In the United States, city governments provide many services: they run public school districts, administer certain welfare and health programs, build roads and manage airports, provide police and fire protection, inspect buildings, and often run water and utility systems. Cities also get revenues through certain local taxes, various fees and permit costs, sale of property, and through the fees they charge for the utilities they run.
It would be interesting to compare all these expenses and revenues across cities and over time, but also quite difficult. Cities share many of these service responsibilities with other government agencies: in one particular city, some roads may be maintained by the state government, some law enforcement provided by the county sheriff, some schools run by independent school districts with their own tax revenue, and some utilities run by special independent utility districts. These governmental structures vary greatly by state and by individual city. It would be hard to make a fair comparison without taking into account all these differences.
This dataset takes into account all those differences. The Lincoln Institute of Land Policy produces what they call “Fiscally Standardized Cities” (FiSCs), aggregating all services provided to city residents regardless of how they may be divided up by different government agencies and jurisdictions. Using this, we can study city expenses and revenues, and how the proportions of different costs vary over time.
The dataset tracks over 200 American cities between 1977 and 2020. Each row represents one city for one year. Revenue and expenditures are broken down into more than 120 categories.
Values are available for FiSCs and also for the entities that make it up: the city, the county, independent school districts, and any special districts, such as utility districts. There are hence five versions of each variable, with suffixes indicating the entity. For example, taxes gives the FiSC’s tax revenue, while taxes_city, taxes_cnty, taxes_schl, and taxes_spec break it down for the city, county, school districts, and special districts.
The values are organized hierarchically. For example, taxes is the sum of tax_property (property taxes), tax_sales_general (sales taxes), tax_income (income tax), and tax_other (other taxes). And tax_income is itself the sum of tax_income_indiv (individual income tax) and tax_income_corp (corporate income tax) subcategories.
The revenue and expenses variables are described in this detailed table. Further documentation is available on the FiSC Database website, linked in References below.
All monetary data is already adjusted for inflation, and is given in terms of 2020 US dollars per capita. The Consumer Price Index is provided for each year if you prefer to use numbers not adjusted for inflation, scaled so that 2020 is 1; simply divide each value by the CPI to get the value in that year’s nominal dollars. The total population is also provided if you want total values instead of per-capita values.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Government Revenues in Canada decreased to 44977 CAD Million in March from 51247 CAD Million in February of 2025. This dataset provides - Canada Government Revenues- actual values, historical data, forecast, chart, statistics, economic calendar and news.
This summary table shows, for Budget Receipts, the total amount of activity for the current month, the current fiscal year-to-date, the comparable prior period year-to-date and the budgeted amount estimated for the current fiscal year for various types of receipts (i.e. individual income tax, corporate income tax, etc.). The Budget Outlays section of the table shows the total amount of activity for the current month, the current fiscal year-to-date, the comparable prior period year-to-date and the budgeted amount estimated for the current fiscal year for functions of the federal government. The table also shows the amounts for the budget/surplus deficit categorized as listed above. This table includes total and subtotal rows that should be excluded when aggregating data. Some rows represent elements of the dataset's hierarchy, but are not assigned values. The classification_id for each of these elements can be used as the parent_id for underlying data elements to calculate their implied values. Subtotal rows are available to access this same information.
Progress Needed on Identifying Expenditures, Building and Utilizing a Data Infrastructure, and Reducing Duplicative Efforts The federal government collects, maintains, and uses geospatial information—data linked to specific geographic locations—to help support varied missions, including national security and natural resources conservation. To coordinate geospatial activities, in 1994 the President issued an executive order to develop a National Spatial Data Infrastructure—a framework for coordination that includes standards, data themes, and a clearinghouse. GAO was asked to review federal and state coordination of geospatial data. GAO’s objectives were to (1) describe the geospatial data that selected federal agencies and states use and how much is spent on geospatial data; (2) assess progress in establishing the National Spatial Data Infrastructure; and (3) determine whether selected federal agencies and states invest in duplicative