This dataset identifies health care spending at medical services such as hospitals, physicians, clinics, and nursing homes etc. as well as for medical products such as medicine, prescription glasses and hearing aids. This dataset pertains to personal health care spending in general. Other datasets in this series include Medicaid personal health care spending and Medicare personal health care spending.
https://www.icpsr.umich.edu/web/ICPSR/studies/36741/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/36741/terms
The State Health Expenditure Dataset was designed to better understand the impact of cost-effectiveness of public spending on public health. The collection includes approximately 1.9 million individual records, which were characterized into over 60,000 individual program categories. This data was provided by the US Census, and was collected from state budget offices across the country from 2000-2013. This dataset only encompasses state records that the Census had identified as functional code 32 (health - other) and code 27 (environmental health).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Proportion of Population Spending More Than 25% of Household Consumption or Income on Out-of-Pocket Health Care Expenditure: % data was reported at 0.781 % in 2013. This records a decrease from the previous number of 0.856 % for 2012. United States US: Proportion of Population Spending More Than 25% of Household Consumption or Income on Out-of-Pocket Health Care Expenditure: % data is updated yearly, averaging 0.880 % from Dec 1995 (Median) to 2013, with 18 observations. The data reached an all-time high of 1.078 % in 2000 and a record low of 0.724 % in 2008. United States US: Proportion of Population Spending More Than 25% of Household Consumption or Income on Out-of-Pocket Health Care Expenditure: % data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Poverty. Proportion of population spending more than 25% of household consumption or income on out-of-pocket health care expenditure, expressed as a percentage of a total population of a country; ; Wagstaff et al. Progress on catastrophic health spending: results for 133 countries. A retrospective observational study, Lancet Global Health 2017.; Weighted Average;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Out-of-Pocket Health Expenditure: % of Private Expenditure on Health data was reported at 21.365 % in 2014. This records a decrease from the previous number of 21.927 % for 2013. United States US: Out-of-Pocket Health Expenditure: % of Private Expenditure on Health data is updated yearly, averaging 23.966 % from Dec 1995 (Median) to 2014, with 20 observations. The data reached an all-time high of 26.623 % in 1998 and a record low of 21.365 % in 2014. United States US: Out-of-Pocket Health Expenditure: % of Private Expenditure on Health data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Health Statistics. Out of pocket expenditure is any direct outlay by households, including gratuities and in-kind payments, to health practitioners and suppliers of pharmaceuticals, therapeutic appliances, and other goods and services whose primary intent is to contribute to the restoration or enhancement of the health status of individuals or population groups. It is a part of private health expenditure.; ; World Health Organization Global Health Expenditure database (see http://apps.who.int/nha/database for the most recent updates).; Weighted average;
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
In the United States, Medicare is a single-payer, national social insurance program administered by the U.S. federal government since 1966. It provides health insurance for Americans aged 65 and older who have worked and paid into the system through the payroll tax. Source: https://en.wikipedia.org/wiki/Medicare_(United_States)
This public dataset was created by the Centers for Medicare & Medicaid Services. The data summarizes the utilization and payments for procedures, services, and prescription drugs provided to Medicare beneficiaries by specific inpatient and outpatient hospitals, physicians, and other suppliers. The dataset includes the following data.
Common inpatient and outpatient services All physician and other supplier procedures and services All Part D prescriptions. Providers determine what they will charge for items, services, and procedures provided to patients and these charges are the amount that providers bill for an item, service, or procedure.
Fork this kernel to get started.
https://bigquery.cloud.google.com/dataset/bigquery-public-data:medicare
https://cloud.google.com/bigquery/public-data/medicare
Dataset Source: Center for Medicare and Medicaid Services. This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy — and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
Banner Photo by @rawpixel from Unplash.
What is the total number of medications prescribed in each state?
What is the most prescribed medication in each state?
What is the average cost for inpatient and outpatient treatment in each city and state?
Which are the most common inpatient diagnostic conditions in the United States?
Which cities have the most number of cases for each diagnostic condition?
What are the average payments for these conditions in these cities and how do they compare to the national average?
By Health [source]
The Behavioral Risk Factor Surveillance System (BRFSS) offers an expansive collection of data on the health-related quality of life (HRQOL) from 1993 to 2010. Over this time period, the Health-Related Quality of Life dataset consists of a comprehensive survey reflecting the health and well-being of non-institutionalized US adults aged 18 years or older. The data collected can help track and identify unmet population health needs, recognize trends, identify disparities in healthcare, determine determinants of public health, inform decision making and policy development, as well as evaluate programs within public healthcare services.
