76 datasets found
  1. N

    Income Distribution by Quintile: Mean Household Income in Middle Inlet,...

    • neilsberg.com
    csv, json
    Updated Jan 11, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Income Distribution by Quintile: Mean Household Income in Middle Inlet, Wisconsin [Dataset]. https://www.neilsberg.com/research/datasets/94c785c2-7479-11ee-949f-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Jan 11, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Wisconsin, Middle Inlet
    Variables measured
    Income Level, Mean Household Income
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. It delineates income distributions across income quintiles (mentioned above) following an initial analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the mean household income for each of the five quintiles in Middle Inlet, Wisconsin, as reported by the U.S. Census Bureau. The dataset highlights the variation in mean household income across quintiles, offering valuable insights into income distribution and inequality.

    Key observations

    • Income disparities: The mean income of the lowest quintile (20% of households with the lowest income) is 21,360, while the mean income for the highest quintile (20% of households with the highest income) is 162,915. This indicates that the top earners earn 8 times compared to the lowest earners.
    • *Top 5%: * The mean household income for the wealthiest population (top 5%) is 282,509, which is 173.41% higher compared to the highest quintile, and 1322.61% higher compared to the lowest quintile.

    Mean household income by quintiles in Middle Inlet, Wisconsin (in 2022 inflation-adjusted dollars))

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Income Levels:

    • Lowest Quintile
    • Second Quintile
    • Third Quintile
    • Fourth Quintile
    • Highest Quintile
    • Top 5 Percent

    Variables / Data Columns

    • Income Level: This column showcases the income levels (As mentioned above).
    • Mean Household Income: Mean household income, in 2022 inflation-adjusted dollars for the specific income level.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Middle Inlet town median household income. You can refer the same here

  2. N

    Income Distribution by Quintile: Mean Household Income in Eugene, OR // 2025...

    • neilsberg.com
    csv, json
    Updated Mar 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Income Distribution by Quintile: Mean Household Income in Eugene, OR // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/eugene-or-median-household-income/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Mar 3, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Eugene, Oregon
    Variables measured
    Income Level, Mean Household Income
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It delineates income distributions across income quintiles (mentioned above) following an initial analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the mean household income for each of the five quintiles in Eugene, OR, as reported by the U.S. Census Bureau. The dataset highlights the variation in mean household income across quintiles, offering valuable insights into income distribution and inequality.

    Key observations

    • Income disparities: The mean income of the lowest quintile (20% of households with the lowest income) is 13,271, while the mean income for the highest quintile (20% of households with the highest income) is 246,971. This indicates that the top earners earn 19 times compared to the lowest earners.
    • *Top 5%: * The mean household income for the wealthiest population (top 5%) is 452,934, which is 183.40% higher compared to the highest quintile, and 3412.96% higher compared to the lowest quintile.
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Income Levels:

    • Lowest Quintile
    • Second Quintile
    • Third Quintile
    • Fourth Quintile
    • Highest Quintile
    • Top 5 Percent

    Variables / Data Columns

    • Income Level: This column showcases the income levels (As mentioned above).
    • Mean Household Income: Mean household income, in 2023 inflation-adjusted dollars for the specific income level.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Eugene median household income. You can refer the same here

  3. N

    Income Distribution by Quintile: Mean Household Income in Winchester, VA //...

    • neilsberg.com
    csv, json
    Updated Mar 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Income Distribution by Quintile: Mean Household Income in Winchester, VA // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/winchester-va-median-household-income/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Mar 3, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Winchester, Virginia
    Variables measured
    Income Level, Mean Household Income
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It delineates income distributions across income quintiles (mentioned above) following an initial analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the mean household income for each of the five quintiles in Winchester, VA, as reported by the U.S. Census Bureau. The dataset highlights the variation in mean household income across quintiles, offering valuable insights into income distribution and inequality.

    Key observations

    • Income disparities: The mean income of the lowest quintile (20% of households with the lowest income) is 14,125, while the mean income for the highest quintile (20% of households with the highest income) is 215,015. This indicates that the top earners earn 15 times compared to the lowest earners.
    • *Top 5%: * The mean household income for the wealthiest population (top 5%) is 344,621, which is 160.28% higher compared to the highest quintile, and 2439.79% higher compared to the lowest quintile.
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Income Levels:

    • Lowest Quintile
    • Second Quintile
    • Third Quintile
    • Fourth Quintile
    • Highest Quintile
    • Top 5 Percent

    Variables / Data Columns

    • Income Level: This column showcases the income levels (As mentioned above).
    • Mean Household Income: Mean household income, in 2023 inflation-adjusted dollars for the specific income level.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Winchester median household income. You can refer the same here

  4. High income tax filers in Canada

    • www150.statcan.gc.ca
    • open.canada.ca
    • +1more
    Updated Oct 28, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2024). High income tax filers in Canada [Dataset]. http://doi.org/10.25318/1110005501-eng
    Explore at:
    Dataset updated
    Oct 28, 2024
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    This table presents income shares, thresholds, tax shares, and total counts of individual Canadian tax filers, with a focus on high income individuals (95% income threshold, 99% threshold, etc.). Income thresholds are based on national threshold values, regardless of selected geography; for example, the number of Nova Scotians in the top 1% will be calculated as the number of taxfiling Nova Scotians whose total income exceeded the 99% national income threshold. Different definitions of income are available in the table namely market, total, and after-tax income, both with and without capital gains.

  5. Income of individuals by age group, sex and income source, Canada, provinces...

    • www150.statcan.gc.ca
    • ouvert.canada.ca
    • +2more
    Updated May 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Income of individuals by age group, sex and income source, Canada, provinces and selected census metropolitan areas [Dataset]. http://doi.org/10.25318/1110023901-eng
    Explore at:
    Dataset updated
    May 1, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Income of individuals by age group, sex and income source, Canada, provinces and selected census metropolitan areas, annual.

