94 datasets found
  1. High income tax filers in Canada

    • www150.statcan.gc.ca
    • open.canada.ca
    Updated Oct 28, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2024). High income tax filers in Canada [Dataset]. http://doi.org/10.25318/1110005501-eng
    Explore at:
    Dataset updated
    Oct 28, 2024
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    This table presents income shares, thresholds, tax shares, and total counts of individual Canadian tax filers, with a focus on high income individuals (95% income threshold, 99% threshold, etc.). Income thresholds are based on national threshold values, regardless of selected geography; for example, the number of Nova Scotians in the top 1% will be calculated as the number of taxfiling Nova Scotians whose total income exceeded the 99% national income threshold. Different definitions of income are available in the table namely market, total, and after-tax income, both with and without capital gains.

  2. g

    Distributional Financial Accounts

    • gimi9.com
    • s.cnmilf.com
    • +1more
    Updated Dec 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Distributional Financial Accounts [Dataset]. https://gimi9.com/dataset/data-gov_distributional-financial-accounts/
    Explore at:
    Dataset updated
    Dec 18, 2024
    Description

    The Distributional Financial Accounts (DFAs) provide a quarterly measure of the distribution of U.S. household wealth since 1989, based on a comprehensive integration of disaggregated household-level wealth data with official aggregate wealth measures. The data set contains the level and share of each balance sheet item on the Financial Accounts' household wealth table (Table B.101.h), for various sub-populations in the United States. In our core data set, aggregate household wealth is allocated to each of four percentile groups of wealth: the top 1 percent, the next 9 percent (i.e., 90th to 99th percentile), the next 40 percent (50th to 90th percentile), and the bottom half (below the 50th percentile). Additionally, the data set contains the level and share of aggregate household wealth by income, age, generation, education, and race. The quarterly frequency makes the data useful for studying the business cycle dynamics of wealth concentration--which are typically difficult to observe in lower-frequency data because peaks and troughs often fall between times of measurement. These data will be updated about 10 or 11 weeks after the end of each quarter, making them a timely measure of the distribution of wealth.

  3. o

    Replication data for: How Risky Are Recessions for Top Earners?

    • openicpsr.org
    Updated May 1, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fatih Guvenen; Greg Kaplan; Jae Song (2014). Replication data for: How Risky Are Recessions for Top Earners? [Dataset]. http://doi.org/10.3886/E112771V1
    Explore at:
    Dataset updated
    May 1, 2014
    Dataset provided by
    American Economic Association
    Authors
    Fatih Guvenen; Greg Kaplan; Jae Song
    Description

    How sensitive to business cycles are the earnings of top earners? And, how does the business cycle sensitivity of top earners vary by industry? We use a confidential dataset on earnings histories of US males from the Social Security Administration. On average, individuals in the top 1 percent of the earnings distribution are slightly more cyclical than the population average. But there are large differences across sectors; top earners in Finance, Insurance, and Real Estate (FIRE) and Construction face substantial business cycle volatility, whereas those in Services (who make up 40 percent of individuals in the top 1 percent) have earnings that are less cyclical than the average worker.

  4. Income of individuals by age group, sex and income source, Canada, provinces...

    • www150.statcan.gc.ca
    • open.canada.ca
    • +1more
    Updated May 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Income of individuals by age group, sex and income source, Canada, provinces and selected census metropolitan areas [Dataset]. http://doi.org/10.25318/1110023901-eng
    Explore at:
    Dataset updated
    May 1, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Income of individuals by age group, sex and income source, Canada, provinces and selected census metropolitan areas, annual.

  5. Social Insurance Programs in Richest Quintile

    • kaggle.com
    Updated Jan 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). Social Insurance Programs in Richest Quintile [Dataset]. https://www.kaggle.com/datasets/thedevastator/coverage-of-social-insurance-programs-in-richest
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 7, 2023
    Dataset provided by
    Kaggle
    Authors
    The Devastator
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Coverage of Social Insurance Programs in Richest Quintile

    Percent of Population Eligible

    By data.world's Admin [source]

    About this dataset

    This dataset offers a unique insight into the coverage of social insurance programs for the wealthiest quintile of populations around the world. It reveals how many individuals in each country are receiving support from old age contributory pensions, disability benefits, and social security and health insurance benefits such as occupational injury benefits, paid sick leave, maternity leave, and more. This data provides an invaluable resource to understand the health and well-being of those most financially privileged in society – often having greater impact on decision making than other groups. With up-to-date figures from 2019-05-11 this dataset is invaluable in uncovering where there is work to be done for improved healthcare provision in each country across the world

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    • Understand the context: Before you begin analyzing this dataset, it is important to understand the information that it provides. Take some time to read the description of what is included in the dataset, including a clear understanding of the definitions and scope of coverage provided with each data point.

    • Examine the data: Once you have a general understanding of this dataset's contents, take some time to explore its contents in more depth. What specific questions does this dataset help answer? What kind of insights does it provide? Are there any missing pieces?

    • Clean & Prepare Data: After you've preliminarily examined its content, start preparing your data for further analysis and visualization. Clean up any formatting issues or irregularities present in your data set by correcting typos and eliminating unnecessary rows or columns before working with your chosen programming language (I prefer R for data manipulation tasks). Additionally, consider performing necessary transformations such as sorting or averaging values if appropriate for the findings you wish to draw from your analysis.

    • Visualize Results: Once you've cleaned and prepared your data, use visualizations such as charts, graphs or tables to reveal patterns within it that support specific conclusions about how insurance coverage under social programs vary among different groups within society's quintiles - based on age groups etc.. This type of visualization allows those who aren't familiar with programming to process complex information quickly and accurately than when displayed numerically in tabular form only!

    5 Final Analysis & Export Results: Finally export your visuals into presentation-ready formats (e.g., PDFs) which can be shared with colleagues! Additionally use these results as part of a narrative conclusion report providing an accurate assessment and meaningful interpretation about how social insurance programs vary between different members within society's quintiles (i..e., accordingest vs poorest), along with potential policy implications relevant for implementing effective strategies that improve access accordingly!

