100+ datasets found
  1. Global electricity consumption 1980-2023

    • statista.com
    Updated Jan 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Global electricity consumption 1980-2023 [Dataset]. https://www.statista.com/statistics/280704/world-power-consumption/
    Explore at:
    Dataset updated
    Jan 2, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    Over the past half a century, the world's electricity consumption has continuously grown, reaching approximately 27,000 terawatt-hours by 2023. Between 1980 and 2023, electricity consumption more than tripled, while the global population reached eight billion people. Growth in industrialization and electricity access across the globe have further boosted electricity demand. China's economic rise and growth in global power use Since 2000, China's GDP has recorded an astonishing 15-fold increase, turning it into the second-largest global economy, behind only the United States. To fuel the development of its billion-strong population and various manufacturing industries, China requires more energy than any other country. As a result, it has become the largest electricity consumer in the world. Electricity consumption per capita In terms of per capita electricity consumption, China and other BRIC countries are still vastly outpaced by developed economies with smaller population sizes. Iceland, with a population of less than half a million inhabitants, consumes by far the most electricity per person in the world. Norway, Qatar, Canada, and the United States also have among the highest consumption rates. Multiple contributing factors such as the existence of power-intensive industries, household sizes, living situations, appliance and efficiency standards, and access to alternative heating fuels determine the amount of electricity the average person requires in each country.

  2. Renewable energy; consumption by energy source, technology and application

    • cbs.nl
    • ckan.mobidatalab.eu
    • +2more
    xml
    Updated Jan 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centraal Bureau voor de Statistiek (2025). Renewable energy; consumption by energy source, technology and application [Dataset]. https://www.cbs.nl/en-gb/figures/detail/84917ENG
    Explore at:
    xmlAvailable download formats
    Dataset updated
    Jan 31, 2025
    Dataset provided by
    Statistics Netherlands
    Authors
    Centraal Bureau voor de Statistiek
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    1990 - 2023
    Area covered
    The Netherlands
    Description

    This table expresses the use of renewable energy as gross final consumption of energy. Figures are presented in an absolute way, as well as related to the total energy use in the Netherlands. The total gross final energy consumption in the Netherlands (the denominator used to calculate the percentage of renewable energy per ‘Energy sources and techniques’) can be found in the table as ‘Total, including non-renewables’ and Energy application ‘Total’. The gross final energy consumption for the energy applications ‘Electricity’ and ‘Heat’ are also available. With these figures the percentages of the different energy sources and applications can be calculated; these values are not available in this table. The gross final energy consumption for ‘Transport’ is not available because of the complexity to calculate this. More information on this can be found in the yearly publication ‘Hernieuwbare energie in Nederland’.

    Renewable energy is energy from wind, hydro power, the sun, the earth, heat from outdoor air and biomass. This is energy from natural processes that is replenished constantly.

    The figures are broken down into energy source/technique and into energy application (electricity, heat and transport).

    This table focuses on the share of renewable energy according to the EU Renewable Energy Directive. Under this directive, countries can apply an administrative transfer by purchasing renewable energy from countries that have consumed more renewable energy than the agreed target. For 2020, the Netherlands has implemented such a transfer by purchasing renewable energy from Denmark. This transfer has been made visible in this table as a separate energy source/technique and two totals are included; a total with statistical transfer and a total without statistical transfer.

    Figures for 2020 and before were calculated based on RED I; in accordance with Eurostat these figures will not be modified anymore. Inconsistencies with other tables undergoing updates may occur.

    Data available from: 1990

    Status of the figures: This table contains definite figures up to and including 2022 and figures of 2023 are revised provisional figures.

    Changes as of January 2025 Renewable cooling has been added as Energy source and technique from 2021 onwards, in accordance with RED II. Figures for 2020 and earlier follow RED I definitions, renewable cooling isn’t a part of these definitions.
    The energy application “Heat” has been renamed to “Heating and cooling”, in accordance with RED II definitions. RED II is the current Renewable Energy Directive which entered into force in 2021

    Changes as of November 15th 2024 Figures for 2021-2023 have been adjusted. 2022 is now definitive, 2023 stays revised provisional. Because of new insights for windmills regarding own electricity use and capacity, figures on 2021 have been revised.

    Changes as of March 2024: Figures of the total energy applications of biogas, co-digestion of manure and other biogas have been restored for 2021 and 2022. The final energy consumption of non-compliant biogas (according to RED II) was wrongly included in the total final consumption of these types of biogas. Figures of total biogas, total biomass and total renewable energy were not influenced by this and therefore not adjusted.

