Author: Víctor Yeste. Universitat Politècnica de Valencia.The object of this study is the design of a cybermetric methodology whose objectives are to measure the success of the content published in online media and the possible prediction of the selected success variables.In this case, due to the need to integrate data from two separate areas, such as web publishing and the analysis of their shares and related topics on Twitter, has opted for programming as you access both the Google Analytics v4 reporting API and Twitter Standard API, always respecting the limits of these.The website analyzed is hellofriki.com. It is an online media whose primary intention is to solve the need for information on some topics that provide daily a vast number of news in the form of news, as well as the possibility of analysis, reports, interviews, and many other information formats. All these contents are under the scope of the sections of cinema, series, video games, literature, and comics.This dataset has contributed to the elaboration of the PhD Thesis:Yeste Moreno, VM. (2021). Diseño de una metodología cibermétrica de cálculo del éxito para la optimización de contenidos web [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/176009Data have been obtained from each last-minute news article published online according to the indicators described in the doctoral thesis. All related data are stored in a database, divided into the following tables:tesis_followers: User ID list of media account followers.tesis_hometimeline: data from tweets posted by the media account sharing breaking news from the web.status_id: Tweet IDcreated_at: date of publicationtext: content of the tweetpath: URL extracted after processing the shortened URL in textpost_shared: Article ID in WordPress that is being sharedretweet_count: number of retweetsfavorite_count: number of favoritestesis_hometimeline_other: data from tweets posted by the media account that do not share breaking news from the web. Other typologies, automatic Facebook shares, custom tweets without link to an article, etc. With the same fields as tesis_hometimeline.tesis_posts: data of articles published by the web and processed for some analysis.stats_id: Analysis IDpost_id: Article ID in WordPresspost_date: article publication date in WordPresspost_title: title of the articlepath: URL of the article in the middle webtags: Tags ID or WordPress tags related to the articleuniquepageviews: unique page viewsentrancerate: input ratioavgtimeonpage: average visit timeexitrate: output ratiopageviewspersession: page views per sessionadsense_adunitsviewed: number of ads viewed by usersadsense_viewableimpressionpercent: ad display ratioadsense_ctr: ad click ratioadsense_ecpm: estimated ad revenue per 1000 page viewstesis_stats: data from a particular analysis, performed at each published breaking news item. Fields with statistical values can be computed from the data in the other tables, but total and average calculations are saved for faster and easier further processing.id: ID of the analysisphase: phase of the thesis in which analysis has been carried out (right now all are 1)time: "0" if at the time of publication, "1" if 14 days laterstart_date: date and time of measurement on the day of publicationend_date: date and time when the measurement is made 14 days latermain_post_id: ID of the published article to be analysedmain_post_theme: Main section of the published article to analyzesuperheroes_theme: "1" if about superheroes, "0" if nottrailer_theme: "1" if trailer, "0" if notname: empty field, possibility to add a custom name manuallynotes: empty field, possibility to add personalized notes manually, as if some tag has been removed manually for being considered too generic, despite the fact that the editor put itnum_articles: number of articles analysednum_articles_with_traffic: number of articles analysed with traffic (which will be taken into account for traffic analysis)num_articles_with_tw_data: number of articles with data from when they were shared on the media’s Twitter accountnum_terms: number of terms analyzeduniquepageviews_total: total page viewsuniquepageviews_mean: average page viewsentrancerate_mean: average input ratioavgtimeonpage_mean: average duration of visitsexitrate_mean: average output ratiopageviewspersession_mean: average page views per sessiontotal: total of ads viewedadsense_adunitsviewed_mean: average of ads viewedadsense_viewableimpressionpercent_mean: average ad display ratioadsense_ctr_mean: average ad click ratioadsense_ecpm_mean: estimated ad revenue per 1000 page viewsTotal: total incomeretweet_count_mean: average incomefavorite_count_total: total of favoritesfavorite_count_mean: average of favoritesterms_ini_num_tweets: total tweets on the terms on the day of publicationterms_ini_retweet_count_total: total retweets on the terms on the day of publicationterms_ini_retweet_count_mean: average retweets on the terms on the day of publicationterms_ini_favorite_count_total: total of favorites on the terms on the day of publicationterms_ini_favorite_count_mean: average of favorites on the terms on the day of publicationterms_ini_followers_talking_rate: ratio of followers of the media Twitter account who have recently published a tweet talking about the terms on the day of publicationterms_ini_user_num_followers_mean: average followers of users who have spoken of the terms on the day of publicationterms_ini_user_num_tweets_mean: average number of tweets published by users who spoke about the terms on the day of publicationterms_ini_user_age_mean: average age in days of users who have spoken of the terms on the day of publicationterms_ini_ur_inclusion_rate: URL inclusion ratio of tweets talking about terms on the day of publicationterms_end_num_tweets: total tweets on terms 14 days after publicationterms_ini_retweet_count_total: total retweets on terms 14 days after publicationterms_ini_retweet_count_mean: average retweets on terms 14 days after publicationterms_ini_favorite_count_total: total bookmarks on terms 14 days after publicationterms_ini_favorite_count_mean: average of favorites on terms 14 days after publicationterms_ini_followers_talking_rate: ratio of media Twitter account followers who have recently posted a tweet talking about the terms 14 days after publicationterms_ini_user_num_followers_mean: average followers of users who have spoken of the terms 14 days after publicationterms_ini_user_num_tweets_mean: average number of tweets published by users who have spoken about the terms 14 days after publicationterms_ini_user_age_mean: the average age in days of users who have spoken of the terms 14 days after publicationterms_ini_ur_inclusion_rate: URL inclusion ratio of tweets talking about terms 14 days after publication.tesis_terms: data of the terms (tags) related to the processed articles.stats_id: Analysis IDtime: "0" if at the time of publication, "1" if 14 days laterterm_id: Term ID (tag) in WordPressname: Name of the termslug: URL of the termnum_tweets: number of tweetsretweet_count_total: total retweetsretweet_count_mean: average retweetsfavorite_count_total: total of favoritesfavorite_count_mean: average of favoritesfollowers_talking_rate: ratio of followers of the media Twitter account who have recently published a tweet talking about the termuser_num_followers_mean: average followers of users who were talking about the termuser_num_tweets_mean: average number of tweets published by users who were talking about the termuser_age_mean: average age in days of users who were talking about the termurl_inclusion_rate: URL inclusion ratio
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
so if you have to have a G+ account (for YouTube, location services, or other reasons) - here's how you can make it totally private! No one will be able to add you, send you spammy links, or otherwise annoy you. You need to visit the "Audience Settings" page - https://plus.google.com/u/0/settings/audience You can then set a "custom audience" - usually you would use this to restrict your account to people from a specific geographic location, or within a specific age range. In this case, we're going to choose a custom audience of "No-one" Check the box and hit save. Now, when people try to visit your Google+ profile - they'll see this "restricted" message. You can visit my G+ Profile if you want to see this working. (https://plus.google.com/114725651137252000986) If you are not able to understand you can follow this website : http://www.livehuntz.com/google-plus/support-phone-number
In the U.S. public companies, certain insiders and broker-dealers are required to regularly file with the SEC. The SEC makes this data available online for anybody to view and use via their Electronic Data Gathering, Analysis, and Retrieval (EDGAR) database. The SEC updates this data every quarter going back to January, 2009. To aid analysis a quick summary view of the data has been created that is not available in the original dataset. The quick summary view pulls together signals into a single table that otherwise would have to be joined from multiple tables and enables a more streamlined user experience. This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets.Weitere Informationen
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Meta Kaggle Code is an extension to our popular Meta Kaggle dataset. This extension contains all the raw source code from hundreds of thousands of public, Apache 2.0 licensed Python and R notebooks versions on Kaggle used to analyze Datasets, make submissions to Competitions, and more. This represents nearly a decade of data spanning a period of tremendous evolution in the ways ML work is done.