  6. U.S. median household income 2023, by education of householder

    • statista.com
    Updated Sep 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). U.S. median household income 2023, by education of householder [Dataset]. https://www.statista.com/statistics/233301/median-household-income-in-the-united-states-by-education/
    Explore at:
    Dataset updated
    Sep 17, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    U.S. citizens with a professional degree had the highest median household income in 2023, at 172,100 U.S. dollars. In comparison, those with less than a 9th grade education made significantly less money, at 35,690 U.S. dollars. Household income The median household income in the United States has fluctuated since 1990, but rose to around 70,000 U.S. dollars in 2021. Maryland had the highest median household income in the United States in 2021. Maryland’s high levels of wealth is due to several reasons, and includes the state's proximity to the nation's capital. Household income and ethnicity The median income of white non-Hispanic households in the United States had been on the rise since 1990, but declining since 2019. While income has also been on the rise, the median income of Hispanic households was much lower than those of white, non-Hispanic private households. However, the median income of Black households is even lower than Hispanic households. Income inequality is a problem without an easy solution in the United States, especially since ethnicity is a contributing factor. Systemic racism contributes to the non-White population suffering from income inequality, which causes the opportunity for growth to stagnate.

  7. t

    Tucson Equity Priority Index (TEPI): Citywide Census Tracts

    • teds.tucsonaz.gov
    • hub.arcgis.com
    Updated Jun 27, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tucson (2024). Tucson Equity Priority Index (TEPI): Citywide Census Tracts [Dataset]. https://teds.tucsonaz.gov/maps/cotgis::tucson-equity-priority-index-tepi-citywide-census-tracts
    Explore at:
    Dataset updated
    Jun 27, 2024
    Dataset authored and provided by
    City of Tucson
    Area covered
    Description

    For detailed information, visit the Tucson Equity Priority Index StoryMap.Download the layer's data dictionaryWhat is the Tucson Equity Priority Index (TEPI)?The Tucson Equity Priority Index (TEPI) is a tool that describes the distribution of socially vulnerable demographics. It categorizes the dataset into 5 classes that represent the differing prioritization needs based on the presence of social vulnerability: Low (0-20), Low-Moderate (20-40), Moderate (40-60), Moderate-High (60-80) High (80-100). Each class represents 20% of the dataset’s features in order of their values. The features within the Low (0-20) classification represent the areas that, when compared to all other locations in the study area, have the lowest need for prioritization, as they tend to have less socially vulnerable demographics. The features that fall into the High (80-100) classification represent the 20% of locations in the dataset that have the greatest need for prioritization, as they tend to have the highest proportions of socially vulnerable demographics. How is social vulnerability measured?The Tucson Equity Priority Index (TEPI) examines the proportion of vulnerability per feature using 11 demographic indicators:Income Below Poverty: Households with income at or below the federal poverty level (FPL), which in 2023 was $14,500 for an individual and $30,000 for a family of fourUnemployment: Measured as the percentage of unemployed persons in the civilian labor forceHousing Cost Burdened: Homeowners who spend more than 30% of their income on housing expenses, including mortgage, maintenance, and taxesRenter Cost Burdened: Renters who spend more than 30% of their income on rentNo Health Insurance: Those without private health insurance, Medicare, Medicaid, or any other plan or programNo Vehicle Access: Households without automobile, van, or truck accessHigh School Education or Less: Those highest level of educational attainment is a High School diploma, equivalency, or lessLimited English Ability: Those whose ability to speak English is "Less Than Well."People of Color: Those who identify as anything other than Non-Hispanic White Disability: Households with one or more physical or cognitive disabilities Age: Groups that tend to have higher levels of vulnerability, including children (those below 18), and seniors (those 65 and older)An overall percentile value is calculated for each feature based on the total proportion of the above indicators in each area. How are the variables combined?These indicators are divided into two main categories that we call Thematic Indices: Economic and Personal Characteristics. The two thematic indices are further divided into five sub-indices called Tier-2 Sub-Indices. Each Tier-2 Sub-Index contains 2-3 indicators. Indicators are the datasets used to measure vulnerability within each sub-index. The variables for each feature are re-scaled using the percentile normalization method, which converts them to the same scale using values between 0 to 100. The variables are then combined first into each of the five Tier-2 Sub-Indices, then the Thematic Indices, then the overall TEPI using the mean aggregation method and equal weighting. The resulting dataset is then divided into the five classes, where:High Vulnerability (80-100%): Representing the top classification, this category includes the highest 20% of regions that are the most socially vulnerable. These areas require the most focused attention. Moderate-High Vulnerability (60-80%): This upper-middle classification includes areas with higher levels of vulnerability compared to the median. While not the highest, these areas are more vulnerable than a majority of the dataset and should be considered for targeted interventions. Moderate Vulnerability (40-60%): Representing the middle or median quintile, this category includes areas of average vulnerability. These areas may show a balanced mix of high and low vulnerability. Detailed examination of specific indicators is recommended to understand the nuanced needs of these areas. Low-Moderate Vulnerability (20-40%): Falling into the lower-middle classification, this range includes areas that are less vulnerable than most but may still exhibit certain vulnerable characteristics. These areas typically have a mix of lower and higher indicators, with the lower values predominating. Low Vulnerability (0-20%): This category represents the bottom classification, encompassing the lowest 20% of data points. Areas in this range are the least vulnerable, making them the most resilient compared to all other features in the dataset.

  8. a

    Limited Resources Sub-Index: TEPI Citywide Census Tracts

    • cotgis.hub.arcgis.com
    Updated Jul 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tucson (2024). Limited Resources Sub-Index: TEPI Citywide Census Tracts [Dataset]. https://cotgis.hub.arcgis.com/maps/cotgis::limited-resources-sub-index-tepi-citywide-census-tracts
    Explore at:
    Dataset updated
    Jul 2, 2024
    Dataset authored and provided by
    City of Tucson
    Area covered
    Description