    When will new figures be published? Provisional figures on the gross final consumption of renewable energy in broad outlines for the previous year are published each year in June. Revised provisional figures for the previous year appear each year in June.

    In November all figures on the consumption of renewable energy in the previous year will be published. These figures remain revised provisional, definite figures appear in November two years after the reporting year. Most important (expected) changes between revised provisional figures in November and definite figures a year later are the figures on solar photovoltaic energy. The figures on the share of total energy consumption in the Netherlands could also still be changed by the availability of adjusted figures on total energy consumption.

  3. Google energy consumption 2011-2023

    • statista.com
    Updated Oct 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Google energy consumption 2011-2023 [Dataset]. https://www.statista.com/statistics/788540/energy-consumption-of-google/
    Explore at:
    Dataset updated
    Oct 11, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    Google’s energy consumption has increased over the last few years, reaching 25.9 terawatt hours in 2023, up from 12.8 terawatt hours in 2019. The company has made efforts to make its data centers more efficient through customized high-performance servers, using smart temperature and lighting, advanced cooling techniques, and machine learning. Datacenters and energy Through its operations, Google pursues a more sustainable impact on the environment by creating efficient data centers that use less energy than the average, transitioning towards renewable energy, creating sustainable workplaces, and providing its users with the technological means towards a cleaner future for the future generations. Through its efficient data centers, Google has also managed to divert waste from its operations away from landfills. Reducing Google’s carbon footprint Google’s clean energy efforts is also related to their efforts to reduce their carbon footprint. Since their commitment to using 100 percent renewable energy, the company has met their targets largely through solar and wind energy power purchase agreements and buying renewable power from utilities. Google is one of the largest corporate purchasers of renewable energy in the world.

  4. Norway - Energy and Mining

    • data.humdata.org
    csv
    Updated Feb 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank Group (2025). Norway - Energy and Mining [Dataset]. https://data.humdata.org/dataset/world-bank-energy-and-mining-indicators-for-norway
    Explore at:
    csv(81566), csv(5323)Available download formats
    Dataset updated
    Feb 27, 2025
    Dataset provided by
    World Bankhttp://worldbank.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Norway
    Description

    Contains data from the World Bank's data portal. There is also a consolidated country dataset on HDX.

    The world economy needs ever-increasing amounts of energy to sustain economic growth, raise living standards, and reduce poverty. But today's trends in energy use are not sustainable. As the world's population grows and economies become more industrialized, nonrenewable energy sources will become scarcer and more costly. Data here on energy production, use, dependency, and efficiency are compiled by the World Bank from the International Energy Agency and the Carbon Dioxide Information Analysis Center.

  5. e

    World - Regulatory Indicators for Sustainable Energy - Dataset -...

    • energydata.info
    Updated Sep 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). World - Regulatory Indicators for Sustainable Energy - Dataset - ENERGYDATA.INFO [Dataset]. https://energydata.info/dataset/world-regulatory-indicators-sustainable-energy-2016
    Explore at:
    Dataset updated
    Sep 30, 2024
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    World
    Description

    Regulatory Indicators for Sustainable Energy (RISE) is a comprehensive policy scorecard assessing the investment climate for sustainable energy and focusing on three key areas: energy access, energy efficiency and renewable energy. RISE covers 111 countries across the developed and developing worlds, which together represent over 90% of global population, GDP and energy consumption. With 28 indicators, 85 sub-indicators and 158 data points per country, RISE helps policy makers to understand how they are doing, compare across countries, learn from peer groups, and identify priority actions for the future. The source data and documents for 111 countries are available at http://rise.worldbank.org/library To learn more, please visit http://rise.worldbank.org/

  6. Energy consumption when training LLMs in 2022 (in MWh)

    • statista.com
    Updated Sep 10, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Energy consumption when training LLMs in 2022 (in MWh) [Dataset]. https://www.statista.com/statistics/1384401/energy-use-when-training-llm-models/
    Explore at:
    Dataset updated
    Sep 10, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    Worldwide
    Description

    Energy consumption of artificial intelligence (AI) models in training is considerable, with both GPT-3, the original release of the current iteration of OpenAI's popular ChatGPT, and Gopher consuming well over a thousand-megawatt hours of energy simply for training. As this is only for the training model it is likely that the energy consumption for the entire usage and lifetime of GPT-3 and other large language models (LLMs) is significantly higher. The largest consumer of energy, GPT-3, consumed roughly the equivalent of 200 Germans in 2022. While not a staggering amount, it is a considerable use of energy.

