MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset provides an extensive view of global population statistics and health metrics across various countries from 2014 to 2024. It combines population data with vital health-related indicators, making it a valuable resource for understanding trends in population growth and health outcomes worldwide. Researchers, data scientists, and policymakers can utilize this dataset to analyze correlations between population dynamics and health performance at a global scale.
Key Features: - Country: Name of the country. - Year: Year of the data (2014–2024). - Population: Total population for the respective year and country. - Country Code: ISO 3-letter country codes for easy identification. - Health Expenditure (health_exp): Percentage of GDP spent on healthcare. - Life Expectancy (life_expect): Average life expectancy at birth in years. - Maternal Mortality (maternal_mortality): Maternal deaths per 100,000 live births. - Infant Mortality (infant_mortality): Deaths of infants under 1 year per 1,000 live births. - Neonatal Mortality (neonatal_mortality): Deaths of newborns (0–28 days) per 1,000 live births. - Under-5 Mortality (under_5_mortality): Deaths of children under 5 years per 1,000 live births. - HIV Prevalence (prev_hiv): Percentage of the population living with HIV. - Tuberculosis Incidence (inci_tuberc): Estimated new and relapse TB cases per 100,000 people. - Undernourishment Prevalence (prev_undernourishment): Percentage of the population that is undernourished.
Use Cases: - Health Policy Analysis: Understand trends in healthcare expenditure and its relationship to health outcomes. - Global Health Research: Investigate global or regional disparities in health and nutrition. - Population Studies: Analyze population growth trends alongside health indicators. - Data Visualization: Build visual dashboards for storytelling and impactful data representation.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Historical chart and dataset showing World population growth rate by year from 1961 to 2023.
The world population surpassed eight billion people in 2022, having doubled from its figure less than 50 years previously. Looking forward, it is projected that the world population will reach nine billion in 2038, and 10 billion in 2060, but it will peak around 10.3 billion in the 2080s before it then goes into decline. Regional variations The global population has seen rapid growth since the early 1800s, due to advances in areas such as food production, healthcare, water safety, education, and infrastructure, however, these changes did not occur at a uniform time or pace across the world. Broadly speaking, the first regions to undergo their demographic transitions were Europe, North America, and Oceania, followed by Latin America and Asia (although Asia's development saw the greatest variation due to its size), while Africa was the last continent to undergo this transformation. Because of these differences, many so-called "advanced" countries are now experiencing population decline, particularly in Europe and East Asia, while the fastest population growth rates are found in Sub-Saharan Africa. In fact, the roughly two billion difference in population between now and the 2080s' peak will be found in Sub-Saharan Africa, which will rise from 1.2 billion to 3.2 billion in this time (although populations in other continents will also fluctuate). Changing projections The United Nations releases their World Population Prospects report every 1-2 years, and this is widely considered the foremost demographic dataset in the world. However, recent years have seen a notable decline in projections when the global population will peak, and at what number. Previous reports in the 2010s had suggested a peak of over 11 billion people, and that population growth would continue into the 2100s, however a sooner and shorter peak is now projected. Reasons for this include a more rapid population decline in East Asia and Europe, particularly China, as well as a prolongued development arc in Sub-Saharan Africa.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘2021 World Population (updated daily)’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/rsrishav/world-population on 28 January 2022.
--- Dataset description provided by original source is as follows ---
2021 World Population dataset which gets updated daily.
2021_population.csv
: File contains data for only live 2021 population count which gets updated daily.
Also contains more information about the country's growth rate, area, etc.
timeseries_population_count.csv
: File contains data for live population count which gets updated daily but it contains last updated data also. Data in this file is managed day-wise.
This type of data can be used for population-related use cases.
Like, my own dataset COVID Vaccination in World (updated daily)
, which requires population data.
I believe there are more use cases that I didn't explore yet but might other Kaggler needs this.
Time-series related use-case can be implemented on this data but I know it will take time to compile that amount of data. So stay tuned.
--- Original source retains full ownership of the source dataset ---
Until the 1800s, population growth was incredibly slow on a global level. The global population was estimated to have been around 188 million people in the year 1CE, and did not reach one billion until around 1803. However, since the 1800s, a phenomenon known as the demographic transition has seen population growth skyrocket, reaching eight billion people in 2023, and this is expected to peak at over 10 billion in the 2080s.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
2021 World Population dataset which gets updated daily.
2021_population.csv
: File contains data for only live 2021 population count which gets updated daily.
Also contains more information about the country's growth rate, area, etc.
timeseries_population_count.csv
: File contains data for live population count which gets updated daily but it contains last updated data also. Data in this file is managed day-wise.
This type of data can be used for population-related use cases.
Like, my own dataset COVID Vaccination in World (updated daily)
, which requires population data.
I believe there are more use cases that I didn't explore yet but might other Kaggler needs this.
Time-series related use-case can be implemented on this data but I know it will take time to compile that amount of data. So stay tuned.
Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.
April 9, 2020
April 20, 2020
April 29, 2020
September 1st, 2020
February 12, 2021
new_deaths
column.February 16, 2021
The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.
The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.
The AP is updating this dataset hourly at 45 minutes past the hour.
To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.
Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic
Filter cases by state here
Rank states by their status as current hotspots. Calculates the 7-day rolling average of new cases per capita in each state: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=481e82a4-1b2f-41c2-9ea1-d91aa4b3b1ac
Find recent hotspots within your state by running a query to calculate the 7-day rolling average of new cases by capita in each county: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=b566f1db-3231-40fe-8099-311909b7b687&showTemplatePreview=true
Join county-level case data to an earlier dataset released by AP on local hospital capacity here. To find out more about the hospital capacity dataset, see the full details.
Pull the 100 counties with the highest per-capita confirmed cases here
Rank all the counties by the highest per-capita rate of new cases in the past 7 days here. Be aware that because this ranks per-capita caseloads, very small counties may rise to the very top, so take into account raw caseload figures as well.
The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.
@(https://datawrapper.dwcdn.net/nRyaf/15/)
<iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here
This data should be credited to Johns Hopkins University COVID-19 tracking project
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Survey Mean Consumption or Income per Capita: Total Population: Annualized Average Growth Rate data was reported at 1.670 % in 2016. United States US: Survey Mean Consumption or Income per Capita: Total Population: Annualized Average Growth Rate data is updated yearly, averaging 1.670 % from Dec 2016 (Median) to 2016, with 1 observations. United States US: Survey Mean Consumption or Income per Capita: Total Population: Annualized Average Growth Rate data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Poverty. The growth rate in the welfare aggregate of the total population is computed as the annualized average growth rate in per capita real consumption or income of the total population in the income distribution in a country from household surveys over a roughly 5-year period. Mean per capita real consumption or income is measured at 2011 Purchasing Power Parity (PPP) using the PovcalNet (http://iresearch.worldbank.org/PovcalNet). For some countries means are not reported due to grouped and/or confidential data. The annualized growth rate is computed as (Mean in final year/Mean in initial year)^(1/(Final year - Initial year)) - 1. The reference year is the year in which the underlying household survey data was collected. In cases for which the data collection period bridged two calendar years, the first year in which data were collected is reported. The initial year refers to the nearest survey collected 5 years before the most recent survey available, only surveys collected between 3 and 7 years before the most recent survey are considered. The final year refers to the most recent survey available between 2011 and 2015. Growth rates for Iraq are based on survey means of 2005 PPP$. The coverage and quality of the 2011 PPP price data for Iraq and most other North African and Middle Eastern countries were hindered by the exceptional period of instability they faced at the time of the 2011 exercise of the International Comparison Program. See PovcalNet for detailed explanations.; ; World Bank, Global Database of Shared Prosperity (GDSP) circa 2010-2015 (http://www.worldbank.org/en/topic/poverty/brief/global-database-of-shared-prosperity).; ; The comparability of welfare aggregates (consumption or income) for the chosen years T0 and T1 is assessed for every country. If comparability across the two surveys is a major concern for a country, the selection criteria are re-applied to select the next best survey year(s). Annualized growth rates are calculated between the survey years, using a compound growth formula. The survey years defining the period for which growth rates are calculated and the type of welfare aggregate used to calculate the growth rates are noted in the footnotes.
Despite the steady rise in literacy rates over the past 50 years, there are still 750 million illiterate adults around the world, most of whom are women. These numbers produced by the UIS are a stark reminder of the work ahead to meet the Sustainable Development Goals (SDGs), especially Target 4.6 to ensure that all youth and most adults achieve literacy and numeracy by 2030. Current literacy data are generally collected through population censuses or household surveys in which the respondent or head of the household declares whether they can read and write with understanding a short, simple statement about one's everyday life in any written language. Some surveys require respondents to take a quick test in which they are asked to read a simple passage or write a sentence, yet clearly literacy is a far more complex issue that requires more information. For the UIS, the existing dataset serves as a placeholder for a new generation of indicators being developed with countries and partners under the umbrella of the Global Alliance to Monitor Learning (GAML). GAML is developing the methodologies needed to gather more nuanced data and the tools required for their standardisation. In particular, the Alliance is finding ways to link existing large-scale assessments to produce comparable data to monitor the literacy skills of children, youth and adults. This involves close collaboration with a wide range of partners.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ID: Survey Mean Consumption or Income per Capita: Total Population: 2017 PPP per day data was reported at 7.650 Intl $/Day in 2023. This records an increase from the previous number of 6.970 Intl $/Day for 2018. ID: Survey Mean Consumption or Income per Capita: Total Population: 2017 PPP per day data is updated yearly, averaging 7.310 Intl $/Day from Dec 2018 (Median) to 2023, with 2 observations. The data reached an all-time high of 7.650 Intl $/Day in 2023 and a record low of 6.970 Intl $/Day in 2018. ID: Survey Mean Consumption or Income per Capita: Total Population: 2017 PPP per day data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Indonesia – Table ID.World Bank.WDI: Social: Poverty and Inequality. Mean consumption or income per capita (2017 PPP $ per day) used in calculating the growth rate in the welfare aggregate of total population.;World Bank, Global Database of Shared Prosperity (GDSP) (http://www.worldbank.org/en/topic/poverty/brief/global-database-of-shared-prosperity).;;The choice of consumption or income for a country is made according to which welfare aggregate is used to estimate extreme poverty in the Poverty and Inequality Platform (PIP). The practice adopted by the World Bank for estimating global and regional poverty is, in principle, to use per capita consumption expenditure as the welfare measure wherever available; and to use income as the welfare measure for countries for which consumption is unavailable. However, in some cases data on consumption may be available but are outdated or not shared with the World Bank for recent survey years. In these cases, if data on income are available, income is used. Whether data are for consumption or income per capita is noted in the footnotes. Because household surveys are infrequent in most countries and are not aligned across countries, comparisons across countries or over time should be made with a high degree of caution.
