https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy
According to Cognitive Market Research, the global Ai Training Data market size is USD 1865.2 million in 2023 and will expand at a compound annual growth rate (CAGR) of 23.50% from 2023 to 2030.
The demand for Ai Training Data is rising due to the rising demand for labelled data and diversification of AI applications.
Demand for Image/Video remains higher in the Ai Training Data market.
The Healthcare category held the highest Ai Training Data market revenue share in 2023.
North American Ai Training Data will continue to lead, whereas the Asia-Pacific Ai Training Data market will experience the most substantial growth until 2030.
Market Dynamics of AI Training Data Market
Key Drivers of AI Training Data Market
Rising Demand for Industry-Specific Datasets to Provide Viable Market Output
A key driver in the AI Training Data market is the escalating demand for industry-specific datasets. As businesses across sectors increasingly adopt AI applications, the need for highly specialized and domain-specific training data becomes critical. Industries such as healthcare, finance, and automotive require datasets that reflect the nuances and complexities unique to their domains. This demand fuels the growth of providers offering curated datasets tailored to specific industries, ensuring that AI models are trained with relevant and representative data, leading to enhanced performance and accuracy in diverse applications.
In July 2021, Amazon and Hugging Face, a provider of open-source natural language processing (NLP) technologies, have collaborated. The objective of this partnership was to accelerate the deployment of sophisticated NLP capabilities while making it easier for businesses to use cutting-edge machine-learning models. Following this partnership, Hugging Face will suggest Amazon Web Services as a cloud service provider for its clients.
(Source: about:blank)
Advancements in Data Labelling Technologies to Propel Market Growth
The continuous advancements in data labelling technologies serve as another significant driver for the AI Training Data market. Efficient and accurate labelling is essential for training robust AI models. Innovations in automated and semi-automated labelling tools, leveraging techniques like computer vision and natural language processing, streamline the data annotation process. These technologies not only improve the speed and scalability of dataset preparation but also contribute to the overall quality and consistency of labelled data. The adoption of advanced labelling solutions addresses industry challenges related to data annotation, driving the market forward amidst the increasing demand for high-quality training data.
In June 2021, Scale AI and MIT Media Lab, a Massachusetts Institute of Technology research centre, began working together. To help doctors treat patients more effectively, this cooperation attempted to utilize ML in healthcare.
www.ncbi.nlm.nih.gov/pmc/articles/PMC7325854/
Restraint Factors Of AI Training Data Market
Data Privacy and Security Concerns to Restrict Market Growth
A significant restraint in the AI Training Data market is the growing concern over data privacy and security. As the demand for diverse and expansive datasets rises, so does the need for sensitive information. However, the collection and utilization of personal or proprietary data raise ethical and privacy issues. Companies and data providers face challenges in ensuring compliance with regulations and safeguarding against unauthorized access or misuse of sensitive information. Addressing these concerns becomes imperative to gain user trust and navigate the evolving landscape of data protection laws, which, in turn, poses a restraint on the smooth progression of the AI Training Data market.
How did COVID–19 impact the Ai Training Data market?
The COVID-19 pandemic has had a multifaceted impact on the AI Training Data market. While the demand for AI solutions has accelerated across industries, the availability and collection of training data faced challenges. The pandemic disrupted traditional data collection methods, leading to a slowdown in the generation of labeled datasets due to restrictions on physical operations. Simultaneously, the surge in remote work and the increased reliance on AI-driven technologies for various applications fueled the need for diverse and relevant training data. This duali...
https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy
According to Cognitive Market Research, the global Artificial Intelligence in Retail market size is USD 4951.2 million in 2023and will expand at a compound annual growth rate (CAGR) of 39.50% from 2023 to 2030.
Enhanced customer personalization to provide viable market output
Demand for online remains higher in Artificial Intelligence in the Retail market.
The machine learning and deep learning category held the highest Artificial Intelligence in Retail market revenue share in 2023.