By collecting all of this code created by Kaggle’s community in one dataset, we hope to make it easier for the world to research and share insights about trends in our industry. With the growing significance of AI-assisted development, we expect this data can also be used to fine-tune models for ML-specific code generation tasks.
Meta Kaggle for Code is also a continuation of our commitment to open data and research. This new dataset is a companion to Meta Kaggle which we originally released in 2016. On top of Meta Kaggle, our community has shared nearly 1,000 public code examples. Research papers written using Meta Kaggle have examined how data scientists collaboratively solve problems, analyzed overfitting in machine learning competitions, compared discussions between Kaggle and Stack Overflow communities, and more.
The best part is Meta Kaggle enriches Meta Kaggle for Code. By joining the datasets together, you can easily understand which competitions code was run against, the progression tier of the code’s author, how many votes a notebook had, what kinds of comments it received, and much, much more. We hope the new potential for uncovering deep insights into how ML code is written feels just as limitless to you as it does to us!
While we have made an attempt to filter out notebooks containing potentially sensitive information published by Kaggle users, the dataset may still contain such information. Research, publications, applications, etc. relying on this data should only use or report on publicly available, non-sensitive information.
The files contained here are a subset of the KernelVersions
in Meta Kaggle. The file names match the ids in the KernelVersions
csv file. Whereas Meta Kaggle contains data for all interactive and commit sessions, Meta Kaggle Code contains only data for commit sessions.
The files are organized into a two-level directory structure. Each top level folder contains up to 1 million files, e.g. - folder 123 contains all versions from 123,000,000 to 123,999,999. Each sub folder contains up to 1 thousand files, e.g. - 123/456 contains all versions from 123,456,000 to 123,456,999. In practice, each folder will have many fewer than 1 thousand files due to private and interactive sessions.
The ipynb files in this dataset hosted on Kaggle do not contain the output cells. If the outputs are required, the full set of ipynbs with the outputs embedded can be obtained from this public GCS bucket: kaggle-meta-kaggle-code-downloads
. Note that this is a "requester pays" bucket. This means you will need a GCP account with billing enabled to download. Learn more here: https://cloud.google.com/storage/docs/requester-pays
We love feedback! Let us know in the Discussion tab.
Happy Kaggling!
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
I created these files and analysis as part of working on a case study for the Google Data Analyst certificate.
Question investigated: Do annual members and casual riders use Cyclistic bikes differently? Why do we want to know?: Knowing bike usage/behavior by rider type will allow the Marketing, Analytics, and Executive team stakeholders to design, assess, and approve appropriate strategies that drive profitability.
I used the script noted below to clean the files and then added some additional steps to create the visualizations to complete my analysis. The additional steps are noted in corresponding R Markdown file for this data set.
Files: most recent 1 year of data available, Divvy_Trips_2019_Q2.csv, Divvy_Trips_2019_Q3.csv, Divvy_Trips_2019_Q4.csv, Divvy_Trips_2020_Q1.csv Source: Downloaded from https://divvy-tripdata.s3.amazonaws.com/index.html
Data cleaning script: followed this script to clean and merge files https://docs.google.com/document/d/1gUs7-pu4iCHH3PTtkC1pMvHfmyQGu0hQBG5wvZOzZkA/copy
Note: Combined data set has 3,876,042 rows, so you will likely need to run R analysis on your computer (e.g., R Console) rather than in the cloud (e.g., RStudio Cloud)
This was my first attempt to conduct an analysis in R and create the R Markdown file. As you might guess, it was an eye-opening experience, with both exciting discoveries and aggravating moments.
One thing I have not yet been able to figure out is how to add a legend to the map. I was able to get a legend to appear on a separate (empty) map, but not on the map you will see here.
I am also interested to see what others did with this analysis - what were the findings and insights you found?
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Buzsaki Lab is proud to present a large selection of experimental data available for public access: https://buzsakilab.com/wp/database/. We publicly share more than a thousand sessions (about 40TB of raw and spike- and LFP-processed data) via our public data repository. The datasets are from freely moving rodents and include sleep-task-sleep sessions (3 to 24 hrs continuous recording sessions) in various brain structures, including metadata. We are happy to assist you in using the data. Our goal is that by sharing these data, other users can provide new insights, extend, contradict, or clarify our conclusions.
The databank contains electrophysiological recordings performed in freely moving rats and mice collected by investigators in the Buzsaki Lab over several years (a subset from head-fixed mice). Sessions have been collected with extracellular electrodes using high-channel-count silicon probes, with spike sorted single units, and intracellular and juxtacellular combined with extracellular electrodes. Several sessions include physiologically and optogenetically identified units. The sessions have been collected from various brain region pairs: the hippocampus, thalamus, amygdala, post-subiculum, septal region, and the entorhinal cortex, and various neocortical regions. In most behavioral tasks, the animals performed spatial behaviors (linear mazes and open fields), preceded and followed by long sleep sessions. Brain state classification is provided.