Financial inclusion is critical in reducing poverty and achieving inclusive economic growth. When people can participate in the financial system, they are better able to start and expand businesses, invest in their children’s education, and absorb financial shocks. Yet prior to 2011, little was known about the extent of financial inclusion and the degree to which such groups as the poor, women, and rural residents were excluded from formal financial systems.
By collecting detailed indicators about how adults around the world manage their day-to-day finances, the Global Findex allows policy makers, researchers, businesses, and development practitioners to track how the use of financial services has changed over time. The database can also be used to identify gaps in access to the formal financial system and design policies to expand financial inclusion.
See Methodology document for country-specific geographic coverage details.
The target population is the civilian, non-institutionalized population 15 years and above.
Observation data/ratings [obs]
The indicators in the 2017 Global Findex database are drawn from survey data covering almost 150,000 people in 144 economies-representing more than 97 percent of the world’s population (see Table A.1 of the Global Findex Database 2017 Report for a list of the economies included). The survey was carried out over the 2017 calendar year by Gallup, Inc., as part of its Gallup World Poll, which since 2005 has annually conducted surveys of approximately 1,000 people in each of more than 160 economies and in over 150 languages, using randomly selected, nationally representative samples. The target population is the entire civilian, noninstitutionalized population age 15 and above. Interview procedure Surveys are conducted face to face in economies where telephone coverage represents less than 80 percent of the population or where this is the customary methodology. In most economies the fieldwork is completed in two to four weeks.
In economies where face-to-face surveys are conducted, the first stage of sampling is the identification of primary sampling units. These units are stratified by population size, geography, or both, and clustering is achieved through one or more stages of sampling. Where population information is available, sample selection is based on probabilities proportional to population size; otherwise, simple random sampling is used. Random route procedures are used to select sampled households. Unless an outright refusal occurs, interviewers make up to three attempts to survey the sampled household. To increase the probability of contact and completion, attempts are made at different times of the day and, where possible, on different days. If an interview cannot be obtained at the initial sampled household, a simple substitution method is used.
Respondents are randomly selected within the selected households. Each eligible household member is listed and the handheld survey device randomly selects the household member to be interviewed. For paper surveys, the Kish grid method is used to select the respondent. In economies where cultural restrictions dictate gender matching, respondents are randomly selected from among all eligible adults of the interviewer’s gender.
In economies where telephone interviewing is employed, random digit dialing or a nationally representative list of phone numbers is used. In most economies where cell phone penetration is high, a dual sampling frame is used. Random selection of respondents is achieved by using either the latest birthday or household enumeration method. At least three attempts are made to reach a person in each household, spread over different days and times of day.
Other [oth]
The questionnaire was designed by the World Bank, in conjunction with a Technical Advisory Board composed of leading academics, practitioners, and policy makers in the field of financial inclusion. The Bill and Melinda Gates Foundation and Gallup Inc. also provided valuable input. The questionnaire was piloted in multiple countries, using focus groups, cognitive interviews, and field testing. The questionnaire is available in more than 140 languages upon request.
Questions on cash on delivery, saving using an informal savings club or person outside the family, domestic remittances, and agricultural payments are only asked in developing economies and few other selected countries. The question on mobile money accounts was only asked in economies that were part of the Mobile Money for the Unbanked (MMU) database of the GSMA at the time the interviews were being held.
Estimates of standard errors (which account for sampling error) vary by country and indicator. For country-specific margins of error, please refer to the Methodology section and corresponding table in Demirgüç-Kunt, Asli, Leora Klapper, Dorothe Singer, Saniya Ansar, and Jake Hess. 2018. The Global Findex Database 2017: Measuring Financial Inclusion and the Fintech Revolution. Washington, DC: World Bank
Financial inclusion is critical in reducing poverty and achieving inclusive economic growth. When people can participate in the financial system, they are better able to start and expand businesses, invest in their children’s education, and absorb financial shocks. Yet prior to 2011, little was known about the extent of financial inclusion and the degree to which such groups as the poor, women, and rural residents were excluded from formal financial systems.