North American Artificial Intelligence In Retail will continue to lead, whereas the Asia-Pacific Artificial Intelligence In Retail market will experience the most substantial growth until 2030.
Enhanced Customer Personalization to Provide Viable Market Output
A primary driver of Artificial Intelligence in the Retail market is the pursuit of enhanced customer personalization. A.I. algorithms analyze vast datasets of customer behaviors, preferences, and purchase history to deliver highly personalized shopping experiences. Retailers leverage this insight to offer tailored product recommendations, targeted marketing campaigns, and personalized promotions. The drive for superior customer personalization not only enhances customer satisfaction but also increases engagement and boosts sales. This focus on individualized interactions through A.I. applications is a key driver shaping the dynamic landscape of A.I. in the retail market.
January 2023 - Microsoft and digital start-up AiFi worked together to offer Smart Store Analytics. It is a cloud-based tracking solution that helps merchants with operational and shopper insights for intelligent, cashierless stores.
Source-techcrunch.com/2023/01/10/aifi-microsoft-smart-store-analytics/
Improved Operational Efficiency to Propel Market Growth
Another pivotal driver is the quest for improved operational efficiency within the retail sector. A.I. technologies streamline various aspects of retail operations, from inventory management and demand forecasting to supply chain optimization and cashier-less checkout systems. By automating routine tasks and leveraging predictive analytics, retailers can enhance efficiency, reduce costs, and minimize errors. The pursuit of improved operational efficiency is a key motivator for retailers to invest in AI solutions, enabling them to stay competitive, adapt to dynamic market conditions, and meet the evolving demands of modern consumers in the highly competitive artificial intelligence (AI) retail market.
January 2023 - The EY Retail Intelligence solution, which is based on Microsoft Cloud, was introduced by the Fintech business EY to give customers a safe and efficient shopping experience. In order to deliver insightful information, this solution makes use of Microsoft Cloud for Retail and its technologies, which include image recognition, analytics, and artificial intelligence (A.I.).
Market Dynamics of the Artificial Intelligence in the Retail market
Data Security Concerns to Restrict Market Growth
A prominent restraint in Artificial Intelligence in the Retail market is the pervasive concern over data security. As retailers increasingly rely on A.I. to process vast amounts of customer data for personalized experiences, there is a growing apprehension regarding the protection of sensitive information. The potential for data breaches and cyberattacks poses a significant challenge, as retailers must navigate the delicate balance between utilizing customer data for AI-driven initiatives and safeguarding it against potential security threats. Addressing these concerns is crucial to building and maintaining consumer trust in A.I. applications within the retail sector.
Impact of COVID–19 on the Artificial Intelligence in the Retail market
The COVID-19 pandemic significantly influenced artificial intelligence in the retail market, accelerating the adoption of A.I. technologies across the industry. With lockdowns, social distancing measures, and a surge in online shopping, retailers turned to A.I. to navigate the challenges posed by the pandemic. AI-powered solutions played a crucial role in optimizing supply chain management, predicting shifts in consumer behavior, and enhancing e-commerce experiences. Retailers lever...