geospatial data. To do so, GAO identified federal and state uses of geospatial data; evaluated available cost data from 2013 to 2015; assessed FGDC’s and selected agencies’ efforts to establish the infrastructure; and analyzed federal and state datasets to identify duplication. What GAO Found Federal agencies and state governments use a variety of geospatial datasets to support their missions. For example, after Hurricane Sandy in 2012, the Federal Emergency Management Agency used geospatial data to identify 44,000 households that were damaged and inaccessible and reported that, as a result, it was able to provide expedited assistance to area residents. Federal agencies report spending billions of dollars on geospatial investments; however, the estimates are understated because agencies do not always track geospatial investments. For example, these estimates do not include billions of dollars spent on earth-observing satellites that produce volumes of geospatial data. The Federal Geographic Data Committee (FGDC) and the Office of Management and Budget (OMB) have started an initiative to have agencies identify and report annually on geospatial-related investments as part of the fiscal year 2017 budget process. FGDC and selected federal agencies have made progress in implementing their responsibilities for the National Spatial Data Infrastructure as outlined in OMB guidance; however, critical items remain incomplete. For example, the committee established a clearinghouse for records on geospatial data, but the clearinghouse lacks an effective search capability and performance monitoring. FGDC also initiated plans and activities for coordinating with state governments on the collection of geospatial data; however, state officials GAO contacted are generally not satisfied with the committee’s efforts to coordinate with them. Among other reasons, they feel that the committee is focused on a federal perspective rather than a national one, and that state recommendations are often ignored. In addition, selected agencies have made limited progress in their own strategic planning efforts and in using the clearinghouse to register their data to ensure they do not invest in duplicative data. For example, 8 of the committee’s 32 member agencies have begun to register their data on the clearinghouse, and they have registered 59 percent of the geospatial data they deemed critical. Part of the reason that agencies are not fulfilling their responsibilities is that OMB has not made it a priority to oversee these efforts. Until OMB ensures that FGDC and federal agencies fully implement their responsibilities, the vision of improving the coordination of geospatial information and reducing duplicative investments will not be fully realized. OMB guidance calls for agencies to eliminate duplication, avoid redundant expenditures, and improve the efficiency and effectiveness of the sharing and dissemination of geospatial data. However, some data are collected multiple times by federal, state, and local entities, resulting in duplication in effort and resources. A new initiative to create a national address database could potentially result in significant savings for federal, state, and local governments. However, agencies face challenges in effectively coordinating address data collection efforts, including statutory restrictions on sharing certain federal address data. Until there is effective coordination across the National Spatial Data Infrastructure, there will continue to be duplicative efforts to obtain and maintain these data at every level of government.https://www.gao.gov/assets/d15193.pdfWhat GAO Recommends GAO suggests that Congress consider assessing statutory limitations on address data to foster progress toward a national address database. GAO also recommends that OMB improve its oversight of FGDC and federal agency initiatives, and that FGDC and selected agencies fully implement initiatives. The agencies generally agreed with the recommendations and identified plans to implement them.
This data package includes the underlying data to replicate the charts, tables, and calculations presented in The US Revenue Implications of President Trump’s 2025 Tariffs, PIIE Briefing 25-2.
If you use the data, please cite as:
McKibbin, Warwick, and Geoffrey Shuetrim. 2025. The US Revenue Implications of President Trump’s 2025 Tariffs. PIIE Briefing 25-2. Washington: Peterson Institute for International Economics.
Contains:World HillshadeWorld Street Map (with Relief) - Base LayerLarge Scale International Boundaries (v11.3)World Street Map (with Relief) - LabelsDoS Country Labels DoS Country LabelsCountry (admin 0) labels that have been vetted for compliance with foreign policy and legal requirements. These labels are part of the US Federal Government Basemap, which contains the borders and place names that have been vetted for compliance with foreign policy and legal requirements.Source: DoS Country Labels - Overview (arcgis.com)Large Scale International BoundariesVersion 11.3Release Date: December 19, 2023DownloadFor more information on the LSIB click here: https://geodata.state.gov/ A direct link to the data is available here: https://data.geodata.state.gov/LSIB.zipAn ISO-compliant version of the LSIB metadata (in ISO 19139 format) is here: https://geodata.state.gov/geonetwork/srv/eng/catalog.search#/metadata/3bdb81a0-c1b9-439a-a0b1-85dac30c59b2 