By collecting detailed indicators about how adults around the world manage their day-to-day finances, the Global Findex allows policy makers, researchers, businesses, and development practitioners to track how the use of financial services has changed over time. The database can also be used to identify gaps in access to the formal financial system and design policies to expand financial inclusion.
National coverage
Individuals
The target population is the civilian, non-institutionalized population 15 years and above.
Observation data/ratings [obs]
The indicators in the 2017 Global Findex database are drawn from survey data covering almost 150,000 people in 144 economies-representing more than 97 percent of the world's population (see Table A.1 of the Global Findex Database 2017 Report for a list of the economies included). The survey was carried out over the 2017 calendar year by Gallup, Inc., as part of its Gallup World Poll, which since 2005 has annually conducted surveys of approximately 1,000 people in each of more than 160 economies and in over 150 languages, using randomly selected, nationally representative samples. The target population is the entire civilian, noninstitutionalized population age 15 and above. Interview procedure Surveys are conducted face to face in economies where telephone coverage represents less than 80 percent of the population or where this is the customary methodology. In most economies the fieldwork is completed in two to four weeks.
In economies where face-to-face surveys are conducted, the first stage of sampling is the identification of primary sampling units. These units are stratified by population size, geography, or both, and clustering is achieved through one or more stages of sampling. Where population information is available, sample selection is based on probabilities proportional to population size; otherwise, simple random sampling is used. Random route procedures are used to select sampled households. Unless an outright refusal occurs, interviewers make up to three attempts to survey the sampled household. To increase the probability of contact and completion, attempts are made at different times of the day and, where possible, on different days. If an interview cannot be obtained at the initial sampled household, a simple substitution method is used.
Respondents are randomly selected within the selected households. Each eligible household member is listed and the handheld survey device randomly selects the household member to be interviewed. For paper surveys, the Kish grid method is used to select the respondent. In economies where cultural restrictions dictate gender matching, respondents are randomly selected from among all eligible adults of the interviewer's gender.
In economies where telephone interviewing is employed, random digit dialing or a nationally representative list of phone numbers is used. In most economies where cell phone penetration is high, a dual sampling frame is used. Random selection of respondents is achieved by using either the latest birthday or household enumeration method. At least three attempts are made to reach a person in each household, spread over different days and times of day.
The sample size was 1000.
Computer Assisted Personal Interview [capi]
The questionnaire was designed by the World Bank, in conjunction with a Technical Advisory Board composed of leading academics, practitioners, and policy makers in the field of financial inclusion. The Bill and Melinda Gates Foundation and Gallup Inc. also provided valuable input. The questionnaire was piloted in multiple countries, using focus groups, cognitive interviews, and field testing. The questionnaire is available in more than 140 languages upon request.
Questions on cash on delivery, saving using an informal savings club or person outside the family, domestic remittances, and agricultural payments are only asked in developing economies and few other selected countries. The question on mobile money accounts was only asked in economies that were part of the Mobile Money for the Unbanked (MMU) database of the GSMA at the time the interviews were being held.
Estimates of standard errors (which account for sampling error) vary by country and indicator. For country-specific margins of error, please refer to the Methodology section and corresponding table in Demirgüç-Kunt, Asli, Leora Klapper, Dorothe Singer, Saniya Ansar, and Jake Hess. 2018. The Global Findex Database 2017: Measuring Financial Inclusion and the Fintech Revolution. Washington, DC: World Bank
Attribution-NoDerivs 4.0 (CC BY-ND 4.0)https://creativecommons.org/licenses/by-nd/4.0/
License information was derived automatically
PerCapita_CO2_Footprint_InDioceses_FULLBurhans, Molly A., Cheney, David M., Gerlt, R.. . “PerCapita_CO2_Footprint_InDioceses_FULL”. Scale not given. Version 1.0. MO and CT, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2019.MethodologyThis is the first global Carbon footprint of the Catholic population. We will continue to improve and develop these data with our research partners over the coming years. While it is helpful, it should also be viewed and used as a "beta" prototype that we and our research partners will build from and improve. The years of carbon data are (2010) and (2015 - SHOWN). The year of Catholic data is 2018. The year of population data is 2016. Care should be taken during future developments to harmonize the years used for catholic, population, and CO2 data.1. Zonal Statistics: Esri Population Data and Dioceses --> Population per dioceses, non Vatican based numbers2. Zonal Statistics: FFDAS and Dioceses and Population dataset --> Mean CO2 per Diocese3. Field