Getting started
The top menu “Databank” serves as a navigational menu to the databank. The metadata describing the experiments is stored in a relational database which means that there are many entry points for exploring the data. The databank is organized by projects, animal subjects, and sessions.
Accessing and downloading the datasets
We share the data through two services: our public Globus.org endpoint and our webshare: buzsakilab.nyumc.org. A subset of the datasets is also available at CRCNS.org. If you have an interest in a dataset that is not listed or is lacking information, please contact us. We pledge to make our data available immediately after publication.
Support
For support, please use our Buzsaki Databank google group. If you have an interest in a dataset that is not listed or is lacking information, please send us a request. Feel free to contact us, if you need more details on a given dataset or if a dataset is missing.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Google's AudioSet consistently reformatted
During my work with Google's AudioSet(https://research.google.com/audioset/index.html) I encountered some problems due to the fact that Weak (https://research.google.com/audioset/download.html) and Strong (https://research.google.com/audioset/download_strong.html) versions of the dataset used different csv formatting for the data, and that also labels used in the two datasets are different (https://github.com/audioset/ontology/issues/9) and also presented in files with different formatting.
This dataset reformatting aims to unify the formats of the datasets so that it is possible to analyse them in the same pipelines, and also make the dataset files compatible with psds_eval, dcase_util and sed_eval Python packages used in Audio Processing.
For better formatted documentation and source code of reformatting refer to https://github.com/bakhtos/GoogleAudioSetReformatted
-Changes in dataset
All files are converted to tab-separated *.tsv
files (i.e. csv
files with \t
as a separator). All files have a header as the first line.
-New fields and filenames
Fields are renamed according to the following table, to be compatible with psds_eval:
Old field -> New field YTID -> filename segment_id -> filename start_seconds -> onset start_time_seconds -> onset end_seconds -> offset end_time_seconds -> offset positive_labels -> event_label label -> event_label present -> present
For class label files, id
is now the name for the for mid
label (e.g. /m/09xor
)
and label
for the human-readable label (e.g. Speech
). Index of label indicated
for Weak dataset labels (index
field in class_labels_indices.csv
) is not used.
Files are renamed according to the following table to ensure consisted naming
of the form audioset_[weak|strong]_[train|eval]_[balanced|unbalanced|posneg]*.tsv
:
Old name -> New name balanced_train_segments.csv -> audioset_weak_train_balanced.tsv unbalanced_train_segments.csv -> audioset_weak_train_unbalanced.tsv eval_segments.csv -> audioset_weak_eval.tsv audioset_train_strong.tsv -> audioset_strong_train.tsv audioset_eval_strong.tsv -> audioset_strong_eval.tsv audioset_eval_strong_framed_posneg.tsv -> audioset_strong_eval_posneg.tsv class_labels_indices.csv -> class_labels.tsv (merged with mid_to_display_name.tsv) mid_to_display_name.tsv -> class_labels.tsv (merged with class_labels_indices.csv)
-Strong dataset changes
Only changes to the Strong dataset are renaming of fields and reordering of columns,
so that both Weak and Strong version have filename
and event_label
as first
two columns.
-Weak dataset changes
-- Labels are given one per line, instead of comma-separated and quoted list
-- To make sure that filename
format is the same as in Strong version, the following
format change is made:
The value of the start_seconds
field is converted to milliseconds and appended to the filename
with an underscore. Since all files in the dataset are assumed to be 10 seconds long, this unifies the format of filename
with the Strong version and makes end_seconds
also redundant.
-Class labels changes
Class labels from both datasets are merged into one file and given in alphabetical order of id
s. Since same id
s are present in both datasets, but sometimes with different human-readable labels, labels from Strong dataset overwrite those from Weak. It is possible to regenerate class_labels.tsv
while giving priority to the Weak version of labels by calling convert_labels(False)
from convert.py in the GitHub repository.
-License
Google's AudioSet was published in two stages - first the Weakly labelled data (Gemmeke, Jort F., et al. "Audio set: An ontology and human-labeled dataset for audio events." 2017 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, 2017.), then the strongly labelled data (Hershey, Shawn, et al. "The benefit of temporally-strong labels in audio event classification." ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2021.)
Both the original dataset and this reworked version are licensed under CC BY 4.0
Class labels come from the AudioSet Ontology, which is licensed under CC BY-SA 4.0.
Company Datasets for valuable business insights!
Discover new business prospects, identify investment opportunities, track competitor performance, and streamline your sales efforts with comprehensive Company Datasets.
These datasets are sourced from top industry providers, ensuring you have access to high-quality information:
We provide fresh and ready-to-use company data, eliminating the need for complex scraping and parsing. Our data includes crucial details such as:
You can choose your preferred data delivery method, including various storage options, delivery frequency, and input/output formats.
Receive datasets in CSV, JSON, and other formats, with storage options like AWS S3 and Google Cloud Storage. Opt for one-time, monthly, quarterly, or bi-annual data delivery.
With Oxylabs Datasets, you can count on:
Pricing Options:
Standard Datasets: choose from various ready-to-use datasets with standardized data schemas, priced from $1,000/month.
Custom Datasets: Tailor datasets from any public web domain to your unique business needs. Contact our sales team for custom pricing.
Experience a seamless journey with Oxylabs:
Unlock the power of data with Oxylabs' Company Datasets and supercharge your business insights today!
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We present Qbias, two novel datasets that promote the investigation of bias in online news search as described in
Fabian Haak and Philipp Schaer. 2023. 𝑄𝑏𝑖𝑎𝑠 - A Dataset on Media Bias in Search Queries and Query Suggestions. In Proceedings of ACM Web Science Conference (WebSci’23). ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3578503.3583628.
Dataset 1: AllSides Balanced News Dataset (allsides_balanced_news_headlines-texts.csv)
The dataset contains 21,747 news articles collected from AllSides balanced news headline roundups in November 2022 as presented in our publication. The AllSides balanced news feature three expert-selected U.S. news articles from sources of different political views (left, right, center), often featuring spin bias, and slant other forms of non-neutral reporting on political news. All articles are tagged with a bias label by four expert annotators based on the expressed political partisanship, left, right, or neutral. The AllSides balanced news aims to offer multiple political perspectives on important news stories, educate users on biases, and provide multiple viewpoints. Collected data further includes headlines, dates, news texts, topic tags (e.g., "Republican party", "coronavirus", "federal jobs"), and the publishing news outlet. We also include AllSides' neutral description of the topic of the articles. Overall, the dataset contains 10,273 articles tagged as left, 7,222 as right, and 4,252 as center.