Direct inquiries to internationalboundaries@state.govOverviewThe Office of the Geographer and Global Issues at the U.S. Department of State produces the Large Scale International Boundaries (LSIB) dataset. The current edition is version 11.3 (published 19 December 2023). The 11.3 release contains updates to boundary lines and data refinements enabling reuse of the dataset. These data and generalized derivatives are the only international boundary lines approved for U.S. Government use. The contents of this dataset reflect U.S. Government policy on international boundary alignment, political recognition, and dispute status. They do not necessarily reflect de facto limits of control.National Geospatial Data AssetThis dataset is a National Geospatial Data Asset managed by the Department of State on behalf of the Federal Geographic Data Committee's International Boundaries Theme.DetailsSources for these data include treaties, relevant maps, and data from boundary commissions and national mapping agencies. Where available and applicable, the dataset incorporates information from courts, tribunals, and international arbitrations. The research and recovery process involves analysis of satellite imagery and elevation data. Due to the limitations of source materials and processing techniques, most lines are within 100 meters of their true position on the ground.Attribute StructureThe dataset uses thefollowing attributes:Attribute NameCC1COUNTRY1CC2COUNTRY2RANKSTATUSLABELNOTES These attributes are logically linked:Linked AttributesCC1COUNTRY1CC2COUNTRY2RANKSTATUS These attributes have external sources:Attribute NameExternal Data SourceCC1GENCCOUNTRY1DoS ListsCC2GENCCOUNTRY2DoS ListsThe eight attributes listed above describe the boundary lines contained within the LSIB dataset in both a human and machine-readable fashion. Other attributes in the release include "FID", "Shape", and "Shape_Leng" are components of the shapefile format and do not form an intrinsic part of the LSIB."CC1" and "CC2" fields are machine readable fields which contain political entity codes. These codes are derived from the Geopolitical Entities, Names, and Codes Standard (GENC) Edition 3 Update 18. The dataset uses the GENC two-character codes. The code ‘Q2’, which is not in GENC, denotes a line in the LSIB representing a boundary associated with an area not contained within the GENC standard.The "COUNTRY1" and "COUNTRY2" fields contain human-readable text corresponding to the name of the political entity. These names are names approved by the U.S. Board on Geographic Names (BGN) as incorporated in the list of Independent States in the World and the list of Dependencies and Areas of Special Sovereignty maintained by the Department of State. To ensure the greatest compatibility, names are presented without diacritics and certain names are rendered using commonly accepted cartographic abbreviations. Names for lines associated with the code ‘Q2’ are descriptive and are not necessarily BGN-approved. Names rendered in all CAPITAL LETTERS are names of independent states. Other names are those associated with dependencies, areas of special sovereignty, or are otherwise presented for the convenience of the user.The following fields are an intrinsic part of the LSIB dataset and do not rely on external sources:Attribute NameMandatoryContains NullsRANKYesNoSTATUSYesNoLABELNoYesNOTESNoYesNeither the "RANK" nor "STATUS" field contains null values; the "LABEL" and "NOTES" fields do.The "RANK" field is a numeric, machine-readable expression of the "STATUS" field. Collectively, these fields encode the views of the United States Government on the political status of the boundary line.Attribute NameValueRANK123STATUSInternational BoundaryOther Line of International Separation Special Line A value of "1" in the "RANK" field corresponds to an "International Boundary" value in the "STATUS" field. Values of "2" and "3" correspond to "Other Line of International Separation" and "Special Line", respectively.The "LABEL" field contains required text necessarily to describe the line segment. The "LABEL" field is used when the line segment is displayed on maps or other forms of cartographic visualizations. This includes most interactive products. The requirement to incorporate the contents of the "LABEL" field on these products is scale dependent. If a label is legible at the scale of a given static product a proper use of this dataset would encourage the application of that label. Using the contents of the "COUNTRY1" and "COUNTRY2" fields in the generation of a line segment label is not required. The "STATUS" field is not a line labeling field but does contain the preferred description for the three LSIB line types when lines are incorporated into a map legend. Using the "CC1", "CC2", or "RANK" fields for labeling purposes is prohibited.The "NOTES" field contains an explanation of any applicable special circumstances modifying the lines. This information can pertain to the origins of the boundary lines, any limitations regarding the purpose of the lines, or the original source of the line. Use of the "NOTES" field for labeling purposes is prohibited.External Data SourcesGeopolitical Entities, Names, and Codes Registry: https://nsgreg.nga.mil/GENC-overview.jspU.S. Department of State List of Independent States in the World: https://www.state.gov/independent-states-in-the-world/U.S. Department of State List of Dependencies and Areas of Special Sovereignty: https://www.state.gov/dependencies-and-areas-of-special-sovereignty/The source for the U.S.