Calculation: Population per Diocese and Mean CO2 per diocese --> CO2 per Capita4. Field Calculation: CO2 per Capita * Catholic Population --> Catholic Carbon FootprintAssumption: PerCapita CO2Deriving per-capita CO2 from mean CO2 in a geography assumes that people's footprint accounts for their personal lifestyle and involvement in local business and industries that are contribute CO2. Catholic CO2Assumes that Catholics and non-Catholic have similar CO2 footprints from their lifestyles.Derived from:A multiyear, global gridded fossil fuel CO2 emission data product: Evaluation and analysis of resultshttp://ffdas.rc.nau.edu/About.htmlRayner et al., JGR, 2010 - The is the first FFDAS paper describing the version 1.0 methods and results published in the Journal of Geophysical Research.Asefi et al., 2014 - This is the paper describing the methods and results of the FFDAS version 2.0 published in the Journal of Geophysical Research.Readme version 2.2 - A simple readme file to assist in using the 10 km x 10 km, hourly gridded Vulcan version 2.2 results.Liu et al., 2017 - A paper exploring the carbon cycle response to the 2015-2016 El Nino through the use of carbon cycle data assimilation with FFDAS as the boundary condition for FFCO2."S. Asefi‐Najafabady P. J. Rayner K. R. Gurney A. McRobert Y. Song K. Coltin J. Huang C. Elvidge K. BaughFirst published: 10 September 2014 https://doi.org/10.1002/2013JD021296 Cited by: 30Link to FFDAS data retrieval and visualization: http://hpcg.purdue.edu/FFDAS/index.phpAbstractHigh‐resolution, global quantification of fossil fuel CO2 emissions is emerging as a critical need in carbon cycle science and climate policy. We build upon a previously developed fossil fuel data assimilation system (FFDAS) for estimating global high‐resolution fossil fuel CO2 emissions. We have improved the underlying observationally based data sources, expanded the approach through treatment of separate emitting sectors including a new pointwise database of global power plants, and extended the results to cover a 1997 to 2010 time series at a spatial resolution of 0.1°. Long‐term trend analysis of the resulting global emissions shows subnational spatial structure in large active economies such as the United States, China, and India. These three countries, in particular, show different long‐term trends and exploration of the trends in nighttime lights, and population reveal a decoupling of population and emissions at the subnational level. Analysis of shorter‐term variations reveals the impact of the 2008–2009 global financial crisis with widespread negative emission anomalies across the U.S. and Europe. We have used a center of mass (CM) calculation as a compact metric to express the time evolution of spatial patterns in fossil fuel CO2 emissions. The global emission CM has moved toward the east and somewhat south between 1997 and 2010, driven by the increase in emissions in China and South Asia over this time period. Analysis at the level of individual countries reveals per capita CO2 emission migration in both Russia and India. The per capita emission CM holds potential as a way to succinctly analyze subnational shifts in carbon intensity over time. Uncertainties are generally lower than the previous version of FFDAS due mainly to an improved nightlight data set."Global Diocesan Boundaries:Burhans, M., Bell, J., Burhans, D., Carmichael, R., Cheney, D., Deaton, M., Emge, T. Gerlt, B., Grayson, J., Herries, J., Keegan, H., Skinner, A., Smith, M., Sousa, C., Trubetskoy, S. “Diocesean Boundaries of the Catholic Church” [Feature Layer]. Scale not given. Version 1.2. Redlands, CA, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2016.Using: ArcGIS. 10.4. Version 10.0. Redlands, CA: Environmental Systems Research Institute, Inc., 2016.Boundary ProvenanceStatistics and Leadership DataCheney, D.M. “Catholic Hierarchy of the World” [Database]. Date Updated: August 2019. Catholic Hierarchy. Using: Paradox. Retrieved from Original Source.Catholic HierarchyAnnuario Pontificio per l’Anno .. Città del Vaticano :Tipografia Poliglotta Vaticana, Multiple Years.The data for these maps was extracted from the gold standard of Church data, the Annuario Pontificio, published yearly by the Vatican. The collection and data development of the Vatican Statistics Office are unknown. GoodLands is not responsible for errors within this data. We encourage people to document and report errant information to us at data@good-lands.org or directly to the Vatican.Additional information about regular changes in bishops and sees comes from a variety of public diocesan and news announcements.GoodLands’ polygon data layers, version 2.0 for global ecclesiastical boundaries of the Roman Catholic Church:Although care has been taken to ensure the accuracy, completeness and reliability of the information provided, due to this being the first developed dataset of global ecclesiastical boundaries curated from many sources it may have a higher margin of error than established geopolitical administrative boundary maps. Boundaries need to be verified with appropriate Ecclesiastical Leadership. The current information is subject to change without notice. No parties involved with the creation of this data are liable for indirect, special or incidental damage resulting from, arising out of or in connection with the use of the information. We referenced 1960 sources to build our global datasets of ecclesiastical jurisdictions. Often, they were isolated images of dioceses, historical documents and information about parishes that were cross checked. These sources can be viewed here:https://docs.google.com/spreadsheets/d/11ANlH1S_aYJOyz4TtG0HHgz0OLxnOvXLHMt4FVOS85Q/edit#gid=0To