Executive Summary: Artificial intelligence (AI) is a transformative technology that holds promise for tremendous societal and economic benefit. AI has the potential to revolutionize how we live, work, learn, discover, and communicate. AI research can further our national priorities, including increased economic prosperity, improved educational opportunities and quality of life, and enhanced national and homeland security. Because of these potential benefits, the U.S. government has invested in AI research for many years. Yet, as with any significant technology in which the Federal government has interest, there are not only tremendous opportunities but also a number of considerations that must be taken into account in guiding the overall direction of Federally-funded R&D in AI. On May 3, 2016,the Administration announced the formation of a new NSTC Subcommittee on Machine Learning and Artificial intelligence, to help coordinate Federal activity in AI.1 This Subcommittee, on June 15, 2016, directed the Subcommittee on Networking and Information Technology Research and Development (NITRD) to create a National Artificial Intelligence Research and Development Strategic Plan. A NITRD Task Force on Artificial Intelligence was then formed to define the Federal strategic priorities for AI R&D, with particular attention on areas that industry is unlikely to address. This National Artificial Intelligence R&D Strategic Plan establishes a set of objectives for Federallyfunded AI research, both research occurring within the government as well as Federally-funded research occurring outside of government, such as in academia. The ultimate goal of this research is to produce new AI knowledge and technologies that provide a range of positive benefits to society, while minimizing the negative impacts. To achieve this goal, this AI R&D Strategic Plan identifies the following priorities for Federally-funded AI research: Strategy 1: Make long-term investments in AI research. Prioritize investments in the next generation of AI that will drive discovery and insight and enable the United States to remain a world leader in AI. Strategy 2: Develop effective methods for human-AI collaboration. Rather than replace humans, most AI systems will collaborate with humans to achieve optimal performance. Research is needed to create effective interactions between humans and AI systems. Strategy 3: Understand and address the ethical, legal, and societal implications of AI. We expect AI technologies to behave according to the formal and informal norms to which we hold our fellow humans. Research is needed to understand the ethical, legal, and social implications of AI, and to develop methods for designing AI systems that align with ethical, legal, and societal goals. Strategy 4: Ensure the safety and security of AI systems. Before AI systems are in widespread use, assurance is needed that the systems will operate safely and securely, in a controlled, well-defined, and well-understood manner. Further progress in research is needed to address this challenge of creating AI systems that are reliable, dependable, and trustworthy. Strategy 5: Develop shared public datasets and environments for AI training and testing. The depth, quality, and accuracy of training datasets and resources significantly affect AI performance. Researchers need to develop high quality datasets and environments and enable responsible access to high-quality datasets as well as to testing and training resources. Strategy 6: Measure and evaluate AI technologies through standards and benchmarks. . Essential to advancements in AI are standards, benchmarks, testbeds, and community engagement that guide and evaluate progress in AI. Additional research is needed to develop a broad spectrum of evaluative techniques. Strategy 7: Better understand the national AI R&D workforce needs. Advances in AI will require a strong community of AI researchers. An improved understanding of current and future R&D workforce demands in AI is needed to help ensure that sufficient AI experts are available to address the strategic R&D areas outlined in this plan. The AI R&D Strategic Plan closes with two recommendations: Recommendation 1: Develop an AI R&D implementation framework to identify S&T opportunities and support effective coordination of AI R&D investments, consistent with Strategies 1-6 of this plan. Recommendation 2: Study the national landscape for creating and sustaining a healthy AI R&D workforce, consistent with Strategy 7 of this plan.
https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/
AI Content Detector Market size is growing at a moderate pace with substantial growth rates over the last few years and is estimated that the market will grow significantly in the forecasted period i.e. 2024 to 2031.
Global AI Content Detector Market Drivers
Rising Concerns Over Misinformation: The proliferation of fake news, misinformation, and inappropriate content on digital platforms has led to increased demand for AI content detectors. These systems can identify and flag misleading or harmful content, helping to combat the spread of misinformation online.
Regulatory Compliance Requirements: Stringent regulations and legal obligations regarding content moderation, data privacy, and online safety drive the adoption of AI content detectors. Organizations need to comply with regulations such as the General Data Protection Regulation (GDPR) and the Digital Millennium Copyright Act (DMCA), spurring investment in AI-powered content moderation solutions.
Growing Volume of User-Generated Content: The exponential growth of user-generated content on social media platforms, forums, and websites has overwhelmed traditional moderation methods. AI content detectors offer scalable and efficient solutions for analyzing vast amounts of content in real-time, enabling platforms to maintain a safe and healthy online environment for users.
Advancements in AI and Machine Learning Technologies: Continuous advancements in artificial intelligence and machine learning algorithms have enhanced the capabilities of content detection systems. AI models trained on large datasets can accurately identify various types of content, including text, images, videos, and audio, with high precision and speed.
Brand Protection and Reputation Management: Businesses prioritize brand protection and reputation management in the digital age, as negative content or misinformation can severely impact brand image and consumer trust. AI content detectors help organizations identify and address potentially damaging content proactively, safeguarding their reputation and brand integrity.