—Canada international boundary (NGDAID97) is the International Boundary Commission: https://www.internationalboundarycommission.org/en/maps-coordinates/coordinates.phpThe source for the “International Boundary between the United States of America and the United States of Mexico” (NGDAID82) is the International Boundary and Water Commission: https://catalog.data.gov/dataset?q=usibwcCartographic UsageCartographic usage of the LSIB requires a visual differentiation between the three categories of boundaries. Specifically, this differentiation must be between:- International Boundaries (Rank 1);- Other Lines of International Separation (Rank 2); and- Special Lines (Rank 3).Rank 1 lines must be the most visually prominent. Rank 2 lines must be less visually prominent than Rank 1 lines. Rank 3 lines must be shown in a manner visually subordinate to Ranks 1 and 2. Where scale permits, Rank 2 and 3 lines must be labeled in accordance with the “Label” field. Data marked with a Rank 2 or 3 designation does not necessarily correspond to a disputed boundary.Additional cartographic information can be found in Guidance Bulletins (https://hiu.state.gov/data/cartographic_guidance_bulletins/) published by the Office of the Geographer and Global Issues.ContactDirect inquiries to internationalboundaries@state.gov.CreditsThe lines in the LSIB dataset are the product of decades of collaboration between geographers at the Department of State and the National Geospatial-Intelligence Agency with contributions from the Central Intelligence Agency and the UK Defence Geographic Centre.Attribution is welcome: U.S. Department of State, Office of the Geographer and Global Issues.Changes from Prior ReleaseThe 11.3 release is the third update in the version 11 series.This version of the LSIB contains changes and accuracy refinements for the following line segments. These changes reflect improvements in spatial accuracy derived from newly available source materials, an ongoing review process, or the publication of new treaties or agreements. Notable changes to lines include:• AFGHANISTAN / IRAN• ALBANIA / GREECE• ALBANIA / KOSOVO• ALBANIA/MONTENEGRO• ALBANIA / NORTH MACEDONIA• ALGERIA / MOROCCO• ARGENTINA / BOLIVIA• ARGENTINA / CHILE• BELARUS / POLAND• BOLIVIA / PARAGUAY• BRAZIL / GUYANA• BRAZIL / VENEZUELA• BRAZIL / French Guiana (FR.)• BRAZIL / SURINAME• CAMBODIA / LAOS• CAMBODIA / VIETNAM• CAMEROON / CHAD• CAMEROON / NIGERIA• CHINA / INDIA• CHINA / NORTH KOREA• CHINA / Aksai Chin• COLOMBIA / VENEZUELA• CONGO, DEM. REP. OF THE / UGANDA• CZECHIA / GERMANY• EGYPT / LIBYA• ESTONIA / RUSSIA• French Guiana (FR.) / SURINAME• GREECE / NORTH MACEDONIA• GUYANA / VENEZUELA• INDIA / Aksai Chin• KAZAKHSTAN / RUSSIA• KOSOVO / MONTENEGRO• KOSOVO / SERBIA• LAOS / VIETNAM• LATVIA / LITHUANIA• MEXICO / UNITED STATES• MONTENEGRO / SERBIA• MOROCCO / SPAIN• POLAND / RUSSIA• ROMANIA / UKRAINEVersions 11.0 and 11.1 were updates to boundary lines. Like this version, they also contained topology fixes, land boundary terminus refinements, and tripoint adjustments. Version 11.2 corrected a few errors in the attribute data and ensured that CC1 and CC2 attributes are in alignment with an updated version of the Geopolitical Entities, Names, and Codes (GENC) Standard, specifically Edition 3 Update 17.LayersLarge_Scale_International_BoundariesTerms of
On 1 April 2025 responsibility for fire and rescue transferred from the Home Office to the Ministry of Housing, Communities and Local Government.
This information covers fires, false alarms and other incidents attended by fire crews, and the statistics include the numbers of incidents, fires, fatalities and casualties as well as information on response times to fires. The Ministry of Housing, Communities and Local Government (MHCLG) also collect information on the workforce, fire prevention work, health and safety and firefighter pensions. All data tables on fire statistics are below.
MHCLG has responsibility for fire services in England. The vast majority of data tables produced by the Ministry of Housing, Communities and Local Government are for England but some (0101, 0103, 0201, 0501, 1401) tables are for Great Britain split by nation. In the past the Department for Communities and Local Government (who previously had responsibility for fire services in England) produced data tables for Great Britain and at times the UK. Similar information for devolved administrations are available at https://www.firescotland.gov.uk/about/statistics/" class="govuk-link">Scotland: Fire and Rescue Statistics, https://statswales.gov.wales/Catalogue/Community-Safety-and-Social-Inclusion/Community-Safety" class="govuk-link">Wales: Community safety and https://www.nifrs.org/home/about-us/publications/" class="govuk-link">Northern Ireland: Fire and Rescue Statistics.
If you use assistive technology (for example, a screen reader) and need a version of any of these documents in a more accessible format, please email alternativeformats@homeoffice.gov.uk. Please tell us what format you need. It will help us if you say what assistive technology you use.