learn more or contact us please visit: https://good-lands.org/Esri Gridded Population Data 2016DescriptionThis layer is a global estimate of human population for 2016. Esri created this estimate by modeling a footprint of where people live as a dasymetric settlement likelihood surface, and then assigned 2016 population estimates stored on polygons of the finest level of geography available onto the settlement surface. Where people live means where their homes are, as in where people sleep most of the time, and this is opposed to where they work. Another way to think of this estimate is a night-time estimate, as opposed to a day-time estimate.Knowledge of population distribution helps us understand how humans affect the natural world and how natural events such as storms and earthquakes, and other phenomena affect humans. This layer represents the footprint of where people live, and how many people live there.Dataset SummaryEach cell in this layer has an integer value with the estimated number of people likely to live in the geographic region represented by that cell. Esri additionally produced several additional layers World Population Estimate Confidence 2016: the confidence level (1-5) per cell for the probability of people being located and estimated correctly. World Population Density Estimate 2016: this layer is represented as population density in units of persons per square kilometer.World Settlement Score 2016: the dasymetric likelihood surface used to create this layer by apportioning population from census polygons to the settlement score raster.To use this layer in analysis, there are several properties or geoprocessing environment settings that should be used:Coordinate system: WGS_1984. This service and its underlying data are WGS_1984. We do this because projecting population count data actually will change the populations due to resampling and either collapsing or splitting cells to fit into another coordinate system. Cell Size: 0.0013474728 degrees (approximately 150-meters) at the equator. No Data: -1Bit Depth: 32-bit signedThis layer has query, identify, pixel, and export image functions enabled, and is restricted to a maximum analysis size of 30,000 x 30,000 pixels - an area about the size of Africa.Frye, C. et al., (2018). Using Classified and Unclassified Land Cover Data to Estimate the Footprint of Human Settlement. Data Science Journal. 17, p.20. DOI: http://doi.org/10.5334/dsj-2018-020.What can you do with this layer?This layer is unsuitable for mapping or cartographic use, and thus it does not include a convenient legend. Instead, this layer is useful for analysis, particularly for estimating counts of people living within watersheds, coastal areas, and other areas that do not have standard boundaries. Esri recommends using the Zonal Statistics tool or the Zonal Statistics to Table tool where you provide input zones as either polygons, or raster data, and the tool will summarize the count of population within those zones. https://www.esri.com/arcgis-blog/products/arcgis-living-atlas/data-management/2016-world-population-estimate-services-are-now-available/
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
This dataset contains 25 columns which are: 1. Country: Corresponding country. 2. Poverty headcount ratio at $2.15 a day (2017 PPP) (% of population): Poverty in country. 3. Life expectancy at birth, total (years): Expected life from birth. 4. Population, total: Population of Country. 5. Population growth (annual %): Population growth each year. 6. Net migration: is the difference between the number of immigrants and the number of emigrants divided by the population. 7. Human Capital Index (HCI) (scale 0-1): is an annual measurement prepared by the World Bank. HCI measures which countries are best in mobilizing their human capital, the economic and professional potential of their citizens. The index measures how much capital each country loses through lack of education and health. 8. GDP (current US$)current US$constant US$current LCUconstant LCU: Gross domestic product is a monetary measure of the market value of all the final goods and services produced in a specific time period by a country or countries. 9. GDP per capita (current US$)current US$constant US$current LCUconstant LCU: the sum of gross value added by all resident producers in the economy plus any product taxes (less subsidies) not included in the valuation of output, divided by mid-year population. 10. GDP growth (annual %): The annual average rate of change of the gross domestic product (GDP) at market prices based on constant local currency, for a given national economy, during a specified period of time. 11. Unemployment, total (% of total labor force) (modeled ILO estimate) 12. Inflation, consumer prices (annual %) 13. Personal remittances, received (% of GDP) 14. CO2 emissions (metric tons per capita) 15. Forest area (% of land area) 16. Access to electricity (% of population) 17. Annual freshwater withdrawals, total (% of internal resources) 18. Electricity production from renewable sources, excluding hydroelectric (% of total) 19. People using safely managed sanitation services (% of population) 20. Intentional homicides (per 100,000 people) 21. Central government debt, total (% of GDP) 22. Statistical performance indicators (SPI): Overall score (scale 0-100) 23. Individuals using the Internet (% of population) 24. Proportion of seats held by women in national parliaments (%) 25. Foreign direct investment, net inflows (% of GDP): is when an investor becomes a significant or lasting investor in a business or corporation in a foreign country, which can be a boost to the global economy.