    Research Ideas

    • Analyzing the effectiveness of social insurance programs by comparing the coverage levels across different geographic areas or socio-economic groups;
    • Estimating the economic impact of social insurance programs on local and national economies by tracking spending levels and revenues generated;
    • Identifying potential problems with access to social insurance benefits, such as racial or gender disparities in benefit coverage

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    License: CC0 1.0 Universal (CC0 1.0) - Public Domain Dedication No Copyright - You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission. See Other Information.

    Columns

    File: coverage-of-social-insurance-programs-in-richest-quintile-of-population-1.csv

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. If you use this dataset in your research, please credit data.world's Admin.

  6. N

    Income Distribution by Quintile: Mean Household Income in Winchester, VA //...

    • neilsberg.com
    csv, json
    Updated Mar 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Income Distribution by Quintile: Mean Household Income in Winchester, VA // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/winchester-va-median-household-income/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Mar 3, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Winchester, Virginia
    Variables measured
    Income Level, Mean Household Income
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It delineates income distributions across income quintiles (mentioned above) following an initial analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the mean household income for each of the five quintiles in Winchester, VA, as reported by the U.S. Census Bureau. The dataset highlights the variation in mean household income across quintiles, offering valuable insights into income distribution and inequality.

    Key observations

    • Income disparities: The mean income of the lowest quintile (20% of households with the lowest income) is 14,125, while the mean income for the highest quintile (20% of households with the highest income) is 215,015. This indicates that the top earners earn 15 times compared to the lowest earners.
    • *Top 5%: * The mean household income for the wealthiest population (top 5%) is 344,621, which is 160.28% higher compared to the highest quintile, and 2439.79% higher compared to the lowest quintile.
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Income Levels:

    • Lowest Quintile
    • Second Quintile
    • Third Quintile
    • Fourth Quintile
    • Highest Quintile
    • Top 5 Percent

    Variables / Data Columns

    • Income Level: This column showcases the income levels (As mentioned above).
    • Mean Household Income: Mean household income, in 2023 inflation-adjusted dollars for the specific income level.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Winchester median household income. You can refer the same here

  7. i

    Richest Zip Codes in New York

    • incomebyzipcode.com
    Updated Dec 18, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cubit Planning, Inc. (2024). Richest Zip Codes in New York [Dataset]. https://www.incomebyzipcode.com/newyork
    Explore at:
    Dataset updated
    Dec 18, 2024
    Dataset authored and provided by
    Cubit Planning, Inc.
    License

    https://www.incomebyzipcode.com/terms#TERMShttps://www.incomebyzipcode.com/terms#TERMS

    Area covered
    New York
    Description

    A dataset listing the richest zip codes in New York per the most current US Census data, including information on rank and average income.

  8. Survey of Consumer Finances

    • federalreserve.gov
    Updated Oct 18, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Board of Governors of the Federal Reserve Board (2023). Survey of Consumer Finances [Dataset]. http://doi.org/10.17016/8799
    Explore at:
    Dataset updated
    Oct 18, 2023
    Dataset provided by
    Federal Reserve Systemhttp://www.federalreserve.gov/
    Federal Reserve Board of Governors
    Authors
    Board of Governors of the Federal Reserve Board
    Time period covered
    1962 - 2023
    Description

    The Survey of Consumer Finances (SCF) is normally a triennial cross-sectional survey of U.S. families. The survey data include information on families' balance sheets, pensions, income, and demographic characteristics.

  9. c

    Asthma (in persons of all ages): England

    • data.catchmentbasedapproach.org
    • hub.arcgis.com
    Updated Apr 6, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Rivers Trust (2021). Asthma (in persons of all ages): England [Dataset]. https://data.catchmentbasedapproach.org/datasets/1c87a458b35d4df38e0744ae039b8e0e
    Explore at:
    Dataset updated
    Apr 6, 2021
    Dataset authored and provided by
    The Rivers Trust
    Area covered
    Description