    For detailed information, visit the Tucson Equity Priority Index StoryMap.Download the layer's data dictionaryNote: This layer is symbolized to display the percentile distribution of the Limited Resources Sub-Index. However, it includes all data for each indicator and sub-index within the citywide census tracts TEPI.What is the Tucson Equity Priority Index (TEPI)?The Tucson Equity Priority Index (TEPI) is a tool that describes the distribution of socially vulnerable demographics. It categorizes the dataset into 5 classes that represent the differing prioritization needs based on the presence of social vulnerability: Low (0-20), Low-Moderate (20-40), Moderate (40-60), Moderate-High (60-80) High (80-100). Each class represents 20% of the dataset’s features in order of their values. The features within the Low (0-20) classification represent the areas that, when compared to all other locations in the study area, have the lowest need for prioritization, as they tend to have less socially vulnerable demographics. The features that fall into the High (80-100) classification represent the 20% of locations in the dataset that have the greatest need for prioritization, as they tend to have the highest proportions of socially vulnerable demographics. How is social vulnerability measured?The Tucson Equity Priority Index (TEPI) examines the proportion of vulnerability per feature using 11 demographic indicators:Income Below Poverty: Households with income at or below the federal poverty level (FPL), which in 2023 was $14,500 for an individual and $30,000 for a family of fourUnemployment: Measured as the percentage of unemployed persons in the civilian labor forceHousing Cost Burdened: Homeowners who spend more than 30% of their income on housing expenses, including mortgage, maintenance, and taxesRenter Cost Burdened: Renters who spend more than 30% of their income on rentNo Health Insurance: Those without private health insurance, Medicare, Medicaid, or any other plan or programNo Vehicle Access: Households without automobile, van, or truck accessHigh School Education or Less: Those highest level of educational attainment is a High School diploma, equivalency, or lessLimited English Ability: Those whose ability to speak English is "Less Than Well."People of Color: Those who identify as anything other than Non-Hispanic White Disability: Households with one or more physical or cognitive disabilities Age: Groups that tend to have higher levels of vulnerability, including children (those below 18), and seniors (those 65 and older)An overall percentile value is calculated for each feature based on the total proportion of the above indicators in each area. How are the variables combined?These indicators are divided into two main categories that we call Thematic Indices: Economic and Personal Characteristics. The two thematic indices are further divided into five sub-indices called Tier-2 Sub-Indices. Each Tier-2 Sub-Index contains 2-3 indicators. Indicators are the datasets used to measure vulnerability within each sub-index. The variables for each feature are re-scaled using the percentile normalization method, which converts them to the same scale using values between 0 to 100. The variables are then combined first into each of the five Tier-2 Sub-Indices, then the Thematic Indices, then the overall TEPI using the mean aggregation method and equal weighting. The resulting dataset is then divided into the five classes, where:High Vulnerability (80-100%): Representing the top classification, this category includes the highest 20% of regions that are the most socially vulnerable. These areas require the most focused attention. Moderate-High Vulnerability (60-80%): This upper-middle classification includes areas with higher levels of vulnerability compared to the median. While not the highest, these areas are more vulnerable than a majority of the dataset and should be considered for targeted interventions. Moderate Vulnerability (40-60%): Representing the middle or median quintile, this category includes areas of average vulnerability. These areas may show a balanced mix of high and low vulnerability. Detailed examination of specific indicators is recommended to understand the nuanced needs of these areas. Low-Moderate Vulnerability (20-40%): Falling into the lower-middle classification, this range includes areas that are less vulnerable than most but may still exhibit certain vulnerable characteristics. These areas typically have a mix of lower and higher indicators, with the lower values predominating. Low Vulnerability (0-20%): This category represents the bottom classification, encompassing the lowest 20% of data points. Areas in this range are the least vulnerable, making them the most resilient compared to all other features in the dataset.

  9. National Hydrography Dataset Plus High Resolution

    • hub.arcgis.com
    Updated Mar 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2023). National Hydrography Dataset Plus High Resolution [Dataset]. https://hub.arcgis.com/maps/f1f45a3ba37a4f03a5f48d7454e4b654
    Explore at:
    Dataset updated
    Mar 16, 2023
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The National Hydrography Dataset Plus High Resolution (NHDplus High Resolution) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US Geological Survey, NHDPlus High Resolution provides mean annual flow and velocity estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses.For more information on the NHDPlus High Resolution dataset see the User’s Guide for the National Hydrography Dataset Plus (NHDPlus) High Resolution.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territoriesGeographic Extent: The Contiguous United States, Hawaii, portions of Alaska, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: USGSUpdate Frequency: AnnualPublication Date: July 2022This layer was symbolized in the ArcGIS Map Viewer and while the features will draw in the Classic Map Viewer the advanced symbology will not. Prior to publication, the network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original dataset. No data values -9999 and -9998 were converted to Null values.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute.Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map.Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

  10. Artificial Intelligence (AI) Training Dataset Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). Artificial Intelligence (AI) Training Dataset Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/artificial-intelligence-training-dataset-market-global-industry-analysis
    Explore at:
    pptx, csv, pdfAvailable download formats
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Artificial Intelligence (AI) Training Dataset Market Outlook



    According to our latest research, the global Artificial Intelligence (AI) Training Dataset market size reached USD 3.15 billion in 2024, reflecting robust industry momentum. The market is expanding at a notable CAGR of 20.8% and is forecasted to attain USD 20.92 billion by 2033. This impressive growth is primarily attributed to the surging demand for high-quality, annotated datasets to fuel machine learning and deep learning models across diverse industry verticals. The proliferation of AI-driven applications, coupled with rapid advancements in data labeling technologies, is further accelerating the adoption and expansion of the AI training dataset market globally.




    One of the most significant growth factors propelling the AI training dataset market is the exponential rise in data-driven AI applications across industries such as healthcare, automotive, retail, and finance. As organizations increasingly rely on AI-powered solutions for automation, predictive analytics, and personalized customer experiences, the need for large, diverse, and accurately labeled datasets has become critical. Enhanced data annotation techniques, including manual, semi-automated, and fully automated methods, are enabling organizations to generate high-quality datasets at scale, which is essential for training sophisticated AI models. The integration of AI in edge devices, smart sensors, and IoT platforms is further amplifying the demand for specialized datasets tailored for unique use cases, thereby fueling market growth.




    Another key driver is the ongoing innovation in machine learning and deep learning algorithms, which require vast and varied training data to achieve optimal performance. The increasing complexity of AI models, especially in areas such as computer vision, natural language processing, and autonomous systems, necessitates the availability of comprehensive datasets that accurately represent real-world scenarios. Companies are investing heavily in data collection, annotation, and curation services to ensure their AI solutions can generalize effectively and deliver reliable outcomes. Additionally, the rise of synthetic data generation and data augmentation techniques is helping address challenges related to data scarcity, privacy, and bias, further supporting the expansion of the AI training dataset market.




    The market is also benefiting from the growing emphasis on ethical AI and regulatory compliance, particularly in data-sensitive sectors like healthcare, finance, and government. Organizations are prioritizing the use of high-quality, unbiased, and diverse datasets to mitigate algorithmic bias and ensure transparency in AI decision-making processes. This focus on responsible AI development is driving demand for curated datasets that adhere to strict quality and privacy standards. Moreover, the emergence of data marketplaces and collaborative data-sharing initiatives is making it easier for organizations to access and exchange valuable training data, fostering innovation and accelerating AI adoption across multiple domains.