    Energy savings through AI

    While it is undoubtedly true that training LLMs takes a considerable amount of energy, the energy savings are also likely to be substantial. Any AI model that improves processes by minute numbers might save hours on shipment, liters of fuel, or dozens of computations. Each one of these uses energy as well and the sum of energy saved through a LLM might vastly outperform its energy cost. A good example is mobile phone operators, of which a third expect that AI might reduce power consumption by ten to fifteen percent. Considering that much of the world uses mobile phones this would be a considerable energy saver.

    Emissions are considerable

    The amount of CO2 emissions from training LLMs is also considerable, with GPT-3 producing nearly 500 tonnes of CO2. This again could be radically changed based on the types of energy production creating the emissions. Most data center operators for instance would prefer to have nuclear energy play a key role, a significantly low-emission energy producer.

  7. Global Wind Power Tracker

    • data.subak.org
    google sheets
    Updated Feb 15, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Global Energy Monitor (2023). Global Wind Power Tracker [Dataset]. https://data.subak.org/dataset/global-wind-power-tracker
    Explore at:
    google sheetsAvailable download formats
    Dataset updated
    Feb 15, 2023
    Dataset provided by
    Global Energy Monitorhttp://globalenergymonitor.org/
    License

    Attribution-NonCommercial 2.0 (CC BY-NC 2.0)https://creativecommons.org/licenses/by-nc/2.0/
    License information was derived automatically

    Description

    The Global Wind Power Tracker (GWPT) is a worldwide dataset of utility-scale wind facilities. It includes wind farm phases with capacities of 10 megawatts (MW) or more. A wind project phase is generally defined as a group of one or more wind turbines that are installed under one permit, one power purchase agreement, and typically come online at the same time. The GWPT catalogs every wind farm phase at this capacity threshold of any status, including operating, announced, under development, under construction, shelved, cancelled, mothballed, or retired. Each wind farm included in the tracker is linked to a wiki page on the GEM wiki.

    Architecture

    Global Energy Monitor’s Global Wind Power Tracker uses a two-level system for organizing information, consisting of both a database and wiki pages with further information. The database tracks individual wind farm phases and includes information such as project owner, status, installation type, and location. A wiki page for each wind farm is created within the Global Energy Monitor wiki. The database and wiki pages are updated annually.

    Status Categories

    • Announced: Proposed projects that have been described in corporate or government plans but have not yet taken concrete steps such as applying for permits.
    • Development: Projects that are actively moving forward in seeking governmental approvals, land rights, or financing.
    • Construction: Site preparation and equipment installation are underway.
    • Operating: The project has been formally commissioned; commercial operation has begun.
    • Shelved: Suspension of operation has been announced, or no progress has been observed for at least two years.
    • Cancelled: A cancellation announcement has been made, or no progress has been observed for at least four years.
    • Retired: The project has been decommissioned.
    • Mothballed: The project is disused, but not dismantled.

    Research Process

    The Global Wind Power Tracker data set draws on various public data sources, including:

    • Government data on individual power wind farms (such as India Central Electricity Authority’s “Plant Wise Details of All India Renewable Energy Projects” and the U.S. EIA 860 Electric Generator Inventory), country energy and resource plans, and government websites tracking wind farm permits and applications;
    • Reports by power companies (both state-owned and private);
    • News and media reports;
    • Local non-governmental organizations tracking wind farms or permits.

    Global Energy Monitor researchers perform data validation by comparing our dataset against proprietary and public data such as Platts World Energy Power Plant database and the World Resource Institute’s Global Power Plant Database, as well as various company and government sources.

    Wiki Pages

    For each wind farm, a wiki page is created on Global Energy Monitor’s wiki. Under standard wiki convention, all information is linked to a publicly-accessible published reference, such as a news article, company or government report, or a regulatory permit. In order to ensure data integrity in the open-access wiki environment, Global Energy Monitor researchers review all edits of project wiki pages.

    Mapping

    To allow easy public access to the results, Global Energy Monitor worked with GreenInfo Network to develop a map-based and table-based interface using the Leaflet Open-Source JavaScript library. In the case of exact coordinates, locations have been visually determined using Google Maps, Google Earth, Wikimapia, or OpenStreetMap. For proposed projects, exact locations, if available, are from permit applications, or company or government documentation. If the location of a wind farm or proposal is not known, Global Energy Monitor identifies the most accurate location possible based on available information.

  8. plan4res public dataset for case study 3 "Cost of RES integration and impact...