To provide easier access to the most recent and complete version of the dataset for future research, we provide a scraping tool and a regularly updated version of the dataset at https://github.com/irgroup/Qbias. The repository also contains regularly updated more recent versions of the dataset with additional tags (such as the URL to the article). We chose to publish the version used for fine-tuning the models on Zenodo to enable the reproduction of the results of our study.
Dataset 2: Search Query Suggestions (suggestions.csv)
The second dataset we provide consists of 671,669 search query suggestions for root queries based on tags of the AllSides biased news dataset. We collected search query suggestions from Google and Bing for the 1,431 topic tags, that have been used for tagging AllSides news at least five times, approximately half of the total number of topics. The topic tags include names, a wide range of political terms, agendas, and topics (e.g., "communism", "libertarian party", "same-sex marriage"), cultural and religious terms (e.g., "Ramadan", "pope Francis"), locations and other news-relevant terms. On average, the dataset contains 469 search queries for each topic. In total, 318,185 suggestions have been retrieved from Google and 353,484 from Bing.
The file contains a "root_term" column based on the AllSides topic tags. The "query_input" column contains the search term submitted to the search engine ("search_engine"). "query_suggestion" and "rank" represents the search query suggestions at the respective positions returned by the search engines at the given time of search "datetime". We scraped our data from a US server saved in "location".
We retrieved ten search query suggestions provided by the Google and Bing search autocomplete systems for the input of each of these root queries, without performing a search. Furthermore, we extended the root queries by the letters a to z (e.g., "democrats" (root term) >> "democrats a" (query input) >> "democrats and recession" (query suggestion)) to simulate a user's input during information search and generate a total of up to 270 query suggestions per topic and search engine. The dataset we provide contains columns for root term, query input, and query suggestion for each suggested query. The location from which the search is performed is the location of the Google servers running Colab, in our case Iowa in the United States of America, which is added to the dataset.
AllSides Scraper
At https://github.com/irgroup/Qbias, we provide a scraping tool, that allows for the automatic retrieval of all available articles at the AllSides balanced news headlines.
We want to provide an easy means of retrieving the news and all corresponding information. For many tasks it is relevant to have the most recent documents available. Thus, we provide this Python-based scraper, that scrapes all available AllSides news articles and gathers available information. By providing the scraper we facilitate access to a recent version of the dataset for other researchers.
This dataset contains two tables: creative_stats and removed_creative_stats. The creative_stats table contains information about advertisers that served ads in the European Economic Area or Turkey: their legal name, verification status, disclosed name, and location. It also includes ad specific information: impression ranges per region (including aggregate impressions for the European Economic Area), first shown and last shown dates, which criteria were used in audience selection, the format of the ad, the ad topic and whether the ad is funded by Google Ad Grants program. A link to the ad in the Google Ads Transparency Center is also provided. The removed_creative_stats table contains information about ads that served in the European Economic Area that Google removed: where and why they were removed and per-region information on when they served. The removed_creative_stats table also contains a link to the Google Ads Transparency Center for the removed ad. Data for both tables updates periodically and may be delayed from what appears on the Google Ads Transparency Center website. About BigQuery This data is hosted in Google BigQuery for users to easily query using SQL. Note that to use BigQuery, users must have a Google account and create a GCP project. This public dataset is included in BigQuery's 1TB/mo of free tier processing. Each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery . Download Dataset This public dataset is also hosted in Google Cloud Storage here and available free to use. Use this quick start guide to quickly learn how to access public datasets on Google Cloud Storage. We provide the raw data in JSON format, sharded across multiple files to support easier download of the large dataset. A README file which describes the data structure and our Terms of Service (also listed below) is included with the dataset. You can also download the results from a custom query. See here for options and instructions. Signed out users can download the full dataset by using the gCloud CLI. Follow the instructions here to download and install the gCloud CLI. To remove the login requirement, run "$ gcloud config set auth/disable_credentials True" To download the dataset, run "$ gcloud storage cp gs://ads-transparency-center/* . -R" This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery .
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains data collected during a study ("Towards High-Value Datasets determination for data-driven development: a systematic literature review") conducted by Anastasija Nikiforova (University of Tartu), Nina Rizun, Magdalena Ciesielska (Gdańsk University of Technology), Charalampos Alexopoulos (University of the Aegean) and Andrea Miletič (University of Zagreb) It being made public both to act as supplementary data for "Towards High-Value Datasets determination for data-driven development: a systematic literature review" paper (pre-print is available in Open Access here -> https://arxiv.org/abs/2305.10234) and in order for other researchers to use these data in their own work.
The protocol is intended for the Systematic Literature review on the topic of High-value Datasets with the aim to gather information on how the topic of High-value datasets (HVD) and their determination has been reflected in the literature over the years and what has been found by these studies to date, incl. the indicators used in them, involved stakeholders, data-related aspects, and frameworks. The data in this dataset were collected in the result of the SLR over Scopus, Web of Science, and Digital Government Research library (DGRL) in 2023.
Methodology
To understand how HVD determination has been reflected in the literature over the years and what has been found by these studies to date, all relevant literature covering this topic has been studied. To this end, the SLR was carried out to by searching digital libraries covered by Scopus, Web of Science (WoS), Digital Government Research library (DGRL).
These databases were queried for keywords ("open data" OR "open government data") AND ("high-value data*" OR "high value data*"), which were applied to the article title, keywords, and abstract to limit the number of papers to those, where these objects were primary research objects rather than mentioned in the body, e.g., as a future work. After deduplication, 11 articles were found unique and were further checked for relevance. As a result, a total of 9 articles were further examined. Each study was independently examined by at least two authors.
To attain the objective of our study, we developed the protocol, where the information on each selected study was collected in four categories: (1) descriptive information, (2) approach- and research design- related information, (3) quality-related information, (4) HVD determination-related information.
Test procedure Each study was independently examined by at least two authors, where after the in-depth examination of the full-text of the article, the structured protocol has been filled for each study. The structure of the survey is available in the supplementary file available (see Protocol_HVD_SLR.odt, Protocol_HVD_SLR.docx) The data collected for each study by two researchers were then synthesized in one final version by the third researcher.
