category, flavour of tea, recording/release dates along with statistics like duration, views, watch hours from YouTube, Spotify, Apple up to 20th June, 2020.

    Notes

    There are 3 gaps in the release dates. The first happened around KaggleDays - Bangalore, the second when Sanyam joined H2O.ai, the third due to undertaking of the process of subtitling.

    Spotify and Apple podcasts only make 48% of the audio streaming traffic, the total audio streams at the time of publishing this are 40,598. We are working towards getting more of this data available.

    A new Youtube channel had to be created due to a conflict of interest with the previous one hence some initial dates might not align with the audio release dates.

    Incase you find any discrepancy in the data, please contact the contributors.

    Acknowledgements

    Big thanks to the founder of CTDS.Show, Sanyam Bhutani, for sharing the data and helping in collaborating on this dataset. In his words: All of the interviews and reach of the podcast/series has been thanks to the community. Wouldn't have been possible without the support of this amazing community.

    Inspiration

    This dataset was created based on a dream I had where I was watching a CTDS interview embedded in a Kaggle Kernel :-)

  10. s

    Coronavirus (COVID-19) Mobility Report - Dataset - data.gov.uk

    • ckan.publishing.service.gov.uk
    Updated Jul 10, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). Coronavirus (COVID-19) Mobility Report - Dataset - data.gov.uk [Dataset]. https://ckan.publishing.service.gov.uk/dataset/coronavirus-covid-19-mobility-report
    Explore at:
    Dataset updated
    Jul 10, 2020
    Description