    From a regional perspective, North America currently dominates the AI training dataset market, accounting for the largest revenue share in 2024, driven by significant investments in AI research, a mature technology ecosystem, and the presence of leading AI companies and data annotation service providers. Europe and Asia Pacific are also witnessing rapid growth, with increasing government support for AI initiatives, expanding digital infrastructure, and a rising number of AI startups. While North America sets the pace in terms of technological innovation, Asia Pacific is expected to exhibit the highest CAGR during the forecast period, fueled by the digital transformation of emerging economies and the proliferation of AI applications across various industry sectors.





    Data Type Analysis



    The AI training dataset market is segmented by data type into Text, Image/Video, Audio, and Others, each playing a crucial role in powering different AI applications. Text da

  11. H

    Replication Data for: The Fading American Dream: Trends in Absolute Income...

    • dataverse.harvard.edu
    • search.dataone.org
    Updated Feb 23, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Raj Chetty; David Grusky; Maximilian Hell; Nathaniel Hendren; Robert Manduca; Jimmy Narang (2022). Replication Data for: The Fading American Dream: Trends in Absolute Income Mobility Since 1940 [Dataset]. http://doi.org/10.7910/DVN/B9TEWM
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 23, 2022
    Dataset provided by
    Harvard Dataverse
    Authors
    Raj Chetty; David Grusky; Maximilian Hell; Nathaniel Hendren; Robert Manduca; Jimmy Narang
    License

    https://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.7910/DVN/B9TEWMhttps://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.7910/DVN/B9TEWM

    Description

    This dataset contains replication files for "The Fading American Dream: Trends in Absolute Income Mobility Since 1940" by Raj Chetty, David Grusky, Maximilian Hell, Nathaniel Hendren, Robert Manduca, and Jimmy Narang. For more information, see https://opportunityinsights.org/paper/the-fading-american-dream/. A summary of the related publication follows. One of the defining features of the “American Dream” is the ideal that children have a higher standard of living than their parents. We assess whether the U.S. is living up to this ideal by estimating rates of “absolute income mobility” – the fraction of children who earn more than their parents – since 1940. We measure absolute mobility by comparing children’s household incomes at age 30 (adjusted for inflation using the Consumer Price Index) with their parents’ household incomes at age 30. We find that rates of absolute mobility have fallen from approximately 90% for children born in 1940 to 50% for children born in the 1980s. Absolute income mobility has fallen across the entire income distribution, with the largest declines for families in the middle class. These findings are unaffected by using alternative price indices to adjust for inflation, accounting for taxes and transfers, measuring income at later ages, and adjusting for changes in household size. Absolute mobility fell in all 50 states, although the rate of decline varied, with the largest declines concentrated in states in the industrial Midwest, such as Michigan and Illinois. The decline in absolute mobility is especially steep – from 95% for children born in 1940 to 41% for children born in 1984 – when we compare the sons’ earnings to their fathers’ earnings. Why have rates of upward income mobility fallen so sharply over the past half-century? There have been two important trends that have affected the incomes of children born in the 1980s relative to those born in the 1940s and 1950s: lower Gross Domestic Product (GDP) growth rates and greater inequality in the distribution of growth. We find that most of the decline in absolute mobility is driven by the more unequal distribution of economic growth rather than the slowdown in aggregate growth rates. When we simulate an economy that restores GDP growth to the levels experienced in the 1940s and 1950s but distributes that growth across income groups as it is distributed today, absolute mobility only increases to 62%. In contrast, maintaining GDP at its current level but distributing it more broadly across income groups – at it was distributed for children born in the 1940s – would increase absolute mobility to 80%, thereby reversing more than two-thirds of the decline in absolute mobility. These findings show that higher growth rates alone are insufficient to restore absolute mobility to the levels experienced in mid-century America. Under the current distribution of GDP, we would need real GDP growth rates above 6% per year to return to rates of absolute mobility in the 1940s. Intuitively, because a large fraction of GDP goes to a small fraction of high-income households today, higher GDP growth does not substantially increase the number of children who earn more than their parents. Of course, this does not mean that GDP growth does not matter: changing the distribution of growth naturally has smaller effects on absolute mobility when there is very little growth to be distributed. The key point is that increasing absolute mobility substantially would require more broad-based economic growth. We conclude that absolute mobility has declined sharply in America over the past half-century primarily because of the growth in inequality. If one wants to revive the “American Dream” of high rates of absolute mobility, one must have an interest in growth that is shared more broadly across the income distribution.

  12. k

    Average Salary in Germany 2025

    • kummuni.com
    html
    Updated Apr 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KUMMUNI (2025). Average Salary in Germany 2025 [Dataset]. https://kummuni.com/whats-the-average-salary-in-germany
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Apr 30, 2025
    Dataset authored and provided by
    KUMMUNI
    License

    https://kummuni.com/terms/https://kummuni.com/terms/

    Area covered
    Germany
    Variables measured
    Minimum wage, Median salary, Average net salary, Average gross salary (with bonuses), Average gross salary (without bonuses)
    Description

    A structured overview of the average, net, median, and minimum wage in Germany for 2025. This dataset combines original market research conducted by KUMMUNI GmbH with publicly available data from the German Federal Statistical Office. It includes values with and without bonuses, hourly minimum wage, and take-home pay after tax.

  13. Z

    Doodleverse/Segmentation Zoo/Seg2Map Res-UNet models for DeepGlobe/7-class...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jul 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Buscombe, Daniel (2024). Doodleverse/Segmentation Zoo/Seg2Map Res-UNet models for DeepGlobe/7-class segmentation of RGB 512x512 high-res. images [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_7576897
    Explore at:
    Dataset updated
    Jul 12, 2024
    Dataset authored and provided by
    Buscombe, Daniel
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Doodleverse/Segmentation Zoo/Seg2Map Res-UNet models for DeepGlobe/7-class segmentation of RGB 512x512 high-res. images

    These Residual-UNet model data are based on the DeepGlobe dataset

    Models have been created using Segmentation Gym* using the following dataset**: https://www.kaggle.com/datasets/balraj98/deepglobe-land-cover-classification-dataset

    Image size used by model: 512 x 512 x 3 pixels

    classes: 1. urban 2. agricultural 3. rangeland 4. forest 5. water 6. bare 7. unknown

    File descriptions

    For each model, there are 5 files with the same root name:

    1. '.json' config file: this is the file that was used by Segmentation Gym* to create the weights file. It contains instructions for how to make the model and the data it used, as well as instructions for how to use the model for prediction. It is a handy wee thing and mastering it means mastering the entire Doodleverse.