The HRQOL surveillance system has developed a compact set of HRQOL measures such as a summary measure indicating unhealthy days which have been validated for population health surveillance purposes and have been widely implemented in practice since 1993. Within this study's dataset you will be able to access information such as year recorded, location abbreviations & descriptions, category & topic overviews, questions asked in surveys and much more detailed information including types & units regarding data values retrieved from respondents along with their sample sizes & geographical locations involved!
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset tracks the Health-Related Quality of Life (HRQOL) from 1993 to 2010 using data from the Behavioral Risk Factor Surveillance System (BRFSS). This dataset includes information on the year, location abbreviation, location description, type and unit of data value, sample size, category and topic of survey questions.
Using this dataset on BRFSS: HRQOL data between 1993-2010 will allow for a variety of analyses related to population health needs. The compact set of HRQOL measures can be used to identify trends in population health needs as well as determine disparities among various locations. Additionally, responses to survey questions can be used to inform decision making and program and policy development in public health initiatives.
- Analyzing trends in HRQOL over the years by location to identify disparities in health outcomes between different populations and develop targeted policy interventions.
- Developing new models for predicting HRQOL indicators at a regional level, and using this information to inform medical practice and public health implementation efforts.
- Using the data to understand differences between states in terms of their HRQOL scores and establish best practices for healthcare provision based on that understanding, including areas such as access to care, preventative care services availability, etc
If you use this dataset in your research, please credit the original authors. Data Source
See the dataset description for more information.
File: rows.csv | Column name | Description | |:-------------------------------|:----------------------------------------------------------| | Year | Year of survey. (Integer) | | LocationAbbr | Abbreviation of location. (String) | | LocationDesc | Description of location. (String) | | Category | Category of survey. (String) | | Topic | Topic of survey. (String) | | Question | Question asked in survey. (String) | | DataSource | Source of data. (String) | | Data_Value_Unit | Unit of data value. (String) | | Data_Value_Type | Type of data value. (String) | | Data_Value_Footnote_Symbol | Footnote symbol for data value. (String) | | Data_Value_Std_Err | Standard error of the data value. (Float) | | Sample_Size | Sample size used in sample. (Integer) | | Break_Out | Break out categories used. (String) | | Break_Out_Category | Type break out assessed. (String) | | **GeoLocation*...
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset contains detailed demographic and health-related information for individuals alongside their corresponding medical insurance charges. It includes features such as age, sex, BMI, number of children, smoking status, region, and total insurance cost. This dataset is covered from the USA.
The dataset is ideal for building and evaluating machine learning models that predict healthcare costs based on personal and lifestyle factors.
1. age: Age of the individual in years.
2. sex: Biological sex of the individual (male or female).
3. BMI: Body Mass Index — the numeric measure of body fat based on height and weight.
4. children: Number of dependent children covered by the insurance plan.
5. smoker: Smoking status of the individual (yes or no).
6. region: Geographic region of the individual within the United States (northeast, northwest, southeast, or southwest).
7. charges: Individual medical insurance cost billed by the insurer.
Format: CSV (Comma-Separated Values)
Data Volume: Rows: 1,338 records
7 Columns: age, sex, BMI, children, smoker, region, charges
File Size: Approximately 56 KB
This dataset is ideal for a variety of applications:
Medical Cost Prediction: Train regression models to estimate insurance charges based on demographic and lifestyle factors
Health Economics Research: Analyze how factors like smoking, BMI, and age impact healthcare costs.
United States: the dataset includes individuals from four regions: northeast, northwest, southeast, and southwest.
Time Range: The exact dates of data collection are not specified, but the data reflects typical insurance and demographic patterns observed in recent years.