    Due to changes in the collection and availability of data on COVID-19, this website will no longer be updated. The webpage will no longer be available as of 11 May 2023. On-going, reliable sources of data for COVID-19 are available via the COVID-19 dashboard and the UKHSA GLA Covid-19 Mobility Report Since March 2020, London has seen many different levels of restrictions - including three separate lockdowns and many other tiers/levels of restrictions, as well as easing of restrictions and even measures to actively encourage people to go to work, their high streets and local restaurants. This reports gathers data from a number of sources, including google, apple, citymapper, purple wifi and opentable to assess the extent to which these levels of restrictions have translated to a reductions in Londoners' movements. The data behind the charts below come from different sources. None of these data represent a direct measure of how well people are adhering to the lockdown rules - nor do they provide an exhaustive data set. Rather, they are measures of different aspects of mobility, which together, offer an overall impression of how people Londoners are moving around the capital. The information is broken down by use of public transport, pedestrian activity, retail and leisure, and homeworking. Public Transport For the transport measures, we have included data from google, Apple, CityMapper and Transport for London. They measure different aspects of public transport usage - depending on the data source. Each of the lines in the chart below represents a percentage of a pre-pandemic baseline. activity Source Latest Baseline Min value in Lockdown 1 Min value in Lockdown 2 Min value in Lockdown 3 Citymapper Citymapper mobility index 2021-09-05 Compares trips planned and trips taken within its app to a baseline of the four weeks from 6 Jan 2020 7.9% 28% 19% Google Google Mobility Report 2022-10-15 Location data shared by users of Android smartphones, compared time and duration of visits to locations to the median values on the same day of the week in the five weeks from 3 Jan 2020 20.4% 40% 27% TfL Bus Transport for London 2022-10-30 Bus journey ‘taps' on the TfL network compared to same day of the week in four weeks starting 13 Jan 2020 - 34% 24% TfL Tube Transport for London 2022-10-30 Tube journey ‘taps' on the TfL network compared to same day of the week in four weeks starting 13 Jan 2020 - 30% 21% Pedestrian activity With the data we currently have it's harder to estimate pedestrian activity and high street busyness. A few indicators can give us information on how people are making trips out of the house: activity Source Latest Baseline Min value in Lockdown 1 Min value in Lockdown 2 Min value in Lockdown 3 Walking Apple Mobility Index 2021-11-09 estimates the frequency of trips made on foot compared to baselie of 13 Jan '20 22% 47% 36% Parks Google Mobility Report 2022-10-15 Frequency of trips to parks. Changes in the weather mean this varies a lot. Compared to baseline of 5 weeks from 3 Jan '20 30% 55% 41% Retail & Rec Google Mobility Report 2022-10-15 Estimates frequency of trips to shops/leisure locations. Compared to baseline of 5 weeks from 3 Jan '20 30% 55% 41% Retail and recreation In this section, we focus on estimated footfall to shops, restaurants, cafes, shopping centres and so on. activity Source Latest Baseline Min value in Lockdown 1 Min value in Lockdown 2 Min value in Lockdown 3 Grocery/pharmacy Google Mobility Report 2022-10-15 Estimates frequency of trips to grovery shops and pharmacies. Compared to baseline of 5 weeks from 3 Jan '20 32% 55.00% 45.000% Retail/rec Google Mobility Report 2022-10-15 Estimates frequency of trips to shops/leisure locations. Compared to baseline of 5 weeks from 3 Jan '20 32% 55.00% 45.000% Restaurants OpenTable State of the Industry 2022-02-19 London restaurant bookings made through OpenTable 0% 0.17% 0.024% Home Working The Google Mobility Report estimates changes in how many people are staying at home and going to places of work compared to normal. It's difficult to translate this into exact percentages of the population, but changes back towards ‘normal' can be seen to start before any lockdown restrictions were lifted. This value gives a seven day rolling (mean) average to avoid it being distorted by weekends and bank holidays. name Source Latest Baseline Min/max value in Lockdown 1 Min/max value in Lockdown 2 Min/max value in Lockdown 3 Residential Google Mobility Report 2022-10-15 Estimates changes in how many people are staying at home for work. Compared to baseline of 5 weeks from 3 Jan '20 131% 119% 125% Workplaces Google Mobility Report 2022-10-15 Estimates changes in how many people are going to places of work. Compared to baseline of 5 weeks from 3 Jan '20 24% 54% 40% Restriction Date end_date Average Citymapper Average homeworking Work from home advised 17 Mar '20 21 Mar '20 57% 118% Schools, pubs closed 21 Mar '20 24 Mar '20 34% 119% UK enters first lockdown 24 Mar '20 10 May '20 10% 130% Some workers encouraged to return to work 10 May '20 01 Jun '20 15% 125% Schools open, small groups outside 01 Jun '20 15 Jun '20 19% 122% Non-essential businesses re-open 15 Jun '20 04 Jul '20 24% 120% Hospitality reopens 04 Jul '20 03 Aug '20 34% 115% Eat out to help out scheme begins 03 Aug '20 08 Sep '20 44% 113% Rule of 6 08 Sep '20 24 Sep '20 53% 111% 10pm Curfew 24 Sep '20 15 Oct '20 51% 112% Tier 2 (High alert) 15 Oct '20 05 Nov '20 49% 113% Second Lockdown 05 Nov '20 02 Dec '20 31% 118% Tier 2 (High alert) 02 Dec '20 19 Dec '20 45% 115% Tier 4 (Stay at home advised) 19 Dec '20 05 Jan '21 22% 124% Third Lockdown 05 Jan '21 08 Mar '21 22% 122% Roadmap 1 08 Mar '21 29 Mar '21 29% 118% Roadmap 2 29 Mar '21 12 Apr '21 36% 117% Roadmap 3 12 Apr '21 17 May '21 51% 113% Roadmap out of lockdown: Step 3 17 May '21 19 Jul '21 65% 109% Roadmap out of lockdown: Step 4 19 Jul '21 07 Nov '22 68% 107%

  11. N

    Income Distribution by Quintile: Mean Household Income in Apple Valley, MN

    • neilsberg.com
    csv, json
    Updated Jan 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Income Distribution by Quintile: Mean Household Income in Apple Valley, MN [Dataset]. https://www.neilsberg.com/research/datasets/cd86b117-b041-11ee-aaca-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Jan 11, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Apple Valley, Minnesota
    Variables measured
    Income Level, Mean Household Income
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. It delineates income distributions across income quintiles (mentioned above) following an initial analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the mean household income for each of the five quintiles in Apple Valley, MN, as reported by the U.S. Census Bureau. The dataset highlights the variation in mean household income across quintiles, offering valuable insights into income distribution and inequality.