Demand for Personalized User Experiences: Consumers increasingly expect personalized online experiences tailored to their preferences and interests. AI content detectors analyze user behavior and content interactions to deliver relevant and engaging content, driving user engagement and satisfaction.
Adoption of AI-Powered Moderation Tools by Social Media Platforms: Major social media platforms and online communities are investing in AI-powered moderation tools to enforce community guidelines, prevent abuse and harassment, and maintain a positive user experience. The need to address content moderation challenges at scale drives the adoption of AI content detectors.
Mitigation of Online Risks and Threats: Online platforms face various risks and threats, including cyberbullying, hate speech, terrorist propaganda, and child exploitation content. AI content detectors help mitigate these risks by identifying and removing harmful content, thereby creating a safer online environment for users.
Cost and Resource Efficiency: Traditional content moderation methods, such as manual review by human moderators, are time-consuming, labor-intensive, and costly. AI content detectors automate the moderation process, reducing the need for human intervention and minimizing operational expenses for organizations.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abstract:
In recent years there has been an increased interest in Artificial Intelligence for IT Operations (AIOps). This field utilizes monitoring data from IT systems, big data platforms, and machine learning to automate various operations and maintenance (O&M) tasks for distributed systems.
The major contributions have been materialized in the form of novel algorithms.
Typically, researchers took the challenge of exploring one specific type of observability data sources, such as application logs, metrics, and distributed traces, to create new algorithms.
Nonetheless, due to the low signal-to-noise ratio of monitoring data, there is a consensus that only the analysis of multi-source monitoring data will enable the development of useful algorithms that have better performance.
Unfortunately, existing datasets usually contain only a single source of data, often logs or metrics. This limits the possibilities for greater advances in AIOps research.
Thus, we generated high-quality multi-source data composed of distributed traces, application logs, and metrics from a complex distributed system. This paper provides detailed descriptions of the experiment, statistics of the data, and identifies how such data can be analyzed to support O&M tasks such as anomaly detection, root cause analysis, and remediation.
General Information:
This repository contains the simple scripts for data statistics, and link to the multi-source distributed system dataset.
You may find details of this dataset from the original paper:
Sasho Nedelkoski, Jasmin Bogatinovski, Ajay Kumar Mandapati, Soeren Becker, Jorge Cardoso, Odej Kao, "Multi-Source Distributed System Data for AI-powered Analytics".
If you use the data, implementation, or any details of the paper, please cite!
BIBTEX:
_
@inproceedings{nedelkoski2020multi, title={Multi-source Distributed System Data for AI-Powered Analytics}, author={Nedelkoski, Sasho and Bogatinovski, Jasmin and Mandapati, Ajay Kumar and Becker, Soeren and Cardoso, Jorge and Kao, Odej}, booktitle={European Conference on Service-Oriented and Cloud Computing}, pages={161--176}, year={2020}, organization={Springer} }
_
The multi-source/multimodal dataset is composed of distributed traces, application logs, and metrics produced from running a complex distributed system (Openstack). In addition, we also provide the workload and fault scripts together with the Rally report which can serve as ground truth. We provide two datasets, which differ on how the workload is executed. The sequential_data is generated via executing workload of sequential user requests. The concurrent_data is generated via executing workload of concurrent user requests.
The raw logs in both datasets contain the same files. If the user wants the logs filetered by time with respect to the two datasets, should refer to the timestamps at the metrics (they provide the time window). In addition, we suggest to use the provided aggregated time ranged logs for both datasets in CSV format.
Important: The logs and the metrics are synchronized with respect time and they are both recorded on CEST (central european standard time). The traces are on UTC (Coordinated Universal Time -2 hours). They should be synchronized if the user develops multimodal methods. Please read the IMPORTANT_experiment_start_end.txt file before working with the data.