    SUMMARYThis analysis, designed and executed by Ribble Rivers Trust, identifies areas across England with the greatest levels of asthma (in persons of all ages). Please read the below information to gain a full understanding of what the data shows and how it should be interpreted.ANALYSIS METHODOLOGYThe analysis was carried out using Quality and Outcomes Framework (QOF) data, derived from NHS Digital, relating to asthma (in persons of all ages).This information was recorded at the GP practice level. However, GP catchment areas are not mutually exclusive: they overlap, with some areas covered by 30+ GP practices. Therefore, to increase the clarity and usability of the data, the GP-level statistics were converted into statistics based on Middle Layer Super Output Area (MSOA) census boundaries.The percentage of each MSOA’s population (all ages) with asthma was estimated. This was achieved by calculating a weighted average based on:The percentage of the MSOA area that was covered by each GP practice’s catchment areaOf the GPs that covered part of that MSOA: the percentage of registered patients that have that illness The estimated percentage of each MSOA’s population with asthma was then combined with Office for National Statistics Mid-Year Population Estimates (2019) data for MSOAs, to estimate the number of people in each MSOA with asthma, within the relevant age range.Each MSOA was assigned a relative score between 1 and 0 (1 = worst, 0 = best) based on:A) the PERCENTAGE of the population within that MSOA who are estimated to have asthmaB) the NUMBER of people within that MSOA who are estimated to have asthmaAn average of scores A & B was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer to 1 the score, the greater both the number and percentage of the population in the MSOA that are estimated to have asthma, compared to other MSOAs. In other words, those are areas where it’s estimated a large number of people suffer from asthma, and where those people make up a large percentage of the population, indicating there is a real issue with asthma within the population and the investment of resources to address that issue could have the greatest benefits.LIMITATIONS1. GP data for the financial year 1st April 2018 – 31st March 2019 was used in preference to data for the financial year 1st April 2019 – 31st March 2020, as the onset of the COVID19 pandemic during the latter year could have affected the reporting of medical statistics by GPs. However, for 53 GPs (out of 7670) that did not submit data in 2018/19, data from 2019/20 was used instead. Note also that some GPs (997 out of 7670) did not submit data in either year. This dataset should be viewed in conjunction with the ‘Health and wellbeing statistics (GP-level, England): Missing data and potential outliers’ dataset, to determine areas where data from 2019/20 was used, where one or more GPs did not submit data in either year, or where there were large discrepancies between the 2018/19 and 2019/20 data (differences in statistics that were > mean +/- 1 St.Dev.), which suggests erroneous data in one of those years (it was not feasible for this study to investigate this further), and thus where data should be interpreted with caution. Note also that there are some rural areas (with little or no population) that do not officially fall into any GP catchment area (although this will not affect the results of this analysis if there are no people living in those areas).2. Although all of the obesity/inactivity-related illnesses listed can be caused or exacerbated by inactivity and obesity, it was not possible to distinguish from the data the cause of the illnesses in patients: obesity and inactivity are highly unlikely to be the cause of all cases of each illness. By combining the data with data relating to levels of obesity and inactivity in adults and children (see the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset), we can identify where obesity/inactivity could be a contributing factor, and where interventions to reduce obesity and increase activity could be most beneficial for the health of the local population.3. It was not feasible to incorporate ultra-fine-scale geographic distribution of populations that are registered with each GP practice or who live within each MSOA. Populations might be concentrated in certain areas of a GP practice’s catchment area or MSOA and relatively sparse in other areas. Therefore, the dataset should be used to identify general areas where there are high levels of asthma, rather than interpreting the boundaries between areas as ‘hard’ boundaries that mark definite divisions between areas with differing levels of asthma.TO BE VIEWED IN COMBINATION WITH:This dataset should be viewed alongside the following datasets, which highlight areas of missing data and potential outliers in the data:Health and wellbeing statistics (GP-level, England): Missing data and potential outliersLevels of obesity, inactivity and associated illnesses (England): Missing dataDOWNLOADING THIS DATATo access this data on your desktop GIS, download the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset.DATA SOURCESThis dataset was produced using:Quality and Outcomes Framework data: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.GP Catchment Outlines. Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital. Data was cleaned by Ribble Rivers Trust before use.COPYRIGHT NOTICEThe reproduction of this data must be accompanied by the following statement:© Ribble Rivers Trust 2021. Analysis carried out using data that is: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.CaBA HEALTH & WELLBEING EVIDENCE BASEThis dataset forms part of the wider CaBA Health and Wellbeing Evidence Base.

  10. Low and Moderate Income Areas

    • catalog.data.gov
    • s.cnmilf.com
    Updated Mar 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Housing and Urban Development (2024). Low and Moderate Income Areas [Dataset]. https://catalog.data.gov/dataset/hud-low-and-moderate-income-areas
    Explore at:
    Dataset updated
    Mar 1, 2024
    Dataset provided by
    United States Department of Housing and Urban Developmenthttp://www.hud.gov/
    Description

    This dataset and map service provides information on the U.S. Housing and Urban Development's (HUD) low to moderate income areas. The term Low to Moderate Income, often referred to as low-mod, has a specific programmatic context within the Community Development Block Grant (CDBG) program. Over a 1, 2, or 3-year period, as selected by the grantee, not less than 70 percent of CDBG funds must be used for activities that benefit low- and moderate-income persons. HUD uses special tabulations of Census data to determine areas where at least 51% of households have incomes at or below 80% of the area median income (AMI). This dataset and map service contains the following layer.

  11. d

    Data from: Aquifer framework datasets used to represent the Kingshill...

    • catalog.data.gov
    • data.usgs.gov
    Updated Sep 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Aquifer framework datasets used to represent the Kingshill aquifer, Island of St. Croix [Dataset]. https://catalog.data.gov/dataset/aquifer-framework-datasets-used-to-represent-the-kingshill-aquifer-island-of-st-croix
    Explore at:
    Dataset updated
    Sep 24, 2025
    Dataset provided by
    U.S. Geological Survey
    Area covered
    Saint Croix, Kingshill
    Description

    The Kingshill aquifer resides under St. Croix, an Island in the U.S. Virgin Islands. The Island of St. Croix is mountainous in the northwestern and eastern regions of the island and the central and southwest regions contain rolling hills and plains. The Kingshill aquifer underlies the plains of St. Croix. The aquifer is composed primarily of limestone and marl and has a maximum saturated thickness of 200 feet. The aquifer doesn't produce large quantities of water and much of the groundwater is suboptimal for human consumption, but it is the primary source of water in the Virgin Islands (HA 730-N). This product provides source data for the U.S. Virgin Islands, Island of St. Croix, Kingshill aquifer framework including: Georeferenced image: 1. i_56KNGSHL_bot.tif: Digitized figure of altitude contour lines representing the bottom of the Kingshill aquifer. This figure also includes the Kingshill aquifer extent. The original figure was from the Groundwater Atlas (HA 730-N) figure 114. Extent shapefiles: 1. p_56KNGSHL.shp: Polygon shapefile containing the areal extent of the Kingshill aquifer (HA 730-N). The original figure was from the Groundwater Atlas (HA 730-N) figure 114. Contour line shapefile: 1. c_56KNGSHL_bot.shp: Contour line dataset containing altitude values, in feet reference to National Geodetic Vertical Datum of 1929 (NGVD29), across the bottom of the Kingshill aquifer. These data were sourced from HA 730-N and were used to create the ra_56KNGSHL_bot.tif raster dataset. Altitude raster files: 1. ra_56KNGSHL_top.tif: Altitude raster dataset of the top of the Kingshill aquifer. Top of aquifer was assumed to be equal with land surface, but it should be noted that HA 730-N indicates about 25 percent of aquifer is overlain with a blanket of alluvium, alluvial fan, debris flow, and slope wash deposits as much as 80 feet thick. This raster was created using the Digital Elevation model (DEM) dataset (NED, 100-meter) and the altitude values are in meters reference to North American Vertical Datum of 1988 (NAVD88). 2. ra_56KNGSHL_bot.tif: Altitude raster dataset of the bottom of the Kingshill aquifer. This raster was interpolated from the c_56KNGSHL_bot.shp file and the altitude values are in meters reference to NAVD88. Depth raster files: 1. rd_56KNGSHL_top.tif: Depth raster dataset of the top of the Kingshill aquifer. The depth values are in meters below land surface (NED, 100-meter). All values in this raster are “0” because it was assumed the top of the aquifer was equal with land surface, but it should be noted that HA 730-N indicates about 25 percent of aquifer is overlain with a blanket of alluvium, alluvial fan, debris flow, and slope wash deposits as much as 80 feet thick. 2. rd_56KNGSHL_bot.tif: Depth raster dataset of the bottom of the Kingshill aquifer. The depth values are in meters below land surface (NED, 100-meter).