Fire statistics guidance
Fire statistics incident level datasets
https://assets.publishing.service.gov.uk/media/67fe79e3393a986ec5cf8dbe/FIRE0101.xlsx">FIRE0101: Incidents attended by fire and rescue services by nation and population (MS Excel Spreadsheet, 126 KB) Previous FIRE0101 tables
https://assets.publishing.service.gov.uk/media/67fe79fbed87b81608546745/FIRE0102.xlsx">FIRE0102: Incidents attended by fire and rescue services in England, by incident type and fire and rescue authority (MS Excel Spreadsheet, 1.56 MB) Previous FIRE0102 tables
https://assets.publishing.service.gov.uk/media/67fe7a20694d57c6b1cf8db0/FIRE0103.xlsx">FIRE0103: Fires attended by fire and rescue services by nation and population (MS Excel Spreadsheet, 156 KB) Previous FIRE0103 tables
https://assets.publishing.service.gov.uk/media/67fe7a40ed87b81608546746/FIRE0104.xlsx">FIRE0104: Fire false alarms by reason for false alarm, England (MS Excel Spreadsheet, 331 KB) Previous FIRE0104 tables
https://assets.publishing.service.gov.uk/media/67fe7a5f393a986ec5cf8dc0/FIRE0201.xlsx">FIRE0201: Dwelling fires attended by fire and rescue services by motive, population and nation (MS Excel Spreadsheet, <span class="gem-c-attachm
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
There are a number of Kaggle datasets that provide spatial data around New York City. For many of these, it may be quite interesting to relate the data to the demographic and economic characteristics of nearby neighborhoods. I hope this data set will allow for making these comparisons without too much difficulty.
Exploring the data and making maps could be quite interesting as well.
This dataset contains two CSV files:
nyc_census_tracts.csv
This file contains a selection of census data taken from the ACS DP03 and DP05 tables. Things like total population, racial/ethnic demographic information, employment and commuting characteristics, and more are contained here. There is a great deal of additional data in the raw tables retrieved from the US Census Bureau website, so I could easily add more fields if there is enough interest.
I obtained data for individual census tracts, which typically contain several thousand residents.
census_block_loc.csv
For this file, I used an online FCC census block lookup tool to retrieve the census block code for a 200 x 200 grid containing
New York City and a bit of the surrounding area. This file contains the coordinates and associated census block codes along
with the state and county names to make things a bit more readable to users.
Each census tract is split into a number of blocks, so one must extract the census tract code from the block code.
The data here was taken from the American Community Survey 2015 5-year estimates (https://factfinder.census.gov/faces/nav/jsf/pages/index.xhtml).
The census block coordinate data was taken from the FCC Census Block Conversions API (https://www.fcc.gov/general/census-block-conversions-api)
As public data from the US government, this is not subject to copyright within the US and should be considered public domain.
About Data.gov.au is the central source of Australian open government data. Anyone can access the public data published by federal, state and local government agencies. Data.gov.au are not responsible for creating, maintaining and updating these published datasets. Agencies are the custodians of the data they collect, and they make decisions about how it can be shared safely. They are often guided by legislation and policy requirements that can define what and how data can be shared. This data is a national resource that holds considerable value for growing the economy, improving service delivery and transforming policy outcomes. In addition to government data, you can also find publicly-funded research data and datasets from private institutions that are in the public interest. The federal government's Data and Digital Government Strategy requires all government agencies to make non-sensitive data open by default.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Government Revenues in Australia increased to 65502 AUD Million in April from 60208 AUD Million in March of 2025. This dataset provides - Australia Government Revenues- actual values, historical data, forecast, chart, statistics, economic calendar and news.
Our Price Paid Data includes information on all property sales in England and Wales that are sold for value and are lodged with us for registration.
Get up to date with the permitted use of our Price Paid Data:
check what to consider when using or publishing our Price Paid Data
If you use or publish our Price Paid Data, you must add the following attribution statement:
Contains HM Land Registry data © Crown copyright and database right 2021. This data is licensed under the Open Government Licence v3.0.
Price Paid Data is released under the http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/" class="govuk-link">Open Government Licence (OGL). You need to make sure you understand the terms of the OGL before using the data.
Under the OGL, HM Land Registry permits you to use the Price Paid Data for commercial or non-commercial purposes. However, OGL does not cover the use of third party rights, which we are not authorised to license.
Price Paid Data contains address data processed against Ordnance Survey’s AddressBase Premium product, which incorporates Royal Mail’s PAF® database (Address Data). Royal Mail and Ordnance Survey permit your use of Address Data in the Price Paid Data:
If you want to use the Address Data in any other way, you must contact Royal Mail. Email address.management@royalmail.com.
The following fields comprise the address data included in Price Paid Data:
The April 2025 release includes:
As we will be adding to the April data in future releases, we would not recommend using it in isolation as an indication of market or HM Land Registry activity. When the full dataset is viewed alongside the data we’ve previously published, it adds to the overall picture of market activity.
Your use of Price Paid Data is governed by conditions and by downloading the data you are agreeing to those conditions.