    • data.subak.org
    • data.niaid.nih.gov
    • +1more
    csv
    Updated Feb 16, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    EDF (2023). plan4res public dataset for case study 3 "Cost of RES integration and impact of climate change for the European Electricity System in a future world with high shares of renewable energy sources" [Dataset]. https://data.subak.org/dataset/plan4res-public-dataset-for-case-study-3-cost-of-res-integration-and-impact-of-climate-change-f
    Explore at:
    csvAvailable download formats
    Dataset updated
    Feb 16, 2023
    Dataset provided by
    Électricité de Francehttp://www.edf.fr/
    EDF Energyhttps://www.edfenergy.com/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The objective of the plan4res project is to provide a well-structured and highly modular modelling framework to enable consistent insights into the different needs of future energy system. Three case studies will highlight the potentials of this framework by dealing with different aspects of a future energy systems.

    Case study 3 will focus on cost of RES integration and impact of climate change for the European electricity system in a future world with high shares of renewable energy sources. Ist overall objectives are to identify the Cost of RES integration and impact of climate change for the European electricity system in a future world with high shares of renewable energy sources will be the main focus of case study 3.

    The present dataset contains all the public data built for this case study.

    The related documentation is included in plan4res deliverable D4.5

    https://doi.org/10.5281/zenodo.3785010
    
  9. Global Solar Power Tracker

    • data.subak.org
    google sheets
    Updated Feb 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Global Energy Monitor (2023). Global Solar Power Tracker [Dataset]. https://data.subak.org/dataset/global-solar-power-tracker
    Explore at:
    google sheetsAvailable download formats
    Dataset updated
    Feb 15, 2023
    Dataset provided by
    Global Energy Monitorhttp://globalenergymonitor.org/
    License

    Attribution-NonCommercial 2.0 (CC BY-NC 2.0)https://creativecommons.org/licenses/by-nc/2.0/
    License information was derived automatically

    Description

    The Global Solar Power Tracker is a worldwide dataset of utility-scale solar PV facilities. It includes solar farm phases with capacities of 20 megawatts (MW) or more (10 MW or more in Arabic-speaking countries). A solar project phase is generally defined as a group of one or more solar units that are installed under one permit, one power purchase agreement, and typically come online at the same time. The Global Solar Power Tracker catalogs every solar farm phase at these capacity thresholds of any status, including operating, announced, under development, under construction, shelved, cancelled, mothballed, or retired. Each solar farm included in the tracker is linked to a wiki page on the GEM wiki.

    Architecture

    Global Energy Monitor’s Global Solar Power Tracker uses a two-level system for organizing information, consisting of both a database and wiki pages with further information. The database tracks individual solar farm phases and includes information such as project owner, status, and location. A wiki page for each solar farm is created within the Global Energy Monitor wiki. The database and wiki pages are updated annually.

    Status Categories

    • Announced: Proposed projects that have been described in corporate or government plans but have not yet taken concrete steps such as applying for permits.
    • Development: Projects that are actively moving forward in seeking governmental approvals, land rights, or financing.
    • Construction: Site preparation and equipment installation are underway.
    • Operating: The project has been formally commissioned; commercial operation has begun.
    • Shelved: Suspension of operation has been announced, or no progress has been observed for at least two years.
    • Cancelled: A cancellation announcement has been made, or no progress has been observed for at least four years.
    • Retired: The project has been decommissioned.
    • Mothballed: The project is disused, but not dismantled.

    Research Process

    The Global Solar Power Tracker data set draws on various public data sources, including: - Government data on individual power solar farms (such as India Central Electricity Authority’s “Plant Wise Details of All India Renewable Energy Projects” and the U.S. EIA 860 Electric Generator Inventory), country energy and resource plans, and government websites tracking solar farm permits and applications; - Reports by power companies (both state-owned and private); - News and media reports; - Local non-governmental organizations tracking solar farms or permits.

    Wiki Pages

    For each solar farm, a wiki page is created on Global Energy Monitor’s wiki. Under standard wiki convention, all information is linked to a publicly-accessible published reference, such as a news article, company or government report, or a regulatory permit. In order to ensure data integrity in the open-access wiki environment, Global Energy Monitor researchers review all edits of project wiki pages.

    Mapping

    To allow easy public access to the results, Global Energy Monitor worked with GreenInfo Network to develop a map-based and table-based interface using the Leaflet Open-Source JavaScript library. In the case of exact coordinates, locations have been visually determined using Google Maps, Google Earth, Wikimapia, or OpenStreetMap. For proposed projects, exact locations, if available, are from permit applications, or company or government documentation. If the location of a solar farm or proposal is not known, Global Energy Monitor identifies the most accurate location possible based on available information.