Our GitHub repository with the code for the workloads and scripts for basic analysis can be found at: https://github.com/SashoNedelkoski/multi-source-observability-dataset/
https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/
Artificial Intelligence (AI) In Construction Market size was valued at USD 1.53 Billion in 2024 and is projected to reach USD 14.21 Billion by 2031, growing at a CAGR of 36.00% during the forecast period 2024-2031.
Global Artificial Intelligence (AI) In Construction Market Drivers
Technological Progress
Data Availability and Big Data Analytics: Building Information Modeling (BIM), drones, and Internet of Things (IoT) sensors are just a few of the sources that the construction sector is using to generate enormous amounts of data. AI uses this data to improve decision-making, streamline workflows, and offer predictive insights. AI applications are more reliable and accurate when big data analytics is used to handle and analyze complicated datasets.
Automation and Machine Learning: More complex and precise predictive models are made possible by developments in machine learning algorithms. Artificial intelligence (AI) automation is increasing efficiency by optimizing processes including resource allocation, project management, and scheduling. AI-powered robotics are also being utilized to increase safety and decrease human error in jobs like welding, demolition, and bricklaying.
Computer Vision: This technology is particularly transformative in construction. AI-powered computer vision can monitor site progress, ensure safety compliance, and detect defects in real-time. Drones and cameras equipped with AI analyze construction sites to provide actionable insights, improving quality control and reducing costly rework.
Economic Factors
Cost Reduction: AI helps in significantly reducing costs associated with construction projects. Through predictive maintenance, AI minimizes downtime and extends the life of equipment. Optimized resource management ensures materials are used efficiently, reducing waste and costs. Furthermore, AI-driven project management tools can prevent delays and associated costs by identifying potential issues early.
Competitive Advantage: Companies adopting AI technologies gain a competitive edge by enhancing their efficiency, reducing operational costs, and delivering projects faster. This is increasingly important in a highly competitive industry where margins are often tight. Early adopters of AI in construction are likely to set industry benchmarks and attract more business.
Operational Efficiencies
Enhanced Productivity: AI streamlines construction processes by automating repetitive tasks, improving scheduling, and optimizing workflows. This results in increased productivity and allows human workers to focus on more complex, value-added activities. AI also enhances the accuracy of labor forecasting and deployment, ensuring optimal use of human resources.
Improved Safety: Safety is a critical concern in construction. AI technologies, such as wearable devices and computer vision, monitor worker movements and site conditions in real-time to detect hazards and prevent accidents. AI-driven predictive analytics can foresee potential safety issues, allowing for proactive measures to mitigate risks.
As the frenzy around generative artificial intelligence intensifies, The Information has built a database of more than 100 companies making software and services that use generative AI. Investors are jockeying to join the action: Together, the startups on our list have raised more than $20 billion. Our data comes from our reporting, founders, investors and PitchBook, which provides private market data. We will regularly update the database with more companies and more information about how they are growing.
In 2022, the global total corporate investment in artificial intelligence (AI) reached almost 92 billion U.S. dollars, a slight decrease from the previous year. In 2018, the yearly investment in AI saw a slight downturn, but that was only temporary. Private investments account for a bulk of total AI corporate investment. AI investment has increased more than sixfold since 2016, a staggering growth in any market. It is a testament to the importance of the development of AI around the world.
What is Artificial Intelligence (AI)?
Artificial intelligence, once the subject of people’s imaginations and the main plot of science fiction movies for decades, is no longer a piece of fiction, but rather commonplace in people’s daily lives whether they realize it or not. AI refers to the ability of a computer or machine to imitate the capacities of the human brain, which often learns from previous experiences to understand and respond to language, decisions, and problems. These AI capabilities, such as computer vision and conversational interfaces, have become embedded throughout various industries’ standard business processes.
AI investment and startups
The global AI market, valued at 142.3 billion U.S. dollars as of 2023, continues to grow driven by the influx of investments it receives. This is a rapidly growing market, looking to expand from billions to trillions of U.S. dollars in market size in the coming years. From 2020 to 2022, investment in startups globally, and in particular AI startups, increased by five billion U.S. dollars, nearly double its previous investments, with much of it coming from private capital from U.S. companies. The most recent top-funded AI businesses are all machine learning and chatbot companies, focusing on human interface with machines.