    2. '.h5' weights file: this is the file that was created by the Segmentation Gym* function train_model.py. It contains the trained model's parameter weights. It can called by the Segmentation Gym* function seg_images_in_folder.py. Models may be ensembled.

    3. '_modelcard.json' model card file: this is a json file containing fields that collectively describe the model origins, training choices, and dataset that the model is based upon. There is some redundancy between this file and the config file (described above) that contains the instructions for the model training and implementation. The model card file is not used by the program but is important metadata so it is important to keep with the other files that collectively make the model and is such is considered part of the model

    4. '_model_history.npz' model training history file: this numpy archive file contains numpy arrays describing the training and validation losses and metrics. It is created by the Segmentation Gym function train_model.py

    5. '.png' model training loss and mean IoU plot: this png file contains plots of training and validation losses and mean IoU scores during model training. A subset of data inside the .npz file. It is created by the Segmentation Gym function train_model.py

    Additionally, BEST_MODEL.txt contains the name of the model with the best validation loss and mean IoU

    References *Segmentation Gym: Buscombe, D., & Goldstein, E. B. (2022). A reproducible and reusable pipeline for segmentation of geoscientific imagery. Earth and Space Science, 9, e2022EA002332. https://doi.org/10.1029/2022EA002332 See: https://github.com/Doodleverse/segmentation_gym

    **Demir, I., Koperski, K., Lindenbaum, D., Pang, G., Huang, J., Basu, S., Hughes, F., Tuia, D. and Raskar, R., 2018. Deepglobe 2018: A challenge to parse the earth through satellite images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (pp. 172-181).

  14. P

    Persian Handwritten Digits Dataset Dataset

    • paperswithcode.com
    Updated Oct 10, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Persian Handwritten Digits Dataset Dataset [Dataset]. https://paperswithcode.com/dataset/persian-handwritten-digits-dataset
    Explore at:
    Dataset updated
    Oct 10, 2024
    Description

    Description:

    👉 Download the dataset here

    Discover the rich and intricate patterns of Persian Handwritten Digits Dataset with our extensive dataset, thoughtfully curated to provide an unparalleled resource for Al and machine learning applications. This comprehensive collection comprises 150,000 high-resolution images, each meticulously generated to represent the full spectrum of Persian digits from 0 to 9. Leveraging advanced Generative Adversarial Networks (GANs), these images capture the subtle nuances of Persian handwriting, offering both diversity and authenticity in each digit's representation.

    Download Dataset

    Dataset Highlights

    Total Images: 150,000 high-quality images, offering a substantial dataset for robust model training and testing.

    Class Distribution: 15,000 images per digit class (0-9), ensuring a balanced and representative dataset across all Persian numerals.

    Image Resolution: Each image is rendered at a resolution of 28×28 pixels, ideal for a variety of machine learning tasks.

    Authenticity: Images are created using state-of-the-art GANs, ensuring that each digit closely mimics real Persian handwriting with realistic variations.

    Versatility: This dataset is perfectly suited for a wide range of applications, including but not limited to:

    Digit recognition

    Generative modeling

    Handwriting analysis

    OCR (Optical Character Recognition) systems development

    Cultural studies in Persian script

    Extended Features

    Diverse Handwriting Styles: The dataset captures a variety of handwriting styles, from bold and precise to delicate and ornate, reflecting the cultural and individual diversity in Persian script.

    Generative Learning Applications: The GAN-generated images serve as an excellent resource for those interested in exploring generative learning models, providing a rich dataset for experiments in generating or augmenting handwritten text.

    Pre-Processed & Ready-to-Use: The dataset is pre-processed and ready for immediate use, eliminating the need for additional formatting or resizing, saving valuable time and effort in your Al projects.

    Cultural and Linguistic Value: Beyond its technical applications, the dataset holds cultural significance, offering insights into Persian script, which can be valuable for linguists and cultural historians alike.

    Applications

    This dataset is an essential tool for:

    Researchers: Dive into the complexities of Persian script and explore novel approaches in digit recognition or handwriting analysis.

    Data Scientists: Enhance your machine learning models with a dataset that offers both quality and quantity, ensuring accurate and reliable outcomes.

    Al Developers: Build and refine OCR systems tailored specifically for Persian script, or explore the potential of GANs in generating handwritten text.

    Educators and Students: Utilize this dataset in academic settings to teach and learn about handwriting recognition, machine learning, and cultural studies.

    Conclusion

    Whether you're pioneering new frontiers in digit recognition, developing advanced OCR systems, or simply exploring the intersection of Al and cultural studies, the Persian Handwritten Digits dataset offers a wealth of possibilities. Its balanced, high-quality images and extensive class representation make it a valuable resource for anyone working with Persian script or interested in the broader field of handwritten digit recognition.

    This dataset is sourced from Kaggle.

  15. Multi-Camera Action Dataset (MCAD)

    • zenodo.org
    • data.niaid.nih.gov
    application/gzip +2
    Updated Jan 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wenhui Li; Yongkang Wong; An-An Liu; Yang Li; Yu-Ting Su; Mohan Kankanhalli; Wenhui Li; Yongkang Wong; An-An Liu; Yang Li; Yu-Ting Su; Mohan Kankanhalli (2020). Multi-Camera Action Dataset (MCAD) [Dataset]. http://doi.org/10.5281/zenodo.884592
    Explore at:
    application/gzip, json, txtAvailable download formats
    Dataset updated
    Jan 24, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Wenhui Li; Yongkang Wong; An-An Liu; Yang Li; Yu-Ting Su; Mohan Kankanhalli; Wenhui Li; Yongkang Wong; An-An Liu; Yang Li; Yu-Ting Su; Mohan Kankanhalli
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    Action recognition has received increasing attentions from the computer vision and machine learning community in the last decades. Ever since then, the recognition task has evolved from single view recording under controlled laboratory environment to unconstrained environment (i.e., surveillance environment or user generated videos). Furthermore, recent work focused on other aspect of action recognition problem, such as cross-view classification, cross domain learning, multi-modality learning, and action localization. Despite the large variations of studies, we observed limited works that explore the open-set and open-view classification problem, which is a genuine inherited properties in action recognition problem. In other words, a well designed algorithm should robustly identify an unfamiliar action as “unknown” and achieved similar performance across sensors with similar field of view. The Multi-Camera Action Dataset (MCAD) is designed to evaluate the open-view classification problem under surveillance environment.