  10. Philippines - Energy and Mining

    • data.humdata.org
    csv
    Updated Feb 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank Group (2025). Philippines - Energy and Mining [Dataset]. https://data.humdata.org/dataset/world-bank-energy-and-mining-indicators-for-philippines
    Explore at:
    csv(88739), csv(1383)Available download formats
    Dataset updated
    Feb 27, 2025
    Dataset provided by
    World Bankhttp://worldbank.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Philippines
    Description

    Contains data from the World Bank's data portal. There is also a consolidated country dataset on HDX.

    The world economy needs ever-increasing amounts of energy to sustain economic growth, raise living standards, and reduce poverty. But today's trends in energy use are not sustainable. As the world's population grows and economies become more industrialized, nonrenewable energy sources will become scarcer and more costly. Data here on energy production, use, dependency, and efficiency are compiled by the World Bank from the International Energy Agency and the Carbon Dioxide Information Analysis Center.

  11. St. Kitts and Nevis - Energy and Mining

    • data.humdata.org
    csv
    Updated Feb 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank Group (2025). St. Kitts and Nevis - Energy and Mining [Dataset]. https://data.humdata.org/dataset/world-bank-energy-and-mining-indicators-for-st-kitts-and-nevis
    Explore at:
    csv(2908), csv(63458)Available download formats
    Dataset updated
    Feb 27, 2025
    Dataset provided by
    World Bankhttp://worldbank.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Saint Kitts and Nevis
    Description

    Contains data from the World Bank's data portal. There is also a consolidated country dataset on HDX.

    The world economy needs ever-increasing amounts of energy to sustain economic growth, raise living standards, and reduce poverty. But today's trends in energy use are not sustainable. As the world's population grows and economies become more industrialized, nonrenewable energy sources will become scarcer and more costly. Data here on energy production, use, dependency, and efficiency are compiled by the World Bank from the International Energy Agency and the Carbon Dioxide Information Analysis Center.

  12. Costa Rica - Energy and Mining

    • data.humdata.org
    csv
    Updated Feb 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank Group (2025). Costa Rica - Energy and Mining [Dataset]. https://data.humdata.org/dataset/world-bank-energy-and-mining-indicators-for-costa-rica
    Explore at:
    csv(78618), csv(1114)Available download formats
    Dataset updated
    Feb 27, 2025
    Dataset provided by
    World Bankhttp://worldbank.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Costa Rica
    Description

    Contains data from the World Bank's data portal. There is also a consolidated country dataset on HDX.

    The world economy needs ever-increasing amounts of energy to sustain economic growth, raise living standards, and reduce poverty. But today's trends in energy use are not sustainable. As the world's population grows and economies become more industrialized, nonrenewable energy sources will become scarcer and more costly. Data here on energy production, use, dependency, and efficiency are compiled by the World Bank from the International Energy Agency and the Carbon Dioxide Information Analysis Center.

  13. Indonesia - Energy and Mining

    • data.humdata.org
    csv
    Updated Feb 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank Group (2025). Indonesia - Energy and Mining [Dataset]. https://data.humdata.org/dataset/world-bank-energy-and-mining-indicators-for-indonesia
    Explore at:
    csv(85990), csv(1308)Available download formats
    Dataset updated
    Feb 27, 2025
    Dataset provided by
    World Bankhttp://worldbank.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Contains data from the World Bank's data portal. There is also a consolidated country dataset on HDX.

    The world economy needs ever-increasing amounts of energy to sustain economic growth, raise living standards, and reduce poverty. But today's trends in energy use are not sustainable. As the world's population grows and economies become more industrialized, nonrenewable energy sources will become scarcer and more costly. Data here on energy production, use, dependency, and efficiency are compiled by the World Bank from the International Energy Agency and the Carbon Dioxide Information Analysis Center.

  14. Global primary energy consumption 2000-2050, by energy source

    • statista.com
    • wwwexpressvpn.online
    Updated Mar 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Global primary energy consumption 2000-2050, by energy source [Dataset]. https://www.statista.com/statistics/222066/projected-global-energy-consumption-by-source/
    Explore at:
    Dataset updated
    Mar 19, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    Global primary energy consumption has increased dramatically in recent years and is projected to continue to increase until 2045. Only hydropower and renewable energy consumption are expected to increase between 2045 and 2050 and reach 30 percent of the global energy consumption. Energy consumption by country The distribution of energy consumption globally is disproportionately high among some countries. China, the United States, and India were by far the largest consumers of primary energy globally. On a per capita basis, it was Qatar, Singapore, the United Arab Emirates, and Iceland to have the highest per capita energy consumption. Renewable energy consumption Over the last two decades, renewable energy consumption has increased to reach over 90 exajoules in 2023. Among all countries globally, China had the largest installed renewable energy capacity as of that year, followed by the United States.