Description of the data in this data set
Protocol_HVD_SLR provides the structure of the protocol Spreadsheets #1 provides the filled protocol for relevant studies. Spreadsheet#2 provides the list of results after the search over three indexing databases, i.e. before filtering out irrelevant studies
The information on each selected study was collected in four categories: (1) descriptive information, (2) approach- and research design- related information, (3) quality-related information, (4) HVD determination-related information
Descriptive information
1) Article number - a study number, corresponding to the study number assigned in an Excel worksheet
2) Complete reference - the complete source information to refer to the study
3) Year of publication - the year in which the study was published
4) Journal article / conference paper / book chapter - the type of the paper -{journal article, conference paper, book chapter}
5) DOI / Website- a link to the website where the study can be found
6) Number of citations - the number of citations of the article in Google Scholar, Scopus, Web of Science
7) Availability in OA - availability of an article in the Open Access
8) Keywords - keywords of the paper as indicated by the authors
9) Relevance for this study - what is the relevance level of the article for this study? {high / medium / low}
Approach- and research design-related information 10) Objective / RQ - the research objective / aim, established research questions 11) Research method (including unit of analysis) - the methods used to collect data, including the unit of analy-sis (country, organisation, specific unit that has been ana-lysed, e.g., the number of use-cases, scope of the SLR etc.) 12) Contributions - the contributions of the study 13) Method - whether the study uses a qualitative, quantitative, or mixed methods approach? 14) Availability of the underlying research data- whether there is a reference to the publicly available underly-ing research data e.g., transcriptions of interviews, collected data, or explanation why these data are not shared? 15) Period under investigation - period (or moment) in which the study was conducted 16) Use of theory / theoretical concepts / approaches - does the study mention any theory / theoretical concepts / approaches? If any theory is mentioned, how is theory used in the study?
Quality- and relevance- related information
17) Quality concerns - whether there are any quality concerns (e.g., limited infor-mation about the research methods used)?
18) Primary research object - is the HVD a primary research object in the study? (primary - the paper is focused around the HVD determination, sec-ondary - mentioned but not studied (e.g., as part of discus-sion, future work etc.))
HVD determination-related information
19) HVD definition and type of value - how is the HVD defined in the article and / or any other equivalent term?
20) HVD indicators - what are the indicators to identify HVD? How were they identified? (components & relationships, “input -> output")
21) A framework for HVD determination - is there a framework presented for HVD identification? What components does it consist of and what are the rela-tionships between these components? (detailed description)
22) Stakeholders and their roles - what stakeholders or actors does HVD determination in-volve? What are their roles?
23) Data - what data do HVD cover?
24) Level (if relevant) - what is the level of the HVD determination covered in the article? (e.g., city, regional, national, international)
Format of the file .xls, .csv (for the first spreadsheet only), .odt, .docx
Licenses or restrictions CC-BY
For more info, see README.txt
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Please cite the following paper when using this dataset:
N. Thakur, “Mpox narrative on Instagram: A labeled multilingual dataset of Instagram posts on mpox for sentiment, hate speech, and anxiety analysis,” arXiv [cs.LG], 2024, URL: https://arxiv.org/abs/2409.05292
Abstract
The world is currently experiencing an outbreak of mpox, which has been declared a Public Health Emergency of International Concern by WHO. During recent virus outbreaks, social media platforms have played a crucial role in keeping the global population informed and updated regarding various aspects of the outbreaks. As a result, in the last few years, researchers from different disciplines have focused on the development of social media datasets focusing on different virus outbreaks. No prior work in this field has focused on the development of a dataset of Instagram posts about the mpox outbreak. The work presented in this paper (stated above) aims to address this research gap. It presents this multilingual dataset of 60,127 Instagram posts about mpox, published between July 23, 2022, and September 5, 2024. This dataset contains Instagram posts about mpox in 52 languages. For each of these posts, the Post ID, Post Description, Date of publication, language, and translated version of the post (translation to English was performed using the Google Translate API) are presented as separate attributes in the dataset.
After developing this dataset, sentiment analysis, hate speech detection, and anxiety or stress detection were also performed. This process included classifying each post into
one of the fine-grain sentiment classes, i.e., fear, surprise, joy, sadness, anger, disgust, or neutral,
hate or not hate
anxiety/stress detected or no anxiety/stress detected.
These results are presented as separate attributes in the dataset for the training and testing of machine learning algorithms for sentiment, hate speech, and anxiety or stress detection, as well as for other applications.
The 52 distinct languages in which Instagram posts are present in the dataset are English, Portuguese, Indonesian, Spanish, Korean, French, Hindi, Finnish, Turkish, Italian, German, Tamil, Urdu, Thai, Arabic, Persian, Tagalog, Dutch, Catalan, Bengali, Marathi, Malayalam, Swahili, Afrikaans, Panjabi, Gujarati, Somali, Lithuanian, Norwegian, Estonian, Swedish, Telugu, Russian, Danish, Slovak, Japanese, Kannada, Polish, Vietnamese, Hebrew, Romanian, Nepali, Czech, Modern Greek, Albanian, Croatian, Slovenian, Bulgarian, Ukrainian, Welsh, Hungarian, and Latvian.
The following table represents the data description for this dataset
Attribute Name
Attribute Description
Post ID
Unique ID of each Instagram post
Post Description
Complete description of each post in the language in which it was originally published
Date
Date of publication in MM/DD/YYYY format
Language
Language of the post as detected using the Google Translate API
Translated Post Description
Translated version of the post description. All posts which were not in English were translated into English using the Google Translate API. No language translation was performed for English posts.
Sentiment
Results of sentiment analysis (using translated Post Description) where each post was classified into one of the sentiment classes: fear, surprise, joy, sadness, anger, disgust, and neutral
Hate
Results of hate speech detection (using translated Post Description) where each post was classified as hate or not hate
Anxiety or Stress
Results of anxiety or stress detection (using translated Post Description) where each post was classified as stress/anxiety detected or no stress/anxiety detected.
This version of the CivilComments Dataset provides access to the primary seven labels that were annotated by crowd workers, the toxicity and other tags are a value between 0 and 1 indicating the fraction of annotators that assigned these attributes to the comment text.
The other tags are only available for a fraction of the input examples. They are currently ignored for the main dataset; the CivilCommentsIdentities set includes those labels, but only consists of the subset of the data with them. The other attributes that were part of the original CivilComments release are included only in the raw data. See the Kaggle documentation for more details about the available features.