  12. 🦈 Shark Tank India dataset 🇮🇳

    • kaggle.com
    Updated Oct 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Satya Thirumani (2025). 🦈 Shark Tank India dataset 🇮🇳 [Dataset]. https://www.kaggle.com/datasets/thirumani/shark-tank-india
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 5, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Satya Thirumani
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Shark Tank India Data set.

    Shark Tank India - Season 1 to season 4 information, with 80 fields/columns and 630+ records.

    All seasons/episodes of 🦈 SHARKTANK INDIA 🇮🇳 were broadcasted on SonyLiv OTT/Sony TV.

    Here is the data dictionary for (Indian) Shark Tank season's dataset.

    • Season Number - Season number
    • Startup Name - Company name or product name
    • Episode Number - Episode number within the season
    • Pitch Number - Overall pitch number
    • Season Start - Season first aired date
    • Season End - Season last aired date
    • Original Air Date - Episode original/first aired date, on OTT/TV
    • Episode Title - Episode title in SonyLiv
    • Anchor - Name of the episode presenter/host
    • Industry - Industry name or type
    • Business Description - Business Description
    • Company Website - Company Website URL
    • Started in - Year in which startup was started/incorporated
    • Number of Presenters - Number of presenters
    • Male Presenters - Number of male presenters
    • Female Presenters - Number of female presenters
    • Transgender Presenters - Number of transgender/LGBTQ presenters
    • Couple Presenters - Are presenters wife/husband ? 1-yes, 0-no
    • Pitchers Average Age - All pitchers average age, <30 young, 30-50 middle, >50 old
    • Pitchers City - Presenter's town/city or place where company head office exists
    • Pitchers State - Indian state pitcher hails from or state where company head office exists
    • Yearly Revenue - Yearly revenue, in lakhs INR, -1 means negative revenue, 0 means pre-revenue
    • Monthly Sales - Total monthly sales, in lakhs
    • Gross Margin - Gross margin/profit of company, in percentages
    • Net Margin - Net margin/profit of company, in percentages
    • EBITDA - Earnings Before Interest, Taxes, Depreciation, and Amortization
    • Cash Burn - In loss in current year; burning/paying money from their pocket (yes/no)
    • SKUs - Stock Keeping Units or number of varieties, at the time of pitch
    • Has Patents - Pitcher has Patents/Intellectual property (filed/granted), at the time of pitch
    • Bootstrapped - Startup is bootstrapped or not (yes/no)
    • Part of Match off - Competition between two similar brands, pitched at same time
    • Original Ask Amount - Original Ask Amount, in lakhs INR
    • Original Offered Equity - Original Offered Equity, in percentages
    • Valuation Requested - Valuation Requested, in lakhs INR
    • Received Offer - Received offer or not, 1-received, 0-not received
    • Accepted Offer - Accepted offer or not, 1-accepted, 0-rejected
    • Total Deal Amount - Total Deal Amount, in lakhs INR
    • Total Deal Equity - Total Deal Equity, in percentages
    • Total Deal Debt - Total Deal debt/loan amount, in lakhs INR
    • Debt Interest - Debt interest rate, in percentages
    • Deal Valuation - Deal Valuation, in lakhs INR
    • Number of sharks in deal - Number of sharks involved in deal
    • Deal has conditions - Deal has conditions or not? (yes or no)
    • Royalty Percentage - Royalty percentage, if it's royalty deal
    • Royalty Recouped Amount - Royalty recouped amount, if it's royalty deal, in lakhs
    • Advisory Shares Equity - Deal with Advisory shares or equity, in percentages
    • Namita Investment Amount - Namita Investment Amount, in lakhs INR
    • Namita Investment Equity - Namita Investment Equity, in percentages
    • Namita Debt Amount - Namita Debt Amount, in lakhs INR
    • Vineeta Investment Amount - Vineeta Investment Amount, in lakhs INR
    • Vineeta Investment Equity - Vineeta Investment Equity, in percentages
    • Vineeta Debt Amount - Vineeta Debt Amount, in lakhs INR
    • Anupam Investment Amount - Anupam Investment Amount, in lakhs INR
    • Anupam Investment Equity - Anupam Investment Equity, in percentages
    • Anupam Debt Amount - Anupam Debt Amount, in lakhs INR
    • Aman Investment Amount - Aman Investment Amount, in lakhs INR
    • Aman Investment Equity - Aman Investment Equity, in percentages
    • Aman Debt Amount - Aman Debt Amount, in lakhs INR
    • Peyush Investment Amount - Peyush Investment Amount, in lakhs INR
    • Peyush Investment Equity - Peyush Investment Equity, in percentages
    • Peyush Debt Amount - Peyush Debt Amount, in lakhs INR
    • Ritesh Investment Amount - Ritesh Investment Amount, in lakhs INR
    • Ritesh Investment Equity - Ritesh Investment Equity, in percentages
    • Ritesh Debt Amount - Ritesh Debt Amount, in lakhs INR
    • Amit Investment Amount - Amit Investment Amount, in lakhs INR
    • Amit Investment Equity - Amit Investment Equity, in percentages
    • Amit Debt Amount - Amit Debt Amount, in lakhs INR
    • Guest Investment Amount - Guest Investment Amount, in lakhs INR
    • Guest Investment Equity - Guest Investment Equity, in percentages
    • Guest Debt Amount - Guest Debt Amount, in lakhs INR
    • Invested Guest Name - Name of the guest(s) who invested in deal
    • All Guest Names - Name of all guests, who are present in episode
    • Namita Present - Whether Namita present in episode or not
    • Vineeta Present - Whether Vineeta present in episode or not
    • Anupam ...
  13. c