  15. United States - Energy and Mining

    • data.humdata.org
    csv
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank Group (2025). United States - Energy and Mining [Dataset]. https://data.humdata.org/dataset/475b0007-34ad-4b02-b886-9d836f577688?force_layout=desktop
    Explore at:
    csv(88056), csv(5394)Available download formats
    Dataset updated
    Feb 27, 2025
    Dataset provided by
    World Bankhttp://worldbank.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    Contains data from the World Bank's data portal. There is also a consolidated country dataset on HDX.

    The world economy needs ever-increasing amounts of energy to sustain economic growth, raise living standards, and reduce poverty. But today's trends in energy use are not sustainable. As the world's population grows and economies become more industrialized, nonrenewable energy sources will become scarcer and more costly. Data here on energy production, use, dependency, and efficiency are compiled by the World Bank from the International Energy Agency and the Carbon Dioxide Information Analysis Center.

  16. Denmark - Energy and Mining

    • data.humdata.org
    • data.amerigeoss.org
    csv
    Updated Feb 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank Group (2025). Denmark - Energy and Mining [Dataset]. https://data.humdata.org/dataset/world-bank-energy-and-mining-indicators-for-denmark
    Explore at:
    csv(82462), csv(4913)Available download formats
    Dataset updated
    Feb 27, 2025
    Dataset provided by
    World Bankhttp://worldbank.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Denmark
    Description

    Contains data from the World Bank's data portal. There is also a consolidated country dataset on HDX.

    The world economy needs ever-increasing amounts of energy to sustain economic growth, raise living standards, and reduce poverty. But today's trends in energy use are not sustainable. As the world's population grows and economies become more industrialized, nonrenewable energy sources will become scarcer and more costly. Data here on energy production, use, dependency, and efficiency are compiled by the World Bank from the International Energy Agency and the Carbon Dioxide Information Analysis Center.

  17. e

    World - Global Tracking Framework - Dataset - ENERGYDATA.INFO

    • energydata.info
    Updated May 31, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2019). World - Global Tracking Framework - Dataset - ENERGYDATA.INFO [Dataset]. https://energydata.info/dataset/world-global-tracking-framework-2017
    Explore at:
    Dataset updated
    May 31, 2019
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    World
    Description

    The Global Tracking Framework (GTF) measures how the world is progressing toward Sustainable Energy for All, tracking country-level indicators for energy access, renewable energy and energy efficiency. The third edition of the GTF provides an evidence-based look at progress at the regional, country, and international level toward ensuring universal access to modern energy services, doubling the share of renewable energy in the global energy mix, and doubling the global rate of improvement in energy efficiency. The report provides an overview of long-term trends since 1990 and focuses on progress achieved in the most recent period, 2012–14. The Global Tracking Framework 2017 was led by the World Bank and International Energy Agency (IEA), in coordination with the Energy Sector Management Assistance Program (ESMAP) and over 20 other partner agencies (full list available at http://gtf.esmap.org/about-us) To learn more, please visit http://gtf.esmap.org/

  18. Brazil - Energy and Mining

    • data.humdata.org
    csv
    Updated Feb 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank Group (2025). Brazil - Energy and Mining [Dataset]. https://data.humdata.org/dataset/world-bank-energy-and-mining-indicators-for-brazil
    Explore at:
    csv(2308), csv(86791)Available download formats
    Dataset updated
    Feb 27, 2025
    Dataset provided by
    World Bankhttp://worldbank.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Contains data from the World Bank's data portal. There is also a consolidated country dataset on HDX.

    The world economy needs ever-increasing amounts of energy to sustain economic growth, raise living standards, and reduce poverty. But today's trends in energy use are not sustainable. As the world's population grows and economies become more industrialized, nonrenewable energy sources will become scarcer and more costly. Data here on energy production, use, dependency, and efficiency are compiled by the World Bank from the International Energy Agency and the Carbon Dioxide Information Analysis Center.