The comments in this dataset come from an archive of the Civil Comments platform, a commenting plugin for independent news sites. These public comments were created from 2015 - 2017 and appeared on approximately 50 English-language news sites across the world. When Civil Comments shut down in 2017, they chose to make the public comments available in a lasting open archive to enable future research. The original data, published on figshare, includes the public comment text, some associated metadata such as article IDs, publication IDs, timestamps and commenter-generated "civility" labels, but does not include user ids. Jigsaw extended this dataset by adding additional labels for toxicity, identity mentions, as well as covert offensiveness. This data set is an exact replica of the data released for the Jigsaw Unintended Bias in Toxicity Classification Kaggle challenge. This dataset is released under CC0, as is the underlying comment text.
For comments that have a parent_id also in the civil comments data, the text of the previous comment is provided as the "parent_text" feature. Note that the splits were made without regard to this information, so using previous comments may leak some information. The annotators did not have access to the parent text when making the labels.
To use this dataset:
import tensorflow_datasets as tfds
ds = tfds.load('civil_comments', split='train')
for ex in ds.take(4):
print(ex)
See the guide for more informations on tensorflow_datasets.
These datasets contain 1.48 million question and answer pairs about products from Amazon.
Metadata includes
question and answer text
is the question binary (yes/no), and if so does it have a yes/no answer?
timestamps
product ID (to reference the review dataset)
Basic Statistics:
Questions: 1.48 million
Answers: 4,019,744
Labeled yes/no questions: 309,419
Number of unique products with questions: 191,185
https://www.apache.org/licenses/LICENSE-2.0.htmlhttps://www.apache.org/licenses/LICENSE-2.0.html
These data accompany the 2018 manuscript published in PLOS One titled "Mapping the yearly extent of surface coal mining in Central Appalachia using Landsat and Google Earth Engine". In this manuscript, researchers used the Google Earth Engine platform and freely-accessible Landsat imagery to create a yearly dataset (1985 through 2015) of surface coal mining in the Appalachian region of the United States of America. This specific dataset is a collection of Esri shapefiles of the mining areas as determined by this study for each year from 1985 through 2015. Individual file names within the dataset indicate the specific year. These files show the mining “footprint” in Appalachia for that given year, indicating that mining was occurring in a given location during that year. These files do not, however, indicate the year at which mining began or ceased in any given location.
An audio dataset of spoken words designed to help train and evaluate keyword spotting systems. Its primary goal is to provide a way to build and test small models that detect when a single word is spoken, from a set of ten target words, with as few false positives as possible from background noise or unrelated speech. Note that in the train and validation set, the label "unknown" is much more prevalent than the labels of the target words or background noise. One difference from the release version is the handling of silent segments. While in the test set the silence segments are regular 1 second files, in the training they are provided as long segments under "background_noise" folder. Here we split these background noise into 1 second clips, and also keep one of the files for the validation set.
To use this dataset:
import tensorflow_datasets as tfds
ds = tfds.load('speech_commands', split='train')
for ex in ds.take(4):
print(ex)
See the guide for more informations on tensorflow_datasets.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
I did not have any part in creating this dataset I am only uploading it here to make it easily available to others on Kaggle. More info about the dataset can be found here https://magenta.tensorflow.org/datasets/maestro
I had to convert the wav audio files to mp3 so the dataset would fit within Kaggle's 20gb limit, therefore all audio files have the extension .mp3 which is inconsistent with the .wav extensions in the .csv meta files.
MAESTRO (MIDI and Audio Edited for Synchronous Tracks and Organization) is a dataset composed of over 200 hours of virtuosic piano performances captured with fine alignment (~3 ms) between note labels and audio waveforms.
We partnered with organizers of the International Piano-e-Competition for the raw data used in this dataset. During each installment of the competition virtuoso pianists perform on Yamaha Disklaviers which, in addition to being concert-quality acoustic grand pianos, utilize an integrated high-precision MIDI capture and playback system. Recorded MIDI data is of sufficient fidelity to allow the audition stage of the competition to be judged remotely by listening to contestant performances reproduced over the wire on another Disklavier instrument.
The dataset contains over 200 hours of paired audio and MIDI recordings from ten years of International Piano-e-Competition. The MIDI data includes key strike velocities and sustain/sostenuto/una corda pedal positions. Audio and MIDI files are aligned with ∼3 ms accuracy and sliced to individual musical pieces, which are annotated with composer, title, and year of performance. Uncompressed audio is of CD quality or higher (44.1–48 kHz 16-bit PCM stereo).
A train/validation/test split configuration is also proposed, so that the same composition, even if performed by multiple contestants, does not appear in multiple subsets. Repertoire is mostly classical, including composers from the 17th to early 20th century.
For more information about how the dataset was created and several applications of it, please see the paper where it was introduced: Enabling Factorized Piano Music Modeling and Generation with the MAESTRO Dataset.
For an example application of the dataset, see our blog post on Wave2Midi2Wave.
The dataset is made available by Google LLC under a Creative Commons Attribution Non-Commercial Share-Alike 4.0 (CC BY-NC-SA 4.0) license.
More info on the MAESTRO dataset https://magenta.tensorflow.org/datasets/maestro Enabling Factorized Piano Music Modeling and Generation with the MAESTRO Dataset https://arxiv.org/abs/1810.12247
Curtis Hawthorne, Andriy Stasyuk, Adam Roberts, Ian Simon, Cheng-Zhi Anna Huang, Sander Dieleman, Erich Elsen, Jesse Engel, and Douglas Eck. "Enabling Factorized Piano Music Modeling and Generation with the MAESTRO Dataset." In International Conference on Learning Representations, 2019.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Robot-at-Home dataset (Robot@Home, paper here) is a collection of raw and processed data from five domestic settings compiled by a mobile robot equipped with 4 RGB-D cameras and a 2D laser scanner. Its main purpose is to serve as a testbed for semantic mapping algorithms through the categorization of objects and/or rooms.
This dataset is unique in three aspects:
The provided data were captured with a rig of 4 RGB-D sensors with an overall field of view of 180°H. and 58°V., and with a 2D laser scanner.
It comprises diverse and numerous data: sequences of RGB-D images and laser scans from the rooms of five apartments (87,000+ observations were collected), topological information about the connectivity of these rooms, and 3D reconstructions and 2D geometric maps of the visited rooms.