Economic
217
$5.50
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Philippines PH: Survey Mean Consumption or Income per Capita: Total Population: 2017 PPP per day data was reported at 8.820 Intl $/Day in 2021. This records an increase from the previous number of 8.410 Intl $/Day for 2015. Philippines PH: Survey Mean Consumption or Income per Capita: Total Population: 2017 PPP per day data is updated yearly, averaging 8.615 Intl $/Day from Dec 2015 (Median) to 2021, with 2 observations. The data reached an all-time high of 8.820 Intl $/Day in 2021 and a record low of 8.410 Intl $/Day in 2015. Philippines PH: Survey Mean Consumption or Income per Capita: Total Population: 2017 PPP per day data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Philippines – Table PH.World Bank.WDI: Social: Poverty and Inequality. Mean consumption or income per capita (2017 PPP $ per day) used in calculating the growth rate in the welfare aggregate of total population.;World Bank, Global Database of Shared Prosperity (GDSP) (http://www.worldbank.org/en/topic/poverty/brief/global-database-of-shared-prosperity).;;The choice of consumption or income for a country is made according to which welfare aggregate is used to estimate extreme poverty in the Poverty and Inequality Platform (PIP). The practice adopted by the World Bank for estimating global and regional poverty is, in principle, to use per capita consumption expenditure as the welfare measure wherever available; and to use income as the welfare measure for countries for which consumption is unavailable. However, in some cases data on consumption may be available but are outdated or not shared with the World Bank for recent survey years. In these cases, if data on income are available, income is used. Whether data are for consumption or income per capita is noted in the footnotes. Because household surveys are infrequent in most countries and are not aligned across countries, comparisons across countries or over time should be made with a high degree of caution.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A projection under SRES A1FI scenario for the 21st century. Model: CCSM3 The Community Climate System Model (CCSM) is a coupled model for simulating past, present and future climates. The Community Climate System Model version 3 (CCSM3) is a coupled climate model with components representing the atmosphere, ocean, sea ice, and land surface connected by a flux coupler. Scenario A1F1(Worst case scenario) SRES A1FI is the worst case scenario among all scenarios. In SRES A1FI scenario, a future world of very rapid economic growth, low population growth and rapid introduction of new and more efficient technology are assumed.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Store Transaction data’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/iamprateek/store-transaction-data on 14 February 2022.
--- Dataset description provided by original source is as follows ---
Nielsen receives transaction level scanning data (POS Data) from its partner stores on a regular basis. Stores sharing POS data include bigger format store types such as supermarkets, hypermarkets as well as smaller traditional trade grocery stores (Kirana stores), medical stores etc. using a POS machine.
While in a bigger format store, all items for all transactions are scanned using a POS machine, smaller and more localized shops do not have a 100% compliance rate in terms of scanning and inputting information into the POS machine for all transactions.
A transaction involving a single packet of chips or a single piece of candy may not be scanned and recorded to spare customer the inconvenience or during rush hours when the store is crowded with customers.
Thus, the data received from such stores is often incomplete and lacks complete information of all transactions completed within a day.
Additionally, apart from incomplete transaction data in a day, it is observed that certain stores do not share data for all active days. Stores share data ranging from 2 to 28 days in a month. While it is possible to impute/extrapolate data for 2 days of a month using 28 days of actual historical data, the vice versa is not recommended.
Nielsen encourages you to create a model which can help impute/extrapolate data to fill in the missing data gaps in the store level POS data currently received.
You are provided with the dataset that contains store level data by brands and categories for select stores-
Hackathon_ Ideal_Data - The file contains brand level data for 10 stores for the last 3 months. This can be referred to as the ideal data.
Hackathon_Working_Data - This contains data for selected stores which are missing and/or incomplete.
Hackathon_Mapping_File - This file is provided to help understand the column names in the data set.
Hackathon_Validation_Data - This file contains the data stores and product groups for which you have to predict the Total_VALUE.
Sample Submission - This file represents what needs to be uploaded as output by candidate in the same format. The sample data is provided in the file to help understand the columns and values required.
Nielsen Holdings plc (NYSE: NLSN) is a global measurement and data analytics company that provides the most complete and trusted view available of consumers and markets worldwide. Nielsen is divided into two business units. Nielsen Global Media, the arbiter of truth for media markets, provides media and advertising industries with unbiased and reliable metrics that create a shared understanding of the industry required for markets to function. Nielsen Global Connect provides consumer packaged goods manufacturers and retailers with accurate, actionable information and insights and a complete picture of the complex and changing marketplace that companies need to innovate and grow. Our approach marries proprietary Nielsen data with other data sources to help clients around the world understand what’s happening now, what’s happening next, and how to best act on this knowledge. An S&P 500 company, Nielsen has operations in over 100 countries, covering more than 90% of the world’s population.
Know more: https://www.nielsen.com/us/en/
Build an imputation and/or extrapolation model to fill the missing data gaps for select stores by analyzing the data and determine which factors/variables/features can help best predict the store sales.