  19. Solar Footprints in California

    • catalog.data.gov
    • data.ca.gov
    • +3more
    Updated Nov 27, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Energy Commission (2024). Solar Footprints in California [Dataset]. https://catalog.data.gov/dataset/solar-footprints-in-california-6251a
    Explore at:
    Dataset updated
    Nov 27, 2024
    Dataset provided by
    California Energy Commissionhttp://www.energy.ca.gov/
    Area covered
    California
    Description

    Solar Footprints in CaliforniaThis GIS dataset consists of polygons that represent the footprints of solar powered electric generation facilities and related infrastructure in California called Solar Footprints. The location of solar footprints was identified using other existing solar footprint datasets from various sources along with imagery interpretation. CEC staff reviewed footprints identified with imagery and digitized polygons to match the visual extent of each facility. Previous datasets of existing solar footprints used to locate solar facilities include: GIS Layers: (1) California Solar Footprints, (2) UC Berkeley Solar Points, (3) Kruitwagen et al. 2021, (4) BLM Renewable Project Facilities, (5) Quarterly Fuel and Energy Report (QFER)Imagery Datasets: Esri World Imagery, USGS National Agriculture Imagery Program (NAIP), 2020 SENTINEL 2 Satellite Imagery, 2023Solar facilities with large footprints such as parking lot solar, large rooftop solar, and ground solar were included in the solar footprint dataset. Small scale solar (approximately less than 0.5 acre) and residential footprints were not included. No other data was used in the production of these shapes. Definitions for the solar facilities identified via imagery are subjective and described as follows: Rooftop Solar: Solar arrays located on rooftops of large buildings. Parking lot Solar: Solar panels on parking lots roughly larger than 1 acre, or clusters of solar panels in adjacent parking lots. Ground Solar: Solar panels located on ground roughly larger than 1 acre, or large clusters of smaller scale footprints. Once all footprints identified by the above criteria were digitized for all California counties, the features were visually classified into ground, parking and rooftop categories. The features were also classified into rural and urban types using the 42 U.S. Code § 1490 definition for rural. In addition, the distance to the closest substation and the percentile category of this distance (e.g. 0-25th percentile, 25th-50th percentile) was also calculated. The coverage provided by this data set should not be assumed to be a complete accounting of solar footprints in California. Rather, this dataset represents an attempt to improve upon existing solar feature datasets and to update the inventory of "large" solar footprints via imagery, especially in recent years since previous datasets were published. This procedure produced a total solar project footprint of 150,250 acres. Attempts to classify these footprints and isolate the large utility-scale projects from the smaller rooftop solar projects identified in the data set is difficult. The data was gathered based on imagery, and project information that could link multiple adjacent solar footprints under one larger project is not known. However, partitioning all solar footprints that are at least partly outside of the techno-economic exclusions and greater than 7 acres yields a total footprint size of 133,493 acres. These can be approximated as utility-scale footprints. Metadata: (1) CBI Solar FootprintsAbstract: Conservation Biology Institute (CBI) created this dataset of solar footprints in California after it was found that no such dataset was publicly available at the time (Dec 2015-Jan 2016). This dataset is used to help identify where current ground based, mostly utility scale, solar facilities are being constructed and will be used in a larger landscape intactness model to help guide future development of renewable energy projects. The process of digitizing these footprints first began by utilizing an excel file from the California Energy Commission with lat/long coordinates of some of the older and bigger locations. After projecting those points and locating the facilities utilizing NAIP 2014 imagery, the developed area around each facility was digitized. While interpreting imagery, there were some instances where a fenced perimeter was clearly seen and was slightly larger than the actual footprint. For those cases the footprint followed the fenced perimeter since it limits wildlife movement through the area. In other instances, it was clear that the top soil had been scraped of any vegetation, even outside of the primary facility footprint. These footprints included the areas that were scraped within the fencing since, especially in desert systems, it has been near permanently altered. Other sources that guided the search for solar facilities included the Energy Justice Map, developed by the Energy Justice Network which can be found here:https://www.energyjustice.net/map/searchobject.php?gsMapsize=large&giCurrentpageiFacilityid;=1&gsTable;=facility&gsSearchtype;=advancedThe Solar Energy Industries Association’s “Project Location Map” which can be found here: https://www.seia.org/map/majorprojectsmap.phpalso assisted in locating newer facilities along with the "Power Plants" shapefile, updated in December 16th, 2015, downloaded from the U.S. Energy Information Administration located here:https://www.eia.gov/maps/layer_info-m.cfmThere were some facilities that were stumbled upon while searching for others, most of these are smaller scale sites located near farm infrastructure. Other sites were located by contacting counties that had solar developments within the county. Still, others were located by sleuthing around for proposals and company websites that had images of the completed facility. These helped to locate the most recently developed sites and these sites were digitized based on landmarks such as ditches, trees, roads and other permanent structures.Metadata: (2) UC Berkeley Solar PointsUC Berkeley report containing point location for energy facilities across the United States.2022_utility-scale_solar_data_update.xlsm (live.com)Metadata: (3) Kruitwagen et al. 2021Abstract: Photovoltaic (PV) solar energy generating capacity has grown by 41 per cent per year since 2009. Energy system projections that mitigate climate change and aid universal energy access show a nearly ten-fold increase in PV solar energy generating capacity by 2040. Geospatial data describing the energy system are required to manage generation intermittency, mitigate climate change risks, and identify trade-offs with biodiversity, conservation and land protection priorities caused by the land-use and land-cover change necessary for PV deployment. Currently available inventories of solar generating capacity cannot fully address these needs. Here we provide a global inventory of commercial-, industrial- and utility-scale PV installations (that is, PV generating stations in excess of 10 kilowatts nameplate capacity) by using a longitudinal corpus of remote sensing imagery, machine learning and a large cloud computation infrastructure. We locate and verify 68,661 facilities, an increase of 432 per cent (in number of facilities) on previously available asset-level data. With the help of a hand-labelled test set, we estimate global installed generating capacity to be 423 gigawatts (−75/+77 gigawatts) at the end of 2018. Enrichment of our dataset with estimates of facility installation date, historic land-cover classification and proximity to vulnerable areas allows us to show that most of the PV solar energy facilities are sited on cropland, followed by arid lands and grassland. Our inventory could aid PV delivery aligned with the Sustainable Development GoalsEnergy Resource Land Use Planning - Kruitwagen_etal_Nature.pdf - All Documents (sharepoint.com)Metadata: (4) BLM Renewable ProjectTo identify renewable energy approved and pending lease areas on BLM administered lands. To provide information about solar and wind energy applications and completed projects within the State of California for analysis and display internally and externally. This feature class denotes "verified" renewable energy projects at the California State BLM Office, displayed in GIS. The term "Verified" refers to the GIS data being constructed at the California State Office, using the actual application/maps with legal descriptions obtained from the renewable energy company. https://www.blm.gov/wo/st/en/prog/energy/renewable_energy https://www.blm.gov/style/medialib/blm/wo/MINERALS_REALTY_AND_RESOURCE_PROTECTION_/energy/solar_and_wind.Par.70101.File.dat/Public%20Webinar%20Dec%203%202014%20-%20Solar%20and%20Wind%20Regulations.pdfBLM CA Renewable Energy Projects | BLM GBP Hub (arcgis.com)Metadata: (5) Quarterly Fuel and Energy Report (QFER) California Power Plants - Overview (arcgis.com)