    Cancer (in persons of all ages): England

    • data.catchmentbasedapproach.org
    • hub.arcgis.com
    Updated Apr 6, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Rivers Trust (2021). Cancer (in persons of all ages): England [Dataset]. https://data.catchmentbasedapproach.org/datasets/cancer-in-persons-of-all-ages-england
    Explore at:
    Dataset updated
    Apr 6, 2021
    Dataset authored and provided by
    The Rivers Trust
    Area covered
    Description

    SUMMARYThis analysis, designed and executed by Ribble Rivers Trust, identifies areas across England with the greatest levels of cancer (in persons of all ages). Please read the below information to gain a full understanding of what the data shows and how it should be interpreted.ANALYSIS METHODOLOGYThe analysis was carried out using Quality and Outcomes Framework (QOF) data, derived from NHS Digital, relating to cancer (in persons of all ages).This information was recorded at the GP practice level. However, GP catchment areas are not mutually exclusive: they overlap, with some areas covered by 30+ GP practices. Therefore, to increase the clarity and usability of the data, the GP-level statistics were converted into statistics based on Middle Layer Super Output Area (MSOA) census boundaries.The percentage of each MSOA’s population (all ages) with cancer was estimated. This was achieved by calculating a weighted average based on:The percentage of the MSOA area that was covered by each GP practice’s catchment areaOf the GPs that covered part of that MSOA: the percentage of registered patients that have that illness The estimated percentage of each MSOA’s population with cancer was then combined with Office for National Statistics Mid-Year Population Estimates (2019) data for MSOAs, to estimate the number of people in each MSOA with cancer, within the relevant age range.Each MSOA was assigned a relative score between 1 and 0 (1 = worst, 0 = best) based on:A) the PERCENTAGE of the population within that MSOA who are estimated to have cancerB) the NUMBER of people within that MSOA who are estimated to have cancerAn average of scores A & B was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer to 1 the score, the greater both the number and percentage of the population in the MSOA that are estimated to have cancer, compared to other MSOAs. In other words, those are areas where it’s estimated a large number of people suffer from cancer, and where those people make up a large percentage of the population, indicating there is a real issue with cancer within the population and the investment of resources to address that issue could have the greatest benefits.LIMITATIONS1. GP data for the financial year 1st April 2018 – 31st March 2019 was used in preference to data for the financial year 1st April 2019 – 31st March 2020, as the onset of the COVID19 pandemic during the latter year could have affected the reporting of medical statistics by GPs. However, for 53 GPs (out of 7670) that did not submit data in 2018/19, data from 2019/20 was used instead. Note also that some GPs (997 out of 7670) did not submit data in either year. This dataset should be viewed in conjunction with the ‘Health and wellbeing statistics (GP-level, England): Missing data and potential outliers’ dataset, to determine areas where data from 2019/20 was used, where one or more GPs did not submit data in either year, or where there were large discrepancies between the 2018/19 and 2019/20 data (differences in statistics that were > mean +/- 1 St.Dev.), which suggests erroneous data in one of those years (it was not feasible for this study to investigate this further), and thus where data should be interpreted with caution. Note also that there are some rural areas (with little or no population) that do not officially fall into any GP catchment area (although this will not affect the results of this analysis if there are no people living in those areas).2. Although all of the obesity/inactivity-related illnesses listed can be caused or exacerbated by inactivity and obesity, it was not possible to distinguish from the data the cause of the illnesses in patients: obesity and inactivity are highly unlikely to be the cause of all cases of each illness. By combining the data with data relating to levels of obesity and inactivity in adults and children (see the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset), we can identify where obesity/inactivity could be a contributing factor, and where interventions to reduce obesity and increase activity could be most beneficial for the health of the local population.3. It was not feasible to incorporate ultra-fine-scale geographic distribution of populations that are registered with each GP practice or who live within each MSOA. Populations might be concentrated in certain areas of a GP practice’s catchment area or MSOA and relatively sparse in other areas. Therefore, the dataset should be used to identify general areas where there are high levels of cancer, rather than interpreting the boundaries between areas as ‘hard’ boundaries that mark definite divisions between areas with differing levels of cancer.TO BE VIEWED IN COMBINATION WITH:This dataset should be viewed alongside the following datasets, which highlight areas of missing data and potential outliers in the data:Health and wellbeing statistics (GP-level, England): Missing data and potential outliersLevels of obesity, inactivity and associated illnesses (England): Missing dataDOWNLOADING THIS DATATo access this data on your desktop GIS, download the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset.DATA SOURCESThis dataset was produced using:Quality and Outcomes Framework data: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.GP Catchment Outlines. Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital. Data was cleaned by Ribble Rivers Trust before use.MSOA boundaries: © Office for National Statistics licensed under the Open Government Licence v3.0. Contains OS data © Crown copyright and database right 2021.Population data: Mid-2019 (June 30) Population Estimates for Middle Layer Super Output Areas in England and Wales. © Office for National Statistics licensed under the Open Government Licence v3.0. © Crown Copyright 2020.COPYRIGHT NOTICEThe reproduction of this data must be accompanied by the following statement:© Ribble Rivers Trust 2021. Analysis carried out using data that is: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital; © Office for National Statistics licensed under the Open Government Licence v3.0. Contains OS data © Crown copyright and database right 2021. © Crown Copyright 2020.CaBA HEALTH & WELLBEING EVIDENCE BASEThis dataset forms part of the wider CaBA Health and Wellbeing Evidence Base.

  14. C

    Poverty Rate

    • data.ccrpc.org
    csv
    Updated Oct 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Champaign County Regional Planning Commission (2024). Poverty Rate [Dataset]. https://data.ccrpc.org/dataset/poverty-rate
    Explore at:
    csvAvailable download formats
    Dataset updated
    Oct 17, 2024
    Dataset authored and provided by
    Champaign County Regional Planning Commission
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Description

    This poverty rate data shows what percentage of the measured population* falls below the poverty line. Poverty is closely related to income: different “poverty thresholds” are in place for different sizes and types of household. A family or individual is considered to be below the poverty line if that family or individual’s income falls below their relevant poverty threshold. For more information on how poverty is measured by the U.S. Census Bureau (the source for this indicator’s data), visit the U.S. Census Bureau’s poverty webpage.