    In our multi-camera action dataset, different from common action datasets we use a total of five cameras, which can be divided into two types of cameras (StaticandPTZ), to record actions. Particularly, there are three Static cameras (Cam04 & Cam05 & Cam06) with fish eye effect and two PanTilt-Zoom (PTZ) cameras (PTZ04 & PTZ06). Static camera has a resolution of 1280×960 pixels, while PTZ camera has a resolution of 704×576 pixels and a smaller field of view than Static camera. What’s more, we don’t control the illumination environment. We even set two contrasting conditions (Daytime and Nighttime environment) which makes our dataset more challenge than many controlled datasets with strongly controlled illumination environment.The distribution of the cameras is shown in the picture on the right.

    We identified 18 units single person daily actions with/without object which are inherited from the KTH, IXMAS, and TRECIVD datasets etc. The list and the definition of actions are shown in the table. These actions can also be divided into 4 types actions. Micro action without object (action ID of 01, 02 ,05) and with object (action ID of 10, 11, 12 ,13). Intense action with object (action ID of 03, 04 ,06, 07, 08, 09) and with object (action ID of 14, 15, 16, 17, 18). We recruited a total of 20 human subjects. Each candidate repeats 8 times (4 times during the day and 4 times in the evening) of each action under one camera. In the recording process, we use five cameras to record each action sample separately. During recording stage we just tell candidates the action name then they could perform the action freely with their own habit, only if they do the action in the field of view of the current camera. This can make our dataset much closer to reality. As a results there is high intra action class variation among different action samples as shown in picture of action samples.

    URL: http://mmas.comp.nus.edu.sg/MCAD/MCAD.html

    Resources:

    • IDXXXX.mp4.tar.gz contains video data for each individual
    • boundingbox.tar.gz contains person bounding box for all videos
    • protocol.json contains the evaluation protocol
    • img_list.txt contains the download URLs for the images version of the video data
    • idt_list.txt contians the download URLs for the improved Dense Trajectory feature
    • stip_list.txt contians the download URLs for the STIP feature

    How to Cite:

    Please cite the following paper if you use the MCAD dataset in your work (papers, articles, reports, books, software, etc):

    • Wenhui Liu, Yongkang Wong, An-An Liu, Yang Li, Yu-Ting Su, Mohan Kankanhalli
      Multi-Camera Action Dataset for Cross-Camera Action Recognition Benchmarking
      IEEE Winter Conference on Applications of Computer Vision (WACV), 2017.
      http://doi.org/10.1109/WACV.2017.28
  16. t

    Tucson Equity Priority Index (TEPI): Ward 4 Census Block Groups

    • teds.tucsonaz.gov
    Updated Feb 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tucson (2025). Tucson Equity Priority Index (TEPI): Ward 4 Census Block Groups [Dataset]. https://teds.tucsonaz.gov/maps/cotgis::tucson-equity-priority-index-tepi-ward-4-census-block-groups
    Explore at:
    Dataset updated
    Feb 4, 2025
    Dataset authored and provided by
    City of Tucson
    Area covered
    Description

    For detailed information, visit the Tucson Equity Priority Index StoryMap.Download the Data DictionaryWhat is the Tucson Equity Priority Index (TEPI)?The Tucson Equity Priority Index (TEPI) is a tool that describes the distribution of socially vulnerable demographics. It categorizes the dataset into 5 classes that represent the differing prioritization needs based on the presence of social vulnerability: Low (0-20), Low-Moderate (20-40), Moderate (40-60), Moderate-High (60-80) High (80-100). Each class represents 20% of the dataset’s features in order of their values. The features within the Low (0-20) classification represent the areas that, when compared to all other locations in the study area, have the lowest need for prioritization, as they tend to have less socially vulnerable demographics. The features that fall into the High (80-100) classification represent the 20% of locations in the dataset that have the greatest need for prioritization, as they tend to have the highest proportions of socially vulnerable demographics. How is social vulnerability measured?The Tucson Equity Priority Index (TEPI) examines the proportion of vulnerability per feature using 11 demographic indicators:Income Below Poverty: Households with income at or below the federal poverty level (FPL), which in 2023 was $14,500 for an individual and $30,000 for a family of fourUnemployment: Measured as the percentage of unemployed persons in the civilian labor forceHousing Cost Burdened: Homeowners who spend more than 30% of their income on housing expenses, including mortgage, maintenance, and taxesRenter Cost Burdened: Renters who spend more than 30% of their income on rentNo Health Insurance: Those without private health insurance, Medicare, Medicaid, or any other plan or programNo Vehicle Access: Households without automobile, van, or truck accessHigh School Education or Less: Those highest level of educational attainment is a High School diploma, equivalency, or lessLimited English Ability: Those whose ability to speak English is "Less Than Well."People of Color: Those who identify as anything other than Non-Hispanic White Disability: Households with one or more physical or cognitive disabilities Age: Groups that tend to have higher levels of vulnerability, including children (those below 18), and seniors (those 65 and older)An overall percentile value is calculated for each feature based on the total proportion of the above indicators in each area. How are the variables combined?These indicators are divided into two main categories that we call Thematic Indices: Economic and Personal Characteristics. The two thematic indices are further divided into five sub-indices called Tier-2 Sub-Indices. Each Tier-2 Sub-Index contains 2-3 indicators. Indicators are the datasets used to measure vulnerability within each sub-index. The variables for each feature are re-scaled using the percentile normalization method, which converts them to the same scale using values between 0 to 100. The variables are then combined first into each of the five Tier-2 Sub-Indices, then the Thematic Indices, then the overall TEPI using the mean aggregation method and equal weighting. The resulting dataset is then divided into the five classes, where:High Vulnerability (80-100%): Representing the top classification, this category includes the highest 20% of regions that are the most socially vulnerable. These areas require the most focused attention. Moderate-High Vulnerability (60-80%): This upper-middle classification includes areas with higher levels of vulnerability compared to the median. While not the highest, these areas are more vulnerable than a majority of the dataset and should be considered for targeted interventions. Moderate Vulnerability (40-60%): Representing the middle or median quintile, this category includes areas of average vulnerability. These areas may show a balanced mix of high and low vulnerability. Detailed examination of specific indicators is recommended to understand the nuanced needs of these areas. Low-Moderate Vulnerability (20-40%): Falling into the lower-middle classification, this range includes areas that are less vulnerable than most but may still exhibit certain vulnerable characteristics. These areas typically have a mix of lower and higher indicators, with the lower values predominating. Low Vulnerability (0-20%): This category represents the bottom classification, encompassing the lowest 20% of data points. Areas in this range are the least vulnerable, making them the most resilient compared to all other features in the dataset.