Google Chrome (Chrome 88 onwards) is blocking downloads of our Price Paid Data. Please use another internet browser while we resolve this issue. We apologise for any inconvenience caused.
We update the data on the 20th working day of each month. You can download the:
These include standard and additional price paid data transactions received at HM Land Registry from 1 January 1995 to the most current monthly data.
Your use of Price Paid Data is governed by conditions and by downloading the data you are agreeing to those conditions.
The data is updated monthly and the average size of this file is 3.7 GB, you can download:
The broad panel dataset consists of outcome measures such as popular support for the Afghan government, support from anti-government elements, community cohesion, health access and economic well-being of the Afghan people.
This data set provides supply chain health commodity shipment and pricing data. Specifically, the data set identifies Antiretroviral (ARV) and HIV lab shipments to supported countries. In addition, the data set provides the commodity pricing and associated supply chain expenses necessary to move the commodities to countries for use. The dataset has similar fields to the Global Fund's Price, Quality and Reporting (PQR) data. PEPFAR and the Global Fund represent the two largest procurers of HIV health commodities. This dataset, when analyzed in conjunction with the PQR data, provides a more complete picture of global spending on specific health commodities. The data are particularly valuable for understanding ranges and trends in pricing as well as volumes delivered by country. The US Government believes this data will help stakeholders make better, data-driven decisions. Care should be taken to consider contextual factors when using the database. Conclusions related to costs associated with moving specific line items or products to specific countries and lead times by product/country will not be accurate.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
LocalView is a database co-created by Soubhik Barari and Tyler Simko to advance the study of local government in the United States. It is the largest existing dataset of local government public meetings— the central policy-making process in American local government — as they are captured on video. To get started, select the file(s) that you'd like for your use case based on the year that the meeting took place. Note: we are no longer supporting file formats other than .parquet for space considerations. For potential use cases or further guidance on downloading the data in bulk, visit the companion website: localview.net. Change Log Scraping, parsing, identifying, and merging together meetings involves a large number of non-trivial decisions, many of which need to be adjusted over time particularly as the YouTube API changes. As such, when such decisions notably deviate from process or the outputs documented in the first version of this database, it will be logged here. Version 2.0 (2023-10) Data updated up until September 2023. ~10,000 new videos added, all belonging to existing channels in database. Change in data format: channelType column changed to channel_type. ST_FIPS correctly padded to be 7 characters (2 digit state code + 5 digit place FIPS code). videos with no caption available from YouTube are explicitly marked as “” in caption_text. caption_text_cleaned is actually consistently cleaned (previously stray timestamps/pause markers in some entries). acs_2018_* columns now prefixed as acs_18. additional ACS variables now available for each place: acs_18_median_gross_rent: Median gross rent in FIPS place. acs_18_median_hh_inc: Median household income in FIPS place. acs_18_median_age: Median age in FIPS place. acs_18_amind: American Indian population in FIPS place. acs_18_asian: Asian population in FIPS place. acs_18_nhapi: Native Hawaiian or Pacific Islander population in FIPS place. census_2015_* columns removed for redundancy. to avoid confusion and possible conflicts, .json and .csv file formats eliminated in favor of .parquet format. municipal voteshare (_dem2pv) variables have been removed from the public use files for a number of reasons: (1) high degree of missingness, (2) no columns estimates available, (3) potential sensitivity The matching process of videos to ST-FIPS and government types is as follows: videos are matched to channels’ previous ST-FIPS codes and/or government types if there is an umambiguous match, otherwise a (1) series of regex matches with video title/description are used to attempt to match video to the government and (2) state/place names are extracted from each video’s title/description/caption and used to match to an ST-FIPS entity if an unambiguous match; only identified videos are then uploaded to the database. to identify the date of the meeting that the video captures, we first try to extract the date from the title, otherwise we try to extract the date from the description, otherwise it is discarded. Version 1.0 (2023-02) See publication for full details on methodology choices for the Version 1.0 database.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Tranche 2: Strategic Objective 7 This investment tackles the ways in which governance and policy need to change to better protect te taiao (the environment). At the moment, there are many core issues with regional and national governance and policies that fail to protect, and sometimes directly endanger, the wellbeing of our biodiversity and the integrity of our biosecurity system. The people closest to nature currently find it difficult to get their knowledge and values recognised. They are often not included or resourced to participate in strategic, local or national decisions that would make a difference to biological heritage. This is particularly the case for mana whenua who, as kaitiaki, are often involved with bioheritage protection and advocacy for the environment. The Adaptive Governance & Policy team aims to ‘break the mould’ and build new systems, policies and capability that will provide much greater protection to our bioheritage. This includes embracing Treaty relationships with Māori and investigating the many opportunities for the environment that can arise when government engages in co-design of policy and co-governance of natural resources. The team will study what does and doesn’t work in Aotearoa when it comes to redistributing authority, decision-making abilities and responsibility. Co-Leads: Maria Bargh, Te Arawa (Ngāti Kea/Ngāti Tuarā), Ngāti Awa, Victoria University of Wellington Carwyn Jones, Ngāti Kahungunu Te Wānanga o Raukawa, Victoria University of Wellington