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The U.S. AI Training Dataset Market size was valued at USD 590.4 million in 2023 and is projected to reach USD 1880.70 million by 2032, exhibiting a CAGR of 18.0 % during the forecasts period. The U. S. AI training dataset market deals with the generation, selection, and organization of datasets used in training artificial intelligence. These datasets contain the requisite information that the machine learning algorithms need to infer and learn from. Conducts include the advancement and improvement of AI solutions in different fields of business like transport, medical analysis, computing language, and money related measurements. The applications include training the models for activities such as image classification, predictive modeling, and natural language interface. Other emerging trends are the change in direction of more and better-quality, various and annotated data for the improvement of model efficiency, synthetic data generation for data shortage, and data confidentiality and ethical issues in dataset management. Furthermore, due to arising technologies in artificial intelligence and machine learning, there is a noticeable development in building and using the datasets. Recent developments include: In February 2024, Google struck a deal worth USD 60 million per year with Reddit that will give the former real-time access to the latter’s data and use Google AI to enhance Reddit’s search capabilities. , In February 2024, Microsoft announced around USD 2.1 billion investment in Mistral AI to expedite the growth and deployment of large language models. The U.S. giant is expected to underpin Mistral AI with Azure AI supercomputing infrastructure to provide top-notch scale and performance for AI training and inference workloads. .
Success.ai’s LinkedIn Data Solutions offer unparalleled access to a vast dataset of 700 million public LinkedIn profiles and 70 million LinkedIn company records, making it one of the most comprehensive and reliable LinkedIn datasets available on the market today. Our employee data and LinkedIn data are ideal for businesses looking to streamline recruitment efforts, build highly targeted lead lists, or develop personalized B2B marketing campaigns.
Whether you’re looking for recruiting data, conducting investment research, or seeking to enrich your CRM systems with accurate and up-to-date LinkedIn profile data, Success.ai provides everything you need with pinpoint precision. By tapping into LinkedIn company data, you’ll have access to over 40 critical data points per profile, including education, professional history, and skills.
Key Benefits of Success.ai’s LinkedIn Data: Our LinkedIn data solution offers more than just a dataset. With GDPR-compliant data, AI-enhanced accuracy, and a price match guarantee, Success.ai ensures you receive the highest-quality data at the best price in the market. Our datasets are delivered in Parquet format for easy integration into your systems, and with millions of profiles updated daily, you can trust that you’re always working with fresh, relevant data.
API Integration: Our datasets are easily accessible via API, allowing for seamless integration into your existing systems. This ensures that you can automate data retrieval and update processes, maintaining the flow of fresh, accurate information directly into your applications.
Global Reach and Industry Coverage: Our LinkedIn data covers professionals across all industries and sectors, providing you with detailed insights into businesses around the world. Our geographic coverage spans 259M profiles in the United States, 22M in the United Kingdom, 27M in India, and thousands of profiles in regions such as Europe, Latin America, and Asia Pacific. With LinkedIn company data, you can access profiles of top companies from the United States (6M+), United Kingdom (2M+), and beyond, helping you scale your outreach globally.
Why Choose Success.ai’s LinkedIn Data: Success.ai stands out for its tailored approach and white-glove service, making it easy for businesses to receive exactly the data they need without managing complex data platforms. Our dedicated Success Managers will curate and deliver your dataset based on your specific requirements, so you can focus on what matters most—reaching the right audience. Whether you’re sourcing employee data, LinkedIn profile data, or recruiting data, our service ensures a seamless experience with 99% data accuracy.
Key Use Cases:
https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy
According to Cognitive Market Research, the global Cloud Aimarket size is USD 55921.2 million in 2023 and will expand at a compound annual growth rate (CAGR) of 33.50% from 2023 to 2030.