  20. Global electricity demand from data centers, AI, and crypto 2022-2026, by...

    • statista.com
    Updated Jun 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Global electricity demand from data centers, AI, and crypto 2022-2026, by scenario [Dataset]. https://www.statista.com/statistics/1462540/global-electricity-demand-from-data-centers-artificial-intelligence-crypto-forecast/
    Explore at:
    Dataset updated
    Jun 28, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    Worldwide
    Description

    In 2022, the global electricity consumption from data centers, artificial intelligence, and cryptocurrencies amounted to 460 terawatt-hours. By 2026, this figure will range between 620 and 1,050 terawatt-hours, depending on the future deployment of these technologies. Data centers, AI, and crypto will then account for a large share of the global electricity consumption, up from only some two percent in 2022.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Global electricity consumption 1980-2023 [Dataset]. https://www.statista.com/statistics/280704/world-power-consumption/
Organization logo

Global electricity consumption 1980-2023

Explore at:
99 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jan 2, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
World
Description

Over the past half a century, the world's electricity consumption has continuously grown, reaching approximately 27,000 terawatt-hours by 2023. Between 1980 and 2023, electricity consumption more than tripled, while the global population reached eight billion people. Growth in industrialization and electricity access across the globe have further boosted electricity demand. China's economic rise and growth in global power use Since 2000, China's GDP has recorded an astonishing 15-fold increase, turning it into the second-largest global economy, behind only the United States. To fuel the development of its billion-strong population and various manufacturing industries, China requires more energy than any other country. As a result, it has become the largest electricity consumer in the world. Electricity consumption per capita In terms of per capita electricity consumption, China and other BRIC countries are still vastly outpaced by developed economies with smaller population sizes. Iceland, with a population of less than half a million inhabitants, consumes by far the most electricity per person in the world. Norway, Qatar, Canada, and the United States also have among the highest consumption rates. Multiple contributing factors such as the existence of power-intensive industries, household sizes, living situations, appliance and efficiency standards, and access to alternative heating fuels determine the amount of electricity the average person requires in each country.

Search
Clear search
Close search
Google apps
Main menu