  17. t

    Tucson Equity Priority Index (TEPI): Pima County Block Groups

    • teds.tucsonaz.gov
    Updated Jul 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tucson (2024). Tucson Equity Priority Index (TEPI): Pima County Block Groups [Dataset]. https://teds.tucsonaz.gov/maps/cotgis::tucson-equity-priority-index-tepi-pima-county-block-groups
    Explore at:
    Dataset updated
    Jul 23, 2024
    Dataset authored and provided by
    City of Tucson
    Area covered
    Description

    For detailed information, visit the Tucson Equity Priority Index StoryMap.Download the Data DictionaryWhat is the Tucson Equity Priority Index (TEPI)?The Tucson Equity Priority Index (TEPI) is a tool that describes the distribution of socially vulnerable demographics. It categorizes the dataset into 5 classes that represent the differing prioritization needs based on the presence of social vulnerability: Low (0-20), Low-Moderate (20-40), Moderate (40-60), Moderate-High (60-80) High (80-100). Each class represents 20% of the dataset’s features in order of their values. The features within the Low (0-20) classification represent the areas that, when compared to all other locations in the study area, have the lowest need for prioritization, as they tend to have less socially vulnerable demographics. The features that fall into the High (80-100) classification represent the 20% of locations in the dataset that have the greatest need for prioritization, as they tend to have the highest proportions of socially vulnerable demographics. How is social vulnerability measured?The Tucson Equity Priority Index (TEPI) examines the proportion of vulnerability per feature using 11 demographic indicators:Income Below Poverty: Households with income at or below the federal poverty level (FPL), which in 2023 was $14,500 for an individual and $30,000 for a family of fourUnemployment: Measured as the percentage of unemployed persons in the civilian labor forceHousing Cost Burdened: Homeowners who spend more than 30% of their income on housing expenses, including mortgage, maintenance, and taxesRenter Cost Burdened: Renters who spend more than 30% of their income on rentNo Health Insurance: Those without private health insurance, Medicare, Medicaid, or any other plan or programNo Vehicle Access: Households without automobile, van, or truck accessHigh School Education or Less: Those highest level of educational attainment is a High School diploma, equivalency, or lessLimited English Ability: Those whose ability to speak English is "Less Than Well."People of Color: Those who identify as anything other than Non-Hispanic White Disability: Households with one or more physical or cognitive disabilities Age: Groups that tend to have higher levels of vulnerability, including children (those below 18), and seniors (those 65 and older)An overall percentile value is calculated for each feature based on the total proportion of the above indicators in each area. How are the variables combined?These indicators are divided into two main categories that we call Thematic Indices: Economic and Personal Characteristics. The two thematic indices are further divided into five sub-indices called Tier-2 Sub-Indices. Each Tier-2 Sub-Index contains 2-3 indicators. Indicators are the datasets used to measure vulnerability within each sub-index. The variables for each feature are re-scaled using the percentile normalization method, which converts them to the same scale using values between 0 to 100. The variables are then combined first into each of the five Tier-2 Sub-Indices, then the Thematic Indices, then the overall TEPI using the mean aggregation method and equal weighting. The resulting dataset is then divided into the five classes, where:High Vulnerability (80-100%): Representing the top classification, this category includes the highest 20% of regions that are the most socially vulnerable. These areas require the most focused attention. Moderate-High Vulnerability (60-80%): This upper-middle classification includes areas with higher levels of vulnerability compared to the median. While not the highest, these areas are more vulnerable than a majority of the dataset and should be considered for targeted interventions. Moderate Vulnerability (40-60%): Representing the middle or median quintile, this category includes areas of average vulnerability. These areas may show a balanced mix of high and low vulnerability. Detailed examination of specific indicators is recommended to understand the nuanced needs of these areas. Low-Moderate Vulnerability (20-40%): Falling into the lower-middle classification, this range includes areas that are less vulnerable than most but may still exhibit certain vulnerable characteristics. These areas typically have a mix of lower and higher indicators, with the lower values predominating. Low Vulnerability (0-20%): This category represents the bottom classification, encompassing the lowest 20% of data points. Areas in this range are the least vulnerable, making them the most resilient compared to all other features in the dataset.

  18. P

    HDSNE Chest X-ray Dataset Dataset

    • paperswithcode.com
    Updated Feb 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). HDSNE Chest X-ray Dataset Dataset [Dataset]. https://paperswithcode.com/dataset/hdsne-chest-x-ray-dataset
    Explore at:
    Dataset updated
    Feb 25, 2025
    Description

    Description:

    👉 Download the dataset here

    The continuous release of medical image databases, often featuring overlapping or identical categories, poses a significant challenge for the development of autonomous Computer-Aided Diagnostics (CAD) systems. These systems are essential for creating truly comprehensive medical diagnostics. However, one of the main obstacles lies in the frequent bulk release of datasets, which commonly suffer from two critical issues: image duplication and data corruption.

    The Problem of Dataset Redundancy

    Repeated releases of the same categories often fail to integrate or deduplicate similar images across databases, which can severely impact the effectiveness of machine learning models. Data duplication not only reduces the efficiency of learning models but also leads to overfitting, wastes computational resources, and increases the carbon footprint due to the energy required for training complex models.

    Download Dataset

    Proposed Solution: Global Data Aggregation Model

    In response to these challenges, we introduce a global data aggregation model that intelligently combines data from six distinct and reputable medical imaging databases. Each database was carefully curated to ensure the elimination of redundancies while preserving data diversity. Two robust algorithms were employed:

    Hash MD5 Algorithm: This algorithm generates unique hash values for each image, helping in the effective detection and elimination of duplicate images.

    t-SNE Algorithm: This technique is used for dimensionality reduction, with a tunable perplexity parameter to ensure accurate representation of high-dimensional data.

    Dataset Categories

    The final dataset includes an equal number of samples from three key categories of chest X-ray images:

    Normal Pneumonia COVID-19

    This uniform distribution ensures that the dataset is balanced, avoiding class imbalance—a common issue that can skew results in medical image analysis.

    Dataset Application & Model Evaluation

    The dataset was applied to the Inception V3 pre-trained model, a leading convolutional neural network (CNN) architecture known for its excellence in image classification tasks. The evaluation was conduct using the following performance metrics:

    Accuracy: An exceptional accuracy rate of 98.48% was achieve.