North America held the major market of more than 40% of the global revenue with a market size of USD 22368.48 million in 2023 and will grow at a compound annual growth rate (CAGR) of 31.7% from 2023 to 2030
European market of more than 30% of the global revenue with a market size of USD 16776.36 million in 2023 and will grow at a compound annual growth rate (CAGR) of 32.0% from 2023 to 2030
Asia-Pacific held the fastest market of more than 23% of the global revenue with a market size of USD 12861.88 million in 2023 and will grow at a compound annual growth rate (CAGR) of 35.5% from 2023 to 2030.
Latin America market than 5% of the global revenue with a market size of USD 2796.06 million in 2023 and will grow at a compound annual growth rate (CAGR) of 32.9% from 2023 to 2030.
The Middle East and Africa market of more than 2.00% of the global revenue with a market size of USD 1118.42 million in 2023 and will grow at a compound annual growth rate (CAGR) of 33.2% from 2023 to 2030
The demand for Cloud AI is rising due to its scalability flexibility cost-efficiency, and accessibility.
Demand for Solution remains higher in the Cloud Aimarket.
The Healthcare & Life Sciences category held the highest Cloud AI market revenue share in 2023.
Digital Transformation Imperative to Provide Viable Market Output
The primary driver propelling the Cloud AI market is the imperative for digital transformation across industries. Organizations are increasingly leveraging cloud-based AI solutions to streamline operations, enhance customer experiences, and gain actionable insights from vast datasets. The scalability and flexibility offered by cloud platforms empower businesses to deploy and manage AI applications seamlessly, fostering innovation and efficiency. As companies prioritize modernization to stay competitive, the integration of AI on cloud infrastructure becomes instrumental in achieving strategic objectives, driving the growth of the Cloud AI market.
Apr-2023: Microsoft partnered with Siemens Digital Industries Software for advanced generative artificial intelligence to enable industrial companies in driving efficiency and innovation throughout the engineering, designing, manufacturing, and operational lifecycle of products.
Proliferation of Big Data to Propel Market Growth
The proliferation of big data serves as another key driver for the Cloud AI market. As businesses accumulate unprecedented volumes of data, cloud-based AI solutions emerge as indispensable tools for extracting meaningful insights and patterns. The scalability of cloud platforms allows organizations to process and analyze massive datasets efficiently. Cloud AI applications, such as machine learning and data analytics, enable businesses to derive actionable intelligence from this wealth of information. With the increasing recognition of data as a strategic asset, the demand for cloud-based AI solutions to harness and derive value from big data continues to fuel the expansion of the Cloud AI market.
Apr-2023: Microsoft came into collaboration with Epic, to utilize the power of generative artificial intelligence to enhance the efficiency and accuracy of EHRs. The collaboration enabled the deployment of Epic systems on the Azure cloud infrastructure.
(Source:blogs.microsoft.com/blog/2023/08/22/microsoft-and-epic-expand-ai-collaboration-to-accelerate-generative-ais-impact-in-healthcare-addressing-the-industrys-most-pressing-needs/#:~:text=Epic%20and%20Microsoft's%20expanded%20collaboration,to%20SlicerDi)
Market Restraints of the Cloud AI
Data Security Concerns to Restrict Market Growth
One significant restraint in the Cloud AI market revolves around data security concerns. As organizations migrate sensitive data to cloud environments for AI processing, there is a heightened awareness and apprehension regarding the protection of this valuable information. Potential vulnerabilities, data breaches, and the risk of unauthorized access pose challenges, especially in industries with stringent privacy regulations. Add...
https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/
Blockchain AI Market size was valued at USD 448 Million in 2023 and is projected to reach USD 2730 Million by 2031, at a CAGR of 25.5% from 2024 to 2031.
Global Blockchain AI Market Drivers
The market drivers for the Blockchain AI Market can be influenced by various factors. These may include:
Enhanced Data Security: By offering a decentralized and unchangeable record for information sharing and archiving, the combination of blockchain technology and artificial intelligence improves data security. Sensitive information is especially valuable in this secure infrastructure for