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The BuildingsBench datasets consist of:
Buildings-900K can be used for pretraining models on day-ahead STLF for residential and commercial buildings. The specific gap it fills is the lack of large-scale and diverse time series datasets of sufficient size for studying pretraining and finetuning with scalable machine learning models. Buildings-900K consists of synthetically generated energy consumption time series. It is derived from the NREL End-Use Load Profiles (EULP) dataset (see link to this database in the links further below). However, the EULP was not originally developed for the purpose of STLF. Rather, it was developed to "...help electric utilities, grid operators, manufacturers, government entities, and research organizations make critical decisions about prioritizing research and development, utility resource and distribution system planning, and state and local energy planning and regulation." Similar to the EULP, Buildings-900K is a collection of Parquet files and it follows nearly the same Parquet dataset organization as the EULP. As it only contains a single energy consumption time series per building, it is much smaller (~110 GB).
BuildingsBench also provides an evaluation benchmark that is a collection of various open source residential and commercial real building energy consumption datasets. The evaluation datasets, which are provided alongside Buildings-900K below, are collections of CSV files which contain annual energy consumption. The size of the evaluation datasets altogether is less than 1GB, and they are listed out below:
A README file providing details about how the data is stored and describing the organization of the datasets can be found within each data lake version under BuildingsBench.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Government Revenues in Nigeria increased to 2519.82 NGN Billion in the fourth quarter of 2024 from 2282.54 NGN Billion in the third quarter of 2024. This dataset provides - Nigeria Government Revenues- actual values, historical data, forecast, chart, statistics, economic calendar and news.
This dataset contains data on Public Assistance project awards (obligations), including the project obligation date(s); dollar amount of Federal Share Obligated for each project and its obligation date(s); FEMA Region; State; Disaster Declaration Number; descriptive cause of the declaration (Incident Type); Entity requesting public assistance (Applicant Name); and distinct name for the repair, replacement or mitigation work listed for assistance (Project Title). rnrnAs part of disaster declarations, the President can make federal funding (Public Assistance) available through FEMA to eligible state, local and tribal governments and certain private nonprofit organizations. This is done on a cost-sharing basis for emergency work and the repair, replacement, or mitigation work for facilities damaged by the disaster event. rnrnAs part of Congressional bill HR 152 - the Sandy Recovery Improvement Act of 2013, FEMA is providing the following information for our stakeholders: Region, Disaster Declaration Number, Disaster Type, State, Applicant, County, Damage Category Code, Federal Share Obligated, and Date Obligated.rnrnNote: FEMA obligates funding for a project directly to the Recipient (State or Tribe). It is the Recipient's responsibility to ensure that the eligible subrecipient (listed in the dataset as Applicant Name) receives the award funding.rnrnThis dataset lists details about project versions (occurring when the scope/cost changes for a project). Versions adjust the cost of the project with positive additions called obligations and subtractions called deobligations. Combined, they reconcile to reflect the Total Federal Share Obligation, but reconciliation occurs over the life of the project - sometimes years after the declaration date. The dataset represents project obligations within a seven-day period prior to the listed date but does not include obligations uploaded on the same day as the publication. Open projects still under pre-obligation processing are not represented. For more information on the Public Assistance process see: https://www.fema.gov/assistance/public/processrnrnThis is raw, unedited data from FEMA's Emergency Management Mission Integrated Environment (EMMIE) system and as such is subject to a small percentage of human error. The financial information is derived from EMMIE and not FEMA's official financial systems. Due to differences in reporting periods, status of obligations and how business rules are applied, this financial information may differ slightly from official publication on public websites such as usaspending.gov. This dataset is not intended to be used for any official federal financial reporting.rnrnFEMA's terms and conditions and citation requirements for datasets (API usage or file downloads) can be found on the OpenFEMA Terms and Conditions page: https://www.fema.gov/about/openfema/terms-conditionsrnrnFor answers to Frequently Asked Questions (FAQs) about the OpenFEMA program, API, and publicly available datasets, please visit: https://www.fema.gov/about/openfema/faqrnrnIf you have media inquiries about this dataset, please email the FEMA News Desk at FEMA-News-Desk@fema.dhs.gov or call (202) 646-3272. For inquiries about FEMA's data and Open Government program, please email the OpenFEMA team at OpenFEMA@fema.dhs.gov.