    Precision, Recall, and F1-score: The dataset showed strong performance across these metrics, reducing both false positives and false negatives.

    Statistical Validation: A t-test was conduct to validate the results, and the t-values and p-values confirm the statistical significance of the model’s performance.

    Conclusion

    The HDSNE Chest X-ray Dataset offers a novel and effective approach to data aggregation, tackling the issues of redundancy and data duplication that have long plagued the field of medical imaging. By maintaining a balance class distribution and eliminating unnecessary data, this dataset provides a cleaner and more efficient resource for training machine learning models.

    This dataset is sourced from Kaggle.

  19. m

    CLP-NC: Comprehensive Dataset for Machine Learning-Based Morphological...

    • data.mendeley.com
    Updated Mar 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Israt Jahan (2025). CLP-NC: Comprehensive Dataset for Machine Learning-Based Morphological Analysis of Cleft Lip and Palate Variants Using Multimodal Medical Imaging [Dataset]. http://doi.org/10.17632/yxp6fxdymp.3
    Explore at:
    Dataset updated
    Mar 18, 2025
    Authors
    Israt Jahan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The Cleft Lip and Palate vs. Non-Cleft (CLP-NC) Image Dataset is a high-resolution dataset designed for the automated detection and classification of cleft lip and palate anomalies. It comprises 3,987 images, categorized into two distinct classes: Cleft Lip and Palate (CLP) and Non-Cleft (NC). This dataset serves as a valuable resource for researchers in medical image analysis, deep learning, and clinical decision-making. Dataset Characteristics: Total Images: 3,987 Number of Classes: 2 Image Format: JPG Image Resolution: 640 x 640 pixels Annotation: Each image is manually labeled and verified by medical experts Data Preprocessing: Auto-orientation and histogram equalization applied for enhanced feature detection Augmentation Techniques: Rotation, scaling, brightness adjustments, flipping, and contrast modifications Categories and Annotations: The dataset includes images categorized into two classes: - Cleft Lip and Palate (CLP): Congenital anomaly where the upper lip and/or palate fails to develop properly. - Non-Cleft (NC): Normal craniofacial structures without cleft-related deformities. Dataset Structure and Splitting: The dataset is divided into two main parts: 1. Non-Augmented Part (Used for Classification): - Non-Augmented Imbalanced: Contains 168 images of Cleft Lip and Palate and 247 images of Non-Cleft. - Non-Augmented Balanced: Contains 500 images per class (Cleft Lip and Palate: 500, Non-Cleft: 500). 2. Augmented Part (Used for Object Detection): - Augmented Imbalanced: Includes 1,132 augmented images with an imbalanced distribution. - Augmented Balanced: Contains 1,440 images (Cleft Lip and Palate: 720, Non-Cleft: 720). The dataset is split into: - Training Set: 80% - Validation Set: 10% - Test Set: 10%

  20. a

    Stanford STL-10 Image Dataset

    • academictorrents.com
    bittorrent
    Updated Nov 26, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Adam Coates and Honglak Lee and Andrew Y. Ng (2015). Stanford STL-10 Image Dataset [Dataset]. https://academictorrents.com/details/a799a2845ac29a66c07cf74e2a2838b6c5698a6a
    Explore at:
    bittorrent(2640397119)Available download formats
    Dataset updated
    Nov 26, 2015
    Dataset authored and provided by
    Adam Coates and Honglak Lee and Andrew Y. Ng
    License

    https://academictorrents.com/nolicensespecifiedhttps://academictorrents.com/nolicensespecified

    Description

    ![]() The STL-10 dataset is an image recognition dataset for developing unsupervised feature learning, deep learning, self-taught learning algorithms. It is inspired by the CIFAR-10 dataset but with some modifications. In particular, each class has fewer labeled training examples than in CIFAR-10, but a very large set of unlabeled examples is provided to learn image models prior to supervised training. The primary challenge is to make use of the unlabeled data (which comes from a similar but different distribution from the labeled data) to build a useful prior. We also expect that the higher resolution of this dataset (96x96) will make it a challenging benchmark for developing more scalable unsupervised learning methods. Overview 10 classes: airplane, bird, car, cat, deer, dog, horse, monkey, ship, truck. Images are 96x96 pixels, color. 500 training images (10 pre-defined folds), 800 test images per class. 100000 unlabeled images for uns

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Neilsberg Research (2024). Income Distribution by Quintile: Mean Household Income in Middle Inlet, Wisconsin [Dataset]. https://www.neilsberg.com/research/datasets/94c785c2-7479-11ee-949f-3860777c1fe6/

Income Distribution by Quintile: Mean Household Income in Middle Inlet, Wisconsin

Explore at:
json, csvAvailable download formats
Dataset updated
Jan 11, 2024
Dataset authored and provided by
Neilsberg Research
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Area covered
Wisconsin, Middle Inlet
Variables measured
Income Level, Mean Household Income
Measurement technique
The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. It delineates income distributions across income quintiles (mentioned above) following an initial analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). For additional information about these estimations, please contact us via email at research@neilsberg.com
Dataset funded by
Neilsberg Research
Description
About this dataset

Context

The dataset presents the mean household income for each of the five quintiles in Middle Inlet, Wisconsin, as reported by the U.S. Census Bureau. The dataset highlights the variation in mean household income across quintiles, offering valuable insights into income distribution and inequality.

Key observations

  • Income disparities: The mean income of the lowest quintile (20% of households with the lowest income) is 21,360, while the mean income for the highest quintile (20% of households with the highest income) is 162,915. This indicates that the top earners earn 8 times compared to the lowest earners.
  • *Top 5%: * The mean household income for the wealthiest population (top 5%) is 282,509, which is 173.41% higher compared to the highest quintile, and 1322.61% higher compared to the lowest quintile.

Mean household income by quintiles in Middle Inlet, Wisconsin (in 2022 inflation-adjusted dollars))

Content

When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

Income Levels:

  • Lowest Quintile
  • Second Quintile
  • Third Quintile
  • Fourth Quintile
  • Highest Quintile
  • Top 5 Percent

Variables / Data Columns

  • Income Level: This column showcases the income levels (As mentioned above).
  • Mean Household Income: Mean household income, in 2022 inflation-adjusted dollars for the specific income level.

Good to know

Margin of Error

Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

Custom data

If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

Inspiration

Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

Recommended for further research

This dataset is a part of the main dataset for Middle Inlet town median household income. You can refer the same here

Search
Clear search
Close search
Google apps
Main menu