    The poverty rate is an important piece of information when evaluating an area’s economic health and well-being. The poverty rate can also be illustrative when considered in the contexts of other indicators and categories. As a piece of data, it is too important and too useful to omit from any indicator set.

    The poverty rate for all individuals in the measured population in Champaign County has hovered around roughly 20% since 2005. However, it reached its lowest rate in 2021 at 14.9%, and its second lowest rate in 2023 at 16.3%. Although the American Community Survey (ACS) data shows fluctuations between years, given their margins of error, none of the differences between consecutive years’ estimates are statistically significant, making it impossible to identify a trend.

    Poverty rate data was sourced from the U.S. Census Bureau’s American Community Survey 1-Year Estimates, which are released annually.

    As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.

    Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.

    For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Poverty Status in the Past 12 Months by Age.

    *According to the U.S. Census Bureau document “How Poverty is Calculated in the ACS," poverty status is calculated for everyone but those in the following groups: “people living in institutional group quarters (such as prisons or nursing homes), people in military barracks, people in college dormitories, living situations without conventional housing, and unrelated individuals under 15 years old."

    Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (17 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (25 September 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (16 September 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (8 June 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (8 June 2021).; U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (14 September 2017).; U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (19 September 2016).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).

  15. d

    August 2025 data-update for "Updated science-wide author databases of...

    • elsevier.digitalcommonsdata.com
    Updated Sep 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    John P.A. Ioannidis (2025). August 2025 data-update for "Updated science-wide author databases of standardized citation indicators" [Dataset]. http://doi.org/10.17632/btchxktzyw.8
    Explore at:
    Dataset updated
    Sep 19, 2025
    Authors
    John P.A. Ioannidis
    License

    Attribution-NonCommercial 3.0 (CC BY-NC 3.0)https://creativecommons.org/licenses/by-nc/3.0/
    License information was derived automatically

    Description

    Citation metrics are widely used and misused. We have created a publicly available database of top-cited scientists that provides standardized information on citations, h-index, co-authorship adjusted hm-index, citations to papers in different authorship positions and a composite indicator (c-score). Separate data are shown for career-long and, separately, for single recent year impact. Metrics with and without self-citations and ratio of citations to citing papers are given and data on retracted papers (based on Retraction Watch database) as well as citations to/from retracted papers have been added. Scientists are classified into 22 scientific fields and 174 sub-fields according to the standard Science-Metrix classification. Field- and subfield-specific percentiles are also provided for all scientists with at least 5 papers. Career-long data are updated to end-of-2024 and single recent year data pertain to citations received during calendar year 2024. The selection is based on the top 100,000 scientists by c-score (with and without self-citations) or a percentile rank of 2% or above in the sub-field. This version (7) is based on the August 1, 2025 snapshot from Scopus, updated to end of citation year 2024. This work uses Scopus data. Calculations were performed using all Scopus author profiles as of August 1, 2025. If an author is not on the list, it is simply because the composite indicator value was not high enough to appear on the list. It does not mean that the author does not do good work. PLEASE ALSO NOTE THAT THE DATABASE HAS BEEN PUBLISHED IN AN ARCHIVAL FORM AND WILL NOT BE CHANGED. The published version reflects Scopus author profiles at the time of calculation. We thus advise authors to ensure that their Scopus profiles are accurate. REQUESTS FOR CORRECIONS OF THE SCOPUS DATA (INCLUDING CORRECTIONS IN AFFILIATIONS) SHOULD NOT BE SENT TO US. They should be sent directly to Scopus, preferably by use of the Scopus to ORCID feedback wizard (https://orcid.scopusfeedback.com/) so that the correct data can be used in any future annual updates of the citation indicator databases. The c-score focuses on impact (citations) rather than productivity (number of publications) and it also incorporates information on co-authorship and author positions (single, first, last author). If you have additional questions, see attached file on FREQUENTLY ASKED QUESTIONS. Finally, we alert users that all citation metrics have limitations and their use should be tempered and judicious. For more reading, we refer to the Leiden manifesto: https://www.nature.com/articles/520429a

  16. i

    Richest Zip Codes in Virginia

    • incomebyzipcode.com
    Updated Dec 18, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cubit Planning, Inc. (2024). Richest Zip Codes in Virginia [Dataset]. https://www.incomebyzipcode.com/virginia
    Explore at:
    Dataset updated
    Dec 18, 2024
    Dataset authored and provided by
    Cubit Planning, Inc.
    License

    https://www.incomebyzipcode.com/terms#TERMShttps://www.incomebyzipcode.com/terms#TERMS

    Area covered
    Virginia
    Description

    A dataset listing the richest zip codes in Virginia per the most current US Census data, including information on rank and average income.

  17. T

    United States Unemployment Rate

    • tradingeconomics.com
    • pt.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Sep 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Unemployment Rate [Dataset]. https://tradingeconomics.com/united-states/unemployment-rate
    Explore at:
    excel, xml, csv, jsonAvailable download formats
    Dataset updated
    Sep 5, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1948 - Aug 31, 2025
    Area covered
    United States
    Description

    Unemployment Rate in the United States increased to 4.30 percent in August from 4.20 percent in July of 2025. This dataset provides the latest reported value for - United States Unemployment Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  18. T

    United States Corporate Profits

    • tradingeconomics.com
    • jp.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Sep 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Corporate Profits [Dataset]. https://tradingeconomics.com/united-states/corporate-profits
    Explore at:
    excel, xml, json, csvAvailable download formats
    Dataset updated
    Sep 25, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 31, 1947 - Jun 30, 2025
    Area covered
    United States
    Description

    Corporate Profits in the United States increased to 3259.41 USD Billion in the second quarter of 2025 from 3252.44 USD Billion in the first quarter of 2025. This dataset provides the latest reported value for - United States Corporate Profits - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  19. H