The provided ground truth is dense, including per-point annotations of the categories of the objects and rooms appearing in the reconstructed scenarios, and per-pixel annotations of each RGB-D image within the recorded sequences
During the data collection, a total of 36 rooms were completely inspected, so the dataset is rich in contextual information of objects and rooms. This is a valuable feature, missing in most of the state-of-the-art datasets, which can be exploited by, for instance, semantic mapping systems that leverage relationships like pillows are usually on beds or ovens are not in bathrooms.
Robot@Home2
Robot@Home2, is an enhanced version aimed at improving usability and functionality for developing and testing mobile robotics and computer vision algorithms. It consists of three main components. Firstly, a relational database that states the contextual information and data links, compatible with Standard Query Language. Secondly,a Python package for managing the database, including downloading, querying, and interfacing functions. Finally, learning resources in the form of Jupyter notebooks, runnable locally or on the Google Colab platform, enabling users to explore the dataset without local installations. These freely available tools are expected to enhance the ease of exploiting the Robot@Home dataset and accelerate research in computer vision and robotics.
If you use Robot@Home2, please cite the following paper:
Gregorio Ambrosio-Cestero, Jose-Raul Ruiz-Sarmiento, Javier Gonzalez-Jimenez, The Robot@Home2 dataset: A new release with improved usability tools, in SoftwareX, Volume 23, 2023, 101490, ISSN 2352-7110, https://doi.org/10.1016/j.softx.2023.101490.
@article{ambrosio2023robotathome2,title = {The Robot@Home2 dataset: A new release with improved usability tools},author = {Gregorio Ambrosio-Cestero and Jose-Raul Ruiz-Sarmiento and Javier Gonzalez-Jimenez},journal = {SoftwareX},volume = {23},pages = {101490},year = {2023},issn = {2352-7110},doi = {https://doi.org/10.1016/j.softx.2023.101490},url = {https://www.sciencedirect.com/science/article/pii/S2352711023001863},keywords = {Dataset, Mobile robotics, Relational database, Python, Jupyter, Google Colab}}
Version historyv1.0.1 Fixed minor bugs.v1.0.2 Fixed some inconsistencies in some directory names. Fixes were necessary to automate the generation of the next version.v2.0.0 SQL based dataset. Robot@Home v1.0.2 has been packed into a sqlite database along with RGB-D and scene files which have been assembled into a hierarchical structured directory free of redundancies. Path tables are also provided to reference files in both v1.0.2 and v2.0.0 directory hierarchies. This version has been automatically generated from version 1.0.2 through the toolbox.v2.0.1 A forgotten foreign key pair have been added.v.2.0.2 The views have been consolidated as tables which allows a considerable improvement in access time.v.2.0.3 The previous version does not include the database. In this version the database has been uploaded.v.2.1.0 Depth images have been updated to 16-bit. Additionally, both the RGB images and the depth images are oriented in the original camera format, i.e. landscape.
Meet Earth EngineGoogle Earth Engine combines a multi-petabyte catalog of satellite imagery and geospatial datasets with planetary-scale analysis capabilities and makes it available for scientists, researchers, and developers to detect changes, map trends, and quantify differences on the Earth's surface.SATELLITE IMAGERY+YOUR ALGORITHMS+REAL WORLD APPLICATIONSLEARN MOREGLOBAL-SCALE INSIGHTExplore our interactive timelapse viewer to travel back in time and see how the world has changed over the past twenty-nine years. Timelapse is one example of how Earth Engine can help gain insight into petabyte-scale datasets.EXPLORE TIMELAPSEREADY-TO-USE DATASETSThe public data archive includes more than thirty years of historical imagery and scientific datasets, updated and expanded daily. It contains over twenty petabytes of geospatial data instantly available for analysis.EXPLORE DATASETSSIMPLE, YET POWERFUL APIThe Earth Engine API is available in Python and JavaScript, making it easy to harness the power of Google’s cloud for your own geospatial analysis.EXPLORE THE APIGoogle Earth Engine has made it possible for the first time in history to rapidly and accurately process vast amounts of satellite imagery, identifying where and when tree cover change has occurred at high resolution. Global Forest Watch would not exist without it. For those who care about the future of the planet Google Earth Engine is a great blessing!-Dr. Andrew Steer, President and CEO of the World Resources Institute.CONVENIENT TOOLSUse our web-based code editor for fast, interactive algorithm development with instant access to petabytes of data.LEARN ABOUT THE CODE EDITORSCIENTIFIC AND HUMANITARIAN IMPACTScientists and non-profits use Earth Engine for remote sensing research, predicting disease outbreaks, natural resource management, and more.SEE CASE STUDIESREADY TO BE PART OF THE SOLUTION?SIGN UP NOWTERMS OF SERVICE PRIVACY ABOUT GOOGLE
RL Unplugged is suite of benchmarks for offline reinforcement learning. The RL Unplugged is designed around the following considerations: to facilitate ease of use, we provide the datasets with a unified API which makes it easy for the practitioner to work with all data in the suite once a general pipeline has been established.
The datasets follow the RLDS format to represent steps and episodes.
We are releasing a large and diverse dataset of gameplay following the protocol described by Agarwal et al., 2020, which can be used to evaluate several discrete offline RL algorithms. The dataset is generated by running an online DQN agent and recording transitions from its replay during training with sticky actions Machado et al., 2018. As stated in Agarwal et al., 2020, for each game we use data from five runs with 50 million transitions each. We release datasets for 46 Atari games. For details on how the dataset was generated, please refer to the paper. Please see this note about the ROM versions used to generate the datasets.
Atari is a standard RL benchmark. We recommend you to try offline RL methods on Atari if you are interested in comparing your approach to other state of the art offline RL methods with discrete actions.
The reward of each step is clipped (obtained with [-1, 1] clipping) and the episode includes the sum of the clipped reward per episode.
Each of the configurations is broken into splits. Splits correspond to checkpoints of 1M steps (note that the number of episodes may difer). Checkpoints are ordered in time (so checkpoint 0 ran before checkpoint 1).
Episodes within each split are ordered. Check https://www.tensorflow.org/datasets/determinism if you want to ensure that you read episodes in order.
This dataset corresponds to the one used in the DQN replay paper. https://research.google/tools/datasets/dqn-replay/
To use this dataset:
import tensorflow_datasets as tfds
ds = tfds.load('rlu_atari_checkpoints_ordered', split='train')
for ex in ds.take(4):
print(ex)
See the guide for more informations on tensorflow_datasets.