--- Original source retains full ownership of the source dataset ---
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Dominican Republic DO: Survey Mean Consumption or Income per Capita: Total Population: 2011 PPP per day data was reported at 14.920 Intl $/Day in 2016. This records an increase from the previous number of 12.540 Intl $/Day for 2011. Dominican Republic DO: Survey Mean Consumption or Income per Capita: Total Population: 2011 PPP per day data is updated yearly, averaging 13.730 Intl $/Day from Dec 2011 (Median) to 2016, with 2 observations. The data reached an all-time high of 14.920 Intl $/Day in 2016 and a record low of 12.540 Intl $/Day in 2011. Dominican Republic DO: Survey Mean Consumption or Income per Capita: Total Population: 2011 PPP per day data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Dominican Republic – Table DO.World Bank: Poverty. Mean consumption or income per capita (2011 PPP $ per day) used in calculating the growth rate in the welfare aggregate of total population.; ; World Bank, Global Database of Shared Prosperity (GDSP) circa 2010-2015 (http://www.worldbank.org/en/topic/poverty/brief/global-database-of-shared-prosperity).; ; The choice of consumption or income for a country is made according to which welfare aggregate is used to estimate extreme poverty in PovcalNet. The practice adopted by the World Bank for estimating global and regional poverty is, in principle, to use per capita consumption expenditure as the welfare measure wherever available; and to use income as the welfare measure for countries for which consumption is unavailable. However, in some cases data on consumption may be available but are outdated or not shared with the World Bank for recent survey years. In these cases, if data on income are available, income is used. Whether data are for consumption or income per capita is noted in the footnotes. Because household surveys are infrequent in most countries and are not aligned across countries, comparisons across countries or over time should be made with a high degree of caution.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Historical chart and dataset showing total population for Japan by year from 1950 to 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Armenia AM: Survey Mean Consumption or Income per Capita: Total Population: 2017 PPP per day data was reported at 8.790 Intl $/Day in 2018. This records an increase from the previous number of 7.810 Intl $/Day for 2013. Armenia AM: Survey Mean Consumption or Income per Capita: Total Population: 2017 PPP per day data is updated yearly, averaging 8.300 Intl $/Day from Dec 2013 (Median) to 2018, with 2 observations. The data reached an all-time high of 8.790 Intl $/Day in 2018 and a record low of 7.810 Intl $/Day in 2013. Armenia AM: Survey Mean Consumption or Income per Capita: Total Population: 2017 PPP per day data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Armenia – Table AM.World Bank.WDI: Social: Poverty and Inequality. Mean consumption or income per capita (2017 PPP $ per day) used in calculating the growth rate in the welfare aggregate of total population.;World Bank, Global Database of Shared Prosperity (GDSP) (http://www.worldbank.org/en/topic/poverty/brief/global-database-of-shared-prosperity).;;The choice of consumption or income for a country is made according to which welfare aggregate is used to estimate extreme poverty in the Poverty and Inequality Platform (PIP). The practice adopted by the World Bank for estimating global and regional poverty is, in principle, to use per capita consumption expenditure as the welfare measure wherever available; and to use income as the welfare measure for countries for which consumption is unavailable. However, in some cases data on consumption may be available but are outdated or not shared with the World Bank for recent survey years. In these cases, if data on income are available, income is used. Whether data are for consumption or income per capita is noted in the footnotes. Because household surveys are infrequent in most countries and are not aligned across countries, comparisons across countries or over time should be made with a high degree of caution.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset provides an extensive view of global population statistics and health metrics across various countries from 2014 to 2024. It combines population data with vital health-related indicators, making it a valuable resource for understanding trends in population growth and health outcomes worldwide. Researchers, data scientists, and policymakers can utilize this dataset to analyze correlations between population dynamics and health performance at a global scale.
Key Features: - Country: Name of the country. - Year: Year of the data (2014–2024). - Population: Total population for the respective year and country. - Country Code: ISO 3-letter country codes for easy identification. - Health Expenditure (health_exp): Percentage of GDP spent on healthcare. - Life Expectancy (life_expect): Average life expectancy at birth in years. - Maternal Mortality (maternal_mortality): Maternal deaths per 100,000 live births. - Infant Mortality (infant_mortality): Deaths of infants under 1 year per 1,000 live births. - Neonatal Mortality (neonatal_mortality): Deaths of newborns (0–28 days) per 1,000 live births. - Under-5 Mortality (under_5_mortality): Deaths of children under 5 years per 1,000 live births. - HIV Prevalence (prev_hiv): Percentage of the population living with HIV. - Tuberculosis Incidence (inci_tuberc): Estimated new and relapse TB cases per 100,000 people. - Undernourishment Prevalence (prev_undernourishment): Percentage of the population that is undernourished.
Use Cases: - Health Policy Analysis: Understand trends in healthcare expenditure and its relationship to health outcomes. - Global Health Research: Investigate global or regional disparities in health and nutrition. - Population Studies: Analyze population growth trends alongside health indicators. - Data Visualization: Build visual dashboards for storytelling and impactful data representation.