    Ci Technology DataSet

    • dataverse.harvard.edu
    Updated Feb 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Harte Hanks (2024). Ci Technology DataSet [Dataset]. http://doi.org/10.7910/DVN/WIYLEH
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 26, 2024
    Dataset provided by
    Harvard Dataverse
    Authors
    Harte Hanks
    License

    https://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.3/customlicense?persistentId=doi:10.7910/DVN/WIYLEHhttps://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.3/customlicense?persistentId=doi:10.7910/DVN/WIYLEH

    Description

    Originally published by Harte-Hanks, the CiTDS dataset is now produced by Aberdeen Group, a subsidiary of Spiceworks Ziff Davis (SWZD). It is also referred to as CiTDB (Computer Intelligence Technology Database). CiTDS provides data on digital investments of businesses across the globe. It includes two types of technology datasets: (i) hardware expenditures and (ii) product installs. Hardware expenditure data is constructed through a combination of surveys and modeling. A survey is administered to a number of companies and the data from surveys is used to develop a prediction model of expenditures as a function of firm characteristics. CiTDS uses this model to predict the expenditures of non-surveyed firms and reports them in the dataset. In contrast, CiTDS does not do any imputation for product install data, which comes entirely from web scraping and surveys. A confidence score between 1-3 is assigned to indicate how much the source of information can be trusted. A 3 corresponds to 90-100 percent install likelihood, 2 corresponds to 75-90 percent install likelihood and 1 corresponds to 65-75 percent install likelihood. CiTDS reports technology adoption at the site level with a unique DUNS identifier. One of these sites is identified as an “enterprise,” corresponding to the firm that owns the sites. Therefore, it is possible to analyze technology adoption both at the site (establishment) and enterprise (firm) levels. CiTDS sources the site population from Dun and Bradstreet every year and drops sites that are not relevant to their clients. Due to this sample selection, there is quite a bit of variation in the number of sites from year to year, where on average, 10-15 percent of sites enter and exit every year in the US data. This number is higher in the EU data. We observe similar turnover year-to-year in the products included in the dataset. Some products have become absolute, and some new products are added every year. There are two versions of the data: (i) version 3, which covers 2016-2020, and (ii) version 4, which covers 2020-2021. The quality of version 4 is significantly better regarding the information included about the technology products. In version 3, product categories have missing values, and they are abbreviated in a way that are sometimes difficult to interpret. Version 4 does not have any major issues. Since both versions of the data are available in 2020, CiTDS provides a crosswalk between the versions. This makes it possible to use information about products in Version 4 for the products in Version 3, with the caveats that there will be no crosswalk for the products that exist in 2016-2019 but not in 2020. Finally, special attention should be paid to data from 2016, where the coverage is significantly different from 2017. From 2017 onwards, coverage is more consistent. Years of Coverage: APac: 2019 - 2021 Canada: 2015 - 2021 EMEA: 2019 - 2021 Europe: 2015 - 2018 Latin America: 2015, 2019- 2021 United States: 2015 - 2021

  20. w

    Afrobarometer Survey 1 1999-2000, Merged 7 Country - Botswana, Lesotho,...

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Apr 27, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Institute for Democracy in South Africa (IDASA) (2021). Afrobarometer Survey 1 1999-2000, Merged 7 Country - Botswana, Lesotho, Malawi, Namibia, South Africa, Zambia, Zimbabwe [Dataset]. https://microdata.worldbank.org/index.php/catalog/889
    Explore at:
    Dataset updated
    Apr 27, 2021
    Dataset provided by
    Ghana Centre for Democratic Development (CDD-Ghana)
    Institute for Democracy in South Africa (IDASA)
    Michigan State University (MSU)
    Time period covered
    1999 - 2000
    Area covered
    Africa, Lesotho, Botswana, Namibia, Malawi, Zambia, Zimbabwe, South Africa
    Description

    Abstract

    Round 1 of the Afrobarometer survey was conducted from July 1999 through June 2001 in 12 African countries, to solicit public opinion on democracy, governance, markets, and national identity. The full 12 country dataset released was pieced together out of different projects, Round 1 of the Afrobarometer survey,the old Southern African Democracy Barometer, and similar surveys done in West and East Africa.

    The 7 country dataset is a subset of the Round 1 survey dataset, and consists of a combined dataset for the 7 Southern African countries surveyed with other African countries in Round 1, 1999-2000 (Botswana, Lesotho, Malawi, Namibia, South Africa, Zambia and Zimbabwe). It is a useful dataset because, in contrast to the full 12 country Round 1 dataset, all countries in this dataset were surveyed with the identical questionnaire

    Geographic coverage

    Botswana Lesotho Malawi Namibia South Africa Zambia Zimbabwe

    Analysis unit

    Basic units of analysis that the study investigates include: individuals and groups

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    A new sample has to be drawn for each round of Afrobarometer surveys. Whereas the standard sample size for Round 3 surveys will be 1200 cases, a larger sample size will be required in societies that are extremely heterogeneous (such as South Africa and Nigeria), where the sample size will be increased to 2400. Other adaptations may be necessary within some countries to account for the varying quality of the census data or the availability of census maps.

    The sample is designed as a representative cross-section of all citizens of voting age in a given country. The goal is to give every adult citizen an equal and known chance of selection for interview. We strive to reach this objective by (a) strictly applying random selection methods at every stage of sampling and by (b) applying sampling with probability proportionate to population size wherever possible. A randomly selected sample of 1200 cases allows inferences to national adult populations with a margin of sampling error of no more than plus or minus 2.5 percent with a confidence level of 95 percent. If the sample size is increased to 2400, the confidence interval shrinks to plus or minus 2 percent.

    Sample Universe

    The sample universe for Afrobarometer surveys includes all citizens of voting age within the country. In other words, we exclude anyone who is not a citizen and anyone who has not attained this age (usually 18 years) on the day of the survey. Also excluded are areas determined to be either inaccessible or not relevant to the study, such as those experiencing armed conflict or natural disasters, as well as national parks and game reserves. As a matter of practice, we have also excluded people living in institutionalized settings, such as students in dormitories and persons in prisons or nursing homes.