Author: Víctor Yeste. Universitat Politècnica de Valencia.The object of this study is the design of a cybermetric methodology whose objectives are to measure the success of the content published in online media and the possible prediction of the selected success variables.In this case, due to the need to integrate data from two separate areas, such as web publishing and the analysis of their shares and related topics on Twitter, has opted for programming as you access both the Google Analytics v4 reporting API and Twitter Standard API, always respecting the limits of these.The website analyzed is hellofriki.com. It is an online media whose primary intention is to solve the need for information on some topics that provide daily a vast number of news in the form of news, as well as the possibility of analysis, reports, interviews, and many other information formats. All these contents are under the scope of the sections of cinema, series, video games, literature, and comics.This dataset has contributed to the elaboration of the PhD Thesis:Yeste Moreno, VM. (2021). Diseño de una metodología cibermétrica de cálculo del éxito para la optimización de contenidos web [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/176009Data have been obtained from each last-minute news article published online according to the indicators described in the doctoral thesis. All related data are stored in a database, divided into the following tables:tesis_followers: User ID list of media account followers.tesis_hometimeline: data from tweets posted by the media account sharing breaking news from the web.status_id: Tweet IDcreated_at: date of publicationtext: content of the tweetpath: URL extracted after processing the shortened URL in textpost_shared: Article ID in WordPress that is being sharedretweet_count: number of retweetsfavorite_count: number of favoritestesis_hometimeline_other: data from tweets posted by the media account that do not share breaking news from the web. Other typologies, automatic Facebook shares, custom tweets without link to an article, etc. With the same fields as tesis_hometimeline.tesis_posts: data of articles published by the web and processed for some analysis.stats_id: Analysis IDpost_id: Article ID in WordPresspost_date: article publication date in WordPresspost_title: title of the articlepath: URL of the article in the middle webtags: Tags ID or WordPress tags related to the articleuniquepageviews: unique page viewsentrancerate: input ratioavgtimeonpage: average visit timeexitrate: output ratiopageviewspersession: page views per sessionadsense_adunitsviewed: number of ads viewed by usersadsense_viewableimpressionpercent: ad display ratioadsense_ctr: ad click ratioadsense_ecpm: estimated ad revenue per 1000 page viewstesis_stats: data from a particular analysis, performed at each published breaking news item. Fields with statistical values can be computed from the data in the other tables, but total and average calculations are saved for faster and easier further processing.id: ID of the analysisphase: phase of the thesis in which analysis has been carried out (right now all are 1)time: "0" if at the time of publication, "1" if 14 days laterstart_date: date and time of measurement on the day of publicationend_date: date and time when the measurement is made 14 days latermain_post_id: ID of the published article to be analysedmain_post_theme: Main section of the published article to analyzesuperheroes_theme: "1" if about superheroes, "0" if nottrailer_theme: "1" if trailer, "0" if notname: empty field, possibility to add a custom name manuallynotes: empty field, possibility to add personalized notes manually, as if some tag has been removed manually for being considered too generic, despite the fact that the editor put itnum_articles: number of articles analysednum_articles_with_traffic: number of articles analysed with traffic (which will be taken into account for traffic analysis)num_articles_with_tw_data: number of articles with data from when they were shared on the media’s Twitter accountnum_terms: number of terms analyzeduniquepageviews_total: total page viewsuniquepageviews_mean: average page viewsentrancerate_mean: average input ratioavgtimeonpage_mean: average duration of visitsexitrate_mean: average output ratiopageviewspersession_mean: average page views per sessiontotal: total of ads viewedadsense_adunitsviewed_mean: average of ads viewedadsense_viewableimpressionpercent_mean: average ad display ratioadsense_ctr_mean: average ad click ratioadsense_ecpm_mean: estimated ad revenue per 1000 page viewsTotal: total incomeretweet_count_mean: average incomefavorite_count_total: total of favoritesfavorite_count_mean: average of favoritesterms_ini_num_tweets: total tweets on the terms on the day of publicationterms_ini_retweet_count_total: total retweets on the terms on the day of publicationterms_ini_retweet_count_mean: average retweets on the terms on the day of publicationterms_ini_favorite_count_total: total of favorites on the terms on the day of publicationterms_ini_favorite_count_mean: average of favorites on the terms on the day of publicationterms_ini_followers_talking_rate: ratio of followers of the media Twitter account who have recently published a tweet talking about the terms on the day of publicationterms_ini_user_num_followers_mean: average followers of users who have spoken of the terms on the day of publicationterms_ini_user_num_tweets_mean: average number of tweets published by users who spoke about the terms on the day of publicationterms_ini_user_age_mean: average age in days of users who have spoken of the terms on the day of publicationterms_ini_ur_inclusion_rate: URL inclusion ratio of tweets talking about terms on the day of publicationterms_end_num_tweets: total tweets on terms 14 days after publicationterms_ini_retweet_count_total: total retweets on terms 14 days after publicationterms_ini_retweet_count_mean: average retweets on terms 14 days after publicationterms_ini_favorite_count_total: total bookmarks on terms 14 days after publicationterms_ini_favorite_count_mean: average of favorites on terms 14 days after publicationterms_ini_followers_talking_rate: ratio of media Twitter account followers who have recently posted a tweet talking about the terms 14 days after publicationterms_ini_user_num_followers_mean: average followers of users who have spoken of the terms 14 days after publicationterms_ini_user_num_tweets_mean: average number of tweets published by users who have spoken about the terms 14 days after publicationterms_ini_user_age_mean: the average age in days of users who have spoken of the terms 14 days after publicationterms_ini_ur_inclusion_rate: URL inclusion ratio of tweets talking about terms 14 days after publication.tesis_terms: data of the terms (tags) related to the processed articles.stats_id: Analysis IDtime: "0" if at the time of publication, "1" if 14 days laterterm_id: Term ID (tag) in WordPressname: Name of the termslug: URL of the termnum_tweets: number of tweetsretweet_count_total: total retweetsretweet_count_mean: average retweetsfavorite_count_total: total of favoritesfavorite_count_mean: average of favoritesfollowers_talking_rate: ratio of followers of the media Twitter account who have recently published a tweet talking about the termuser_num_followers_mean: average followers of users who were talking about the termuser_num_tweets_mean: average number of tweets published by users who were talking about the termuser_age_mean: average age in days of users who were talking about the termurl_inclusion_rate: URL inclusion ratio