    Key observations

    • Income disparities: The mean income of the lowest quintile (20% of households with the lowest income) is 30,368, while the mean income for the highest quintile (20% of households with the highest income) is 274,839. This indicates that the top earners earn 9 times compared to the lowest earners.
    • *Top 5%: * The mean household income for the wealthiest population (top 5%) is 451,682, which is 164.34% higher compared to the highest quintile, and 1487.36% higher compared to the lowest quintile.

    https://i.neilsberg.com/ch/apple-valley-mn-mean-household-income-by-quintiles.jpeg" alt="Mean household income by quintiles in Apple Valley, MN (in 2022 inflation-adjusted dollars))">

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Income Levels:

    • Lowest Quintile
    • Second Quintile
    • Third Quintile
    • Fourth Quintile
    • Highest Quintile
    • Top 5 Percent

    Variables / Data Columns

    • Income Level: This column showcases the income levels (As mentioned above).
    • Mean Household Income: Mean household income, in 2022 inflation-adjusted dollars for the specific income level.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Apple Valley median household income. You can refer the same here

  12. N

    Income Distribution by Quintile: Mean Household Income in Apple Creek, OH //...

    • neilsberg.com
    csv, json
    Updated Mar 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Income Distribution by Quintile: Mean Household Income in Apple Creek, OH // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/apple-creek-oh-median-household-income/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Mar 3, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Apple Creek, Ohio
    Variables measured
    Income Level, Mean Household Income
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It delineates income distributions across income quintiles (mentioned above) following an initial analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the mean household income for each of the five quintiles in Apple Creek, OH, as reported by the U.S. Census Bureau. The dataset highlights the variation in mean household income across quintiles, offering valuable insights into income distribution and inequality.

    Key observations

    • Income disparities: The mean income of the lowest quintile (20% of households with the lowest income) is 23,891, while the mean income for the highest quintile (20% of households with the highest income) is 169,371. This indicates that the top earners earn 7 times compared to the lowest earners.
    • *Top 5%: * The mean household income for the wealthiest population (top 5%) is 214,478, which is 126.63% higher compared to the highest quintile, and 897.74% higher compared to the lowest quintile.
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Income Levels:

    • Lowest Quintile
    • Second Quintile
    • Third Quintile
    • Fourth Quintile
    • Highest Quintile
    • Top 5 Percent

    Variables / Data Columns

    • Income Level: This column showcases the income levels (As mentioned above).
    • Mean Household Income: Mean household income, in 2023 inflation-adjusted dollars for the specific income level.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Apple Creek median household income. You can refer the same here

  13. N

    Apple Creek, OH Median Income by Age Groups Dataset: A Comprehensive...

    • neilsberg.com
    csv, json
    Updated Feb 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Apple Creek, OH Median Income by Age Groups Dataset: A Comprehensive Breakdown of Apple Creek Annual Median Income Across 4 Key Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/e91c7d99-f353-11ef-8577-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 25, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Apple Creek, Ohio
    Variables measured
    Income for householder under 25 years, Income for householder 65 years and over, Income for householder between 25 and 44 years, Income for householder between 45 and 64 years
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It delineates income distributions across four age groups (Under 25 years, 25 to 44 years, 45 to 64 years, and 65 years and over) following an initial analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the distribution of median household income among distinct age brackets of householders in Apple Creek. Based on the latest 2019-2023 5-Year Estimates from the American Community Survey, it displays how income varies among householders of different ages in Apple Creek. It showcases how household incomes typically rise as the head of the household gets older. The dataset can be utilized to gain insights into age-based household income trends and explore the variations in incomes across households.

    Key observations: Insights from 2023

    In terms of income distribution across age cohorts, in Apple Creek, householders within the 45 to 64 years age group have the highest median household income at $89,167, followed by those in the 25 to 44 years age group with an income of $74,107. Meanwhile householders within the under 25 years age group report the second lowest median household income of $63,438. Notably, householders within the 65 years and over age group, had the lowest median household income at $44,375.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.

    Age groups classifications include:

    • Under 25 years
    • 25 to 44 years
    • 45 to 64 years
    • 65 years and over

    Variables / Data Columns

    • Age Of The Head Of Household: This column presents the age of the head of household
    • Median Household Income: Median household income, in 2023 inflation-adjusted dollars for the specific age group

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Apple Creek median household income by age. You can refer the same here

  14. N

    Apple Valley, MN Median Income by Age Groups Dataset: A Comprehensive...