description: he Interagency Working Group on U.S. Government-Sponsored International Exchanges and Training (IAWG) was created in 1997 to make recommendations to the President for improving the coordination, efficiency, and effectiveness of United States Government-sponsored international exchanges and training. IAWG Annual Reports review the IAWG's activities over a given fiscal year and also include the previous fiscal year's Inventory of Programs that details the scope of federal international exchanges and training. Each report is a large PDF file and includes many charts, graphs, and supporting appendices. IAWG Region Unattributable Reports statistical reports that will be included in our dataset follow: Participants by Employment Type Participants by Field of Activity Inventory of Participants by Country Participants by Federal Sponsor; abstract: he Interagency Working Group on U.S. Government-Sponsored International Exchanges and Training (IAWG) was created in 1997 to make recommendations to the President for improving the coordination, efficiency, and effectiveness of United States Government-sponsored international exchanges and training. IAWG Annual Reports review the IAWG's activities over a given fiscal year and also include the previous fiscal year's Inventory of Programs that details the scope of federal international exchanges and training. Each report is a large PDF file and includes many charts, graphs, and supporting appendices. IAWG Region Unattributable Reports statistical reports that will be included in our dataset follow: Participants by Employment Type Participants by Field of Activity Inventory of Participants by Country Participants by Federal Sponsor
NOTE: This dataset is not maintained. This note was added on the 4th of October 2024 and any resources with dead links removed. For API guidance from the Government Chief Digital Officer (GCDO) please check https://www.digital.govt.nz/standards-and-guidance/technology-and-architecture/application-programming-interfaces-apis and email GCDO@dia.govt.nz for more information. This is a convenient place for the Service Innovation team to keep track of APIs we discover across the New Zealand Government that we find useful for our work (which involves collaborating with agencies to design and deliver new services and reusable components.) We don’t run or have responsibility for these APIs. We just want to make them easier to find. If you know more APIs please contact us. This is a short-term exercise and we plan to use what we learn (from collecting and sharing information about APIs and reusable components) to inform future approaches to making it easier for people to discover and use APIs and platforms. Where possible we have linked to the landing page for the API and not directly to the end point API itself – this is so you can get the latest context and information about the API before you use it.
In the United States, city governments provide many services: they run public school districts, administer certain welfare and health programs, build roads and manage airports, provide police and fire protection, inspect buildings, and often run water and utility systems. Cities also get revenues through certain local taxes, various fees and permit costs, sale of property, and through the fees they charge for the utilities they run.
It would be interesting to compare all these expenses and revenues across cities and over time, but also quite difficult. Cities share many of these service responsibilities with other government agencies: in one particular city, some roads may be maintained by the state government, some law enforcement provided by the county sheriff, some schools run by independent school districts with their own tax revenue, and some utilities run by special independent utility districts. These governmental structures vary greatly by state and by individual city. It would be hard to make a fair comparison without taking into account all these differences.
This dataset takes into account all those differences. The Lincoln Institute of Land Policy produces what they call “Fiscally Standardized Cities” (FiSCs), aggregating all services provided to city residents regardless of how they may be divided up by different government agencies and jurisdictions. Using this, we can study city expenses and revenues, and how the proportions of different costs vary over time.
The dataset tracks over 200 American cities between 1977 and 2020. Each row represents one city for one year. Revenue and expenditures are broken down into more than 120 categories.
Values are available for FiSCs and also for the entities that make it up: the city, the county, independent school districts, and any special districts, such as utility districts. There are hence five versions of each variable, with suffixes indicating the entity. For example, taxes gives the FiSC’s tax revenue, while taxes_city, taxes_cnty, taxes_schl, and taxes_spec break it down for the city, county, school districts, and special districts.
The values are organized hierarchically. For example, taxes is the sum of tax_property (property taxes), tax_sales_general (sales taxes), tax_income (income tax), and tax_other (other taxes). And tax_income is itself the sum of tax_income_indiv (individual income tax) and tax_income_corp (corporate income tax) subcategories.
The revenue and expenses variables are described in this detailed table. Further documentation is available on the FiSC Database website, linked in References below.
All monetary data is already adjusted for inflation, and is given in terms of 2020 US dollars per capita. The Consumer Price Index is provided for each year if you prefer to use numbers not adjusted for inflation, scaled so that 2020 is 1; simply divide each value by the CPI to get the value in that year’s nominal dollars. The total population is also provided if you want total values instead of per-capita values.