Demographics: Includes a diverse range of individuals: Age Range: From 18 to 64 years old Gender: Male and female Lifestyle Factors: Smoking status and BMI Dependents: Number of children covered by the insurance
CC0
The Medical Expenditure Panel Survey Insurance Component (MEPS-IC) is an annual survey of private employers and State and local governments. The MEPS-IC produces national and State level estimates of employer-sponsored insurance, including offered plans, costs, employee eligibility, and number of enrollees. With the MEPS-IC Data Tools, users can interactively explore maps, trends, and cross-sectional bar charts for topics related to national and state-level employer-based health insurance for employer characteristics/offerings; employee take-up; premiums; contributions; and cost-sharing. The MEPS-IC is sponsored by the Agency for Healthcare Research and Quality and is fielded by the U.S. Census Bureau.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Health Expenditure: Private: % of GDP data was reported at 8.862 % in 2014. This records an increase from the previous number of 8.853 % for 2013. United States US: Health Expenditure: Private: % of GDP data is updated yearly, averaging 8.434 % from Dec 1995 (Median) to 2014, with 20 observations. The data reached an all-time high of 8.985 % in 2009 and a record low of 7.132 % in 1997. United States US: Health Expenditure: Private: % of GDP data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Health Statistics. Private health expenditure includes direct household (out-of-pocket) spending, private insurance, charitable donations, and direct service payments by private corporations.; ; World Health Organization Global Health Expenditure database (see http://apps.who.int/nha/database for the most recent updates).; Weighted average;
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The size of the Healthcare Data Industry market was valued at USD XX Million in 2023 and is projected to reach USD XXX Million by 2032, with an expected CAGR of 16.20% during the forecast period. Data in healthcare signifies all the information that is created or gathered in the healthcare industry. These include patient records, electronic health records, genomic data, health insurance claims, medical images, and all other clinical trial data. All this stands at the back of modern healthcare and could support many critical applications. First and foremost, health data improves patient care. Pattern analysis for patient records is simplified by health care providers in ensuring accurate disease diagnosis and application of personalized treatment plans. Medical field images, such as X-rays and MRIs, are helpful in finding abnormalities and useful in surgical methods. Genomic data insights comprise susceptibility from a genetic view point, which therefore enables coming up with a customised treatment plan for diseases such as cancer. Then, the health information data is very crucial in conducting research and developing new medical knowledge. Researchers analyze epidemiology of diseases by adopting massive datasets, manufacture new drugs and treatments, and analyze effectiveness of health care programs by such datasets. For instance, the medical trials dataset helps in the development of evidence about the safety and efficiency of new treatment options. The health insurance claims dataset can help assess healthcare utilization patterns so as to identify areas in need of improvement. Therefore, health care data also enables administrative and operational functions of health care organizations. EHRs allow easy maintenance of the patient data, enable sound communications among healthcare providers, and minimize errors. Apart from this, analytics on health insurance claims are performed to make possible billing and reimbursement services to ensure the payment of the healthcare provider in the right amount of their rendered service. Further, analytics data could be used for optimization of resource utilization, in identifying potential cost savings, and making health care organizations efficient as a whole. Healthcare information is one of those precious assets that propel innovation, promote better patient outcomes, and support the coherent functioning of the healthcare system. Therefore, improving the quality and efficiency in which care delivery is offered can be achieved through the effective use of healthcare information by healthcare providers, researchers, and administrators for a better state of health among individuals and communities. Recent developments include: March 2022: Microsoft launched Azure Health Data Services in the United States. It is a platform as a service (PAAS) offering designed exclusively to support protected health information (PHI) in the cloud., March 2022: The government of Thailand launched a big data portal for healthcare facilities. The National Reforms Committee on Public Health recently joined hands with 12 government agencies to improve the quality of healthcare services by implementing digital technologies.. Key drivers for this market are: Increase in Demand for Analytics Solutions for Population Health Management, Rise in Need for Business Intelligence to Optimize Health Administration and Strategy; Surge in Adoption of Big Data in the Healthcare Industry. Potential restraints include: Security Concerns Related to Sensitive Patients Medical Data, High Cost of Implementation and Deployment. Notable trends are: Cloud Segment is Expected to Register a High Growth Rate Over the Forecast Period.
The HCUP Summary Trend Tables include monthly information on hospital utilization derived from the HCUP State Inpatient Databases (SID) and HCUP State Emergency Department Databases (SEDD). Information on emergency department (ED) utilization is dependent on availability of HCUP data; not all HCUP Partners participate in the SEDD.
The HCUP Summary Trend Tables include downloadable Microsoft® Excel tables with information on the following topics:
United Healthcare Transparency in Coverage Dataset
Unlock the power of healthcare pricing transparency with our comprehensive United Healthcare Transparency in Coverage dataset. This invaluable resource provides unparalleled insights into healthcare costs, enabling data-driven decision-making for insurers, employers, researchers, and policymakers.
Key Features:
Detailed Data Points:
For each of the 76,000 employers, the dataset includes: 1. In-network negotiated rates for covered items and services 2. Historical out-of-network allowed amounts and billed charges 3. Cost-sharing information for specific items and services 4. Pricing data for medical procedures and services across providers, plans, and employers
Use Cases
For Insurers: - Benchmark your rates against competitors - Optimize network design and provider contracting - Develop more competitive and cost-effective insurance products
For Employers: - Make informed decisions about health plan offerings - Negotiate better rates with insurers and providers - Implement cost-saving strategies for employee healthcare
For Researchers: - Conduct in-depth studies on healthcare pricing variations - Analyze the impact of policy changes on healthcare costs - Investigate regional differences in healthcare pricing
For Policymakers: - Develop evidence-based healthcare policies - Monitor the effectiveness of price transparency initiatives - Identify areas for potential cost-saving interventions
Data Delivery
Our flexible data delivery options ensure you receive the information you need in the most convenient format:
Why Choose Our Dataset?