    • neilsberg.com
    csv, json
    Updated Feb 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Apple Valley, MN Median Income by Age Groups Dataset: A Comprehensive Breakdown of Apple Valley Annual Median Income Across 4 Key Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/e91c7f7a-f353-11ef-8577-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 25, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Apple Valley, Minnesota
    Variables measured
    Income for householder under 25 years, Income for householder 65 years and over, Income for householder between 25 and 44 years, Income for householder between 45 and 64 years
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It delineates income distributions across four age groups (Under 25 years, 25 to 44 years, 45 to 64 years, and 65 years and over) following an initial analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the distribution of median household income among distinct age brackets of householders in Apple Valley. Based on the latest 2019-2023 5-Year Estimates from the American Community Survey, it displays how income varies among householders of different ages in Apple Valley. It showcases how household incomes typically rise as the head of the household gets older. The dataset can be utilized to gain insights into age-based household income trends and explore the variations in incomes across households.

    Key observations: Insights from 2023

    In terms of income distribution across age cohorts, in Apple Valley, householders within the 45 to 64 years age group have the highest median household income at $122,005, followed by those in the under 25 years age group with an income of $117,624. Meanwhile householders within the 25 to 44 years age group report the second lowest median household income of $105,400. Notably, householders within the 65 years and over age group, had the lowest median household income at $74,199.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.

    Age groups classifications include:

    • Under 25 years
    • 25 to 44 years
    • 45 to 64 years
    • 65 years and over

    Variables / Data Columns

    • Age Of The Head Of Household: This column presents the age of the head of household
    • Median Household Income: Median household income, in 2023 inflation-adjusted dollars for the specific age group

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Apple Valley median household income by age. You can refer the same here

  15. N

    Apple River, IL Median Income by Age Groups Dataset: A Comprehensive...

    • neilsberg.com
    csv, json
    Updated Aug 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Apple River, IL Median Income by Age Groups Dataset: A Comprehensive Breakdown of Apple River Annual Median Income Across 4 Key Age Groups // 2024 Edition [Dataset]. https://www.neilsberg.com/research/datasets/a3bfa974-54ae-11ef-a42e-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Aug 7, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Apple River, Illinois
    Variables measured
    Income for householder under 25 years, Income for householder 65 years and over, Income for householder between 25 and 44 years, Income for householder between 45 and 64 years
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates. It delineates income distributions across four age groups (Under 25 years, 25 to 44 years, 45 to 64 years, and 65 years and over) following an initial analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the distribution of median household income among distinct age brackets of householders in Apple River. Based on the latest 2018-2022 5-Year Estimates from the American Community Survey, it displays how income varies among householders of different ages in Apple River. It showcases how household incomes typically rise as the head of the household gets older. The dataset can be utilized to gain insights into age-based household income trends and explore the variations in incomes across households.

    Key observations: Insights from 2022

    In terms of income distribution across age cohorts, in Apple River, householders within the 25 to 44 years age group have the highest median household income at $78,745, followed by those in the 45 to 64 years age group with an income of $58,570. Meanwhile householders within the 65 years and over age group report the second lowest median household income of $42,431. Notably, householders within the under 25 years age group, had the lowest median household income at $29,936.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.

    Age groups classifications include:

    • Under 25 years
    • 25 to 44 years
    • 45 to 64 years
    • 65 years and over

    Variables / Data Columns

    • Age Of The Head Of Household: This column presents the age of the head of household
    • Median Household Income: Median household income, in 2022 inflation-adjusted dollars for the specific age group

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Apple River median household income by age. You can refer the same here

  16. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Tarun Paparaju (2020). Apple (AAPL) Historical Stock Data [Dataset]. https://www.kaggle.com/datasets/tarunpaparaju/apple-aapl-historical-stock-data
Organization logo

Apple (AAPL) Historical Stock Data

Apple stock data for the last 10 years

Explore at:
3 scholarly articles cite this dataset (View in Google Scholar)
zip(50651 bytes)Available download formats
Dataset updated
Feb 29, 2020
Authors
Tarun Paparaju
License

https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

Description

This dataset contains Apple's (AAPL) stock data for the last 10 years (from 2010 to date). I believe insights from this data can be used to build useful price forecasting algorithms to aid investment. I would like to thank Nasdaq for providing access to this rich dataset. I will make sure I update this dataset every few months.

Search
Clear search
Close search
Google apps
Main menu