    What to do about areas experiencing political unrest? On the one hand we want to include them because they are politically important. On the other hand, we want to avoid stretching out the fieldwork over many months while we wait for the situation to settle down. It was agreed at the 2002 Cape Town Planning Workshop that it is difficult to come up with a general rule that will fit all imaginable circumstances. We will therefore make judgments on a case-by-case basis on whether or not to proceed with fieldwork or to exclude or substitute areas of conflict. National Partners are requested to consult Core Partners on any major delays, exclusions or substitutions of this sort.

    Sample Design

    The sample design is a clustered, stratified, multi-stage, area probability sample.

    To repeat the main sampling principle, the objective of the design is to give every sample element (i.e. adult citizen) an equal and known chance of being chosen for inclusion in the sample. We strive to reach this objective by (a) strictly applying random selection methods at every stage of sampling and by (b) applying sampling with probability proportionate to population size wherever possible.

    In a series of stages, geographically defined sampling units of decreasing size are selected. To ensure that the sample is representative, the probability of selection at various stages is adjusted as follows:

    The sample is stratified by key social characteristics in the population such as sub-national area (e.g. region/province) and residential locality (urban or rural). The area stratification reduces the likelihood that distinctive ethnic or language groups are left out of the sample. And the urban/rural stratification is a means to make sure that these localities are represented in their correct proportions. Wherever possible, and always in the first stage of sampling, random sampling is conducted with probability proportionate to population size (PPPS). The purpose is to guarantee that larger (i.e., more populated) geographical units have a proportionally greater probability of being chosen into the sample. The sampling design has four stages

    A first-stage to stratify and randomly select primary sampling units;

    A second-stage to randomly select sampling start-points;

    A third stage to randomly choose households;

    A final-stage involving the random selection of individual respondents

    We shall deal with each of these stages in turn.

    STAGE ONE: Selection of Primary Sampling Units (PSUs)

    The primary sampling units (PSU's) are the smallest, well-defined geographic units for which reliable population data are available. In most countries, these will be Census Enumeration Areas (or EAs). Most national census data and maps are broken down to the EA level. In the text that follows we will use the acronyms PSU and EA interchangeably because, when census data are employed, they refer to the same unit.

    We strongly recommend that NIs use official national census data as the sampling frame for Afrobarometer surveys. Where recent or reliable census data are not available, NIs are asked to inform the relevant Core Partner before they substitute any other demographic data. Where the census is out of date, NIs should consult a demographer to obtain the best possible estimates of population growth rates. These should be applied to the outdated census data in order to make projections of population figures for the year of the survey. It is important to bear in mind that population growth rates vary by area (region) and (especially) between rural and urban localities. Therefore, any projected census data should include adjustments to take such variations into account.

    Indeed, we urge NIs to establish collegial working relationships within professionals in the national census bureau, not only to obtain the most recent census data, projections, and maps, but to gain access to sampling expertise. NIs may even commission a census statistician to draw the sample to Afrobarometer specifications, provided that provision for this service has been made in the survey budget.

    Regardless of who draws the sample, the NIs should thoroughly acquaint themselves with the strengths and weaknesses of the available census data and the availability and quality of EA maps. The country and methodology reports should cite the exact census data used, its known shortcomings, if any, and any projections made from the data. At minimum, the NI must know the size of the population and the urban/rural population divide in each region in order to specify how to distribute population and PSU's in the first stage of sampling. National investigators should obtain this written data before they attempt to stratify the sample.

    Once this data is obtained, the sample population (either 1200 or 2400) should be stratified, first by area (region/province) and then by residential locality (urban or rural). In each case, the proportion of the sample in each locality in each region should be the same as its proportion in the national population as indicated by the updated census figures.

    Having stratified the sample, it is then possible to determine how many PSU's should be selected for the country as a whole, for each region, and for each urban or rural locality.

    The total number of PSU's to be selected for the whole country is determined by calculating the maximum degree of clustering of interviews one can accept in any PSU. Because PSUs (which are usually geographically small EAs) tend to be socially homogenous we do not want to select too many people in any one place. Thus, the Afrobarometer has established a standard of no more than 8 interviews per PSU. For a sample size of 1200, the sample must therefore contain 150 PSUs/EAs (1200 divided by 8). For a sample size of 2400, there must be 300 PSUs/EAs.

    These PSUs should then be allocated proportionally to the urban and rural localities within each regional stratum of the sample. Let's take a couple of examples from a country with a sample size of 1200. If the urban locality of Region X in this country constitutes 10 percent of the current national population, then the sample for this stratum should be 15 PSUs (calculated as 10 percent of 150 PSUs). If the rural population of Region Y constitutes 4 percent of the current national population, then the sample for this stratum should be 6 PSU's.

    The next step is to select particular PSUs/EAs using random methods. Using the above example of the rural localities in Region Y, let us say that you need to pick 6 sample EAs out of a census list that contains a total of 240 rural EAs in Region Y. But which 6? If the EAs created by the national census bureau are of equal or roughly equal population size, then selection is relatively straightforward. Just number all EAs consecutively, then make six selections using a table of random numbers. This procedure, known as simple random sampling (SRS), will

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Government of Canada, Statistics Canada (2024). High income tax filers in Canada [Dataset]. http://doi.org/10.25318/1110005501-eng
Organization logo

High income tax filers in Canada

1110005501

Explore at:
Dataset updated
Oct 28, 2024
Dataset provided by
Statistics Canadahttps://statcan.gc.ca/en
Area covered
Canada
Description

This table presents income shares, thresholds, tax shares, and total counts of individual Canadian tax filers, with a focus on high income individuals (95% income threshold, 99% threshold, etc.). Income thresholds are based on national threshold values, regardless of selected geography; for example, the number of Nova Scotians in the top 1% will be calculated as the number of taxfiling Nova Scotians whose total income exceeded the 99% national income threshold. Different definitions of income are available in the table namely market, total, and after-tax income, both with and without capital gains.

Search
Clear search
Close search
Google apps
Main menu