Harness the power of healthcare pricing transparency to drive your business forward. Contact us today to discuss how our United Healthcare Transparency in Coverage dataset can meet your specific needs and unlock valuable insights for your organization.
The Global Health Expenditure Database (GHED) provides internationally comparable data on health spending for close to 190 countries. The database is open access and supports the goal of Universal Health Coverage by helping monitor the availability of resources for health and the extent to which they are used efficiently and equitably. This, in turn, helps ensure health services are available and affordable when people need them...WHO works collaboratively with Member States and updates the database annually using available data such as government budgets and health accounts studies. Where necessary, modifications and estimates are made to ensure the comprehensiveness and consistency of the data across countries and years. GHED is the source of the health expenditure data republished by the World Bank and the WHO Global Health Observatory. (from website)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Health Expenditure: Public: % of Total Health Expenditure data was reported at 48.297 % in 2014. This records an increase from the previous number of 47.610 % for 2013. United States US: Health Expenditure: Public: % of Total Health Expenditure data is updated yearly, averaging 45.073 % from Dec 1995 (Median) to 2014, with 20 observations. The data reached an all-time high of 48.297 % in 2014 and a record low of 43.215 % in 1999. United States US: Health Expenditure: Public: % of Total Health Expenditure data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Health Statistics. Public health expenditure consists of recurrent and capital spending from government (central and local) budgets, external borrowings and grants (including donations from international agencies and nongovernmental organizations), and social (or compulsory) health insurance funds. Total health expenditure is the sum of public and private health expenditure. It covers the provision of health services (preventive and curative), family planning activities, nutrition activities, and emergency aid designated for health but does not include provision of water and sanitation.; ; World Health Organization Global Health Expenditure database (see http://apps.who.int/nha/database for the most recent updates).; Weighted average;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about countries per year in the United States. It has 64 rows. It features 4 columns: country, region, and health expenditure.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Personal Spending in the United States increased 0.20 percent in April of 2025 over the previous month. This dataset provides the latest reported value for - United States Personal Spending - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Health Expenditure per Capita data was reported at 9,402.537 USD in 2014. This records an increase from the previous number of 8,987.901 USD for 2013. United States US: Health Expenditure per Capita data is updated yearly, averaging 6,555.232 USD from Dec 1995 (Median) to 2014, with 20 observations. The data reached an all-time high of 9,402.537 USD in 2014 and a record low of 3,788.310 USD in 1995. United States US: Health Expenditure per Capita data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Health Statistics. Total health expenditure is the sum of public and private health expenditures as a ratio of total population. It covers the provision of health services (preventive and curative), family planning activities, nutrition activities, and emergency aid designated for health but does not include provision of water and sanitation. Data are in current U.S. dollars.; ; World Health Organization Global Health Expenditure database (see http://apps.who.int/nha/database for the most recent updates).; Weighted average;
Health, United States is the report on the health status of the country. Every year, the report presents an overview of national health trends organized around four subject areas: health status and determinants, utilization of health resources, health care resources, and health care expenditures and payers.
The Medicare Part D by Drug dataset presents information on spending for drugs prescribed to Medicare beneficiaries enrolled in Part D by physicians and other healthcare providers. Drugs prescribed in the Medicare Part D program are drugs patients generally administer themselves.
The dataset focuses on average spending per dosage unit and change in average spending per dosage unit over time. It also includes spending information for manufacturer(s) of the drugs as well as consumer-friendly information of drug uses and clinical indications.
Drug spending metrics for Part D drugs are based on the gross drug cost, which represents total spending for the prescription claim, including Medicare, plan, and beneficiary payments. The Part D spending metrics do not reflect any manufacturers’ rebates or other price concessions as CMS is prohibited from publicly disclosing such information.
The Medicaid by Drug dataset presents information on spending for covered outpatient drugs prescribed to beneficiaries enrolled in Medicaid by physicians and other healthcare professionals. The dataset focuses on average spending per dosage unit and change in average spending per dosage unit over time. Units refer to the drug unit in the lowest dispensable amount. It also includes spending information for manufacturer(s) of the drugs as well as consumer-friendly information of drug uses and clinical indications. Drug spending metrics for Medicaid represent the total amount reimbursed by both Medicaid and non-Medicaid entities to pharmacies for the drug. Medicaid drug spending contains both the Federal and State reimbursement and is inclusive of any applicable dispensing fees. In addition, this total is not reduced or affected by Medicaid rebates paid to the states.
This dataset identifies health care spending at medical services such as hospitals, physicians, clinics, and nursing homes etc. as well as for medical products such as medicine, prescription glasses and hearing aids. This dataset pertains to personal health care spending in general. Other datasets in this series include Medicaid personal health care spending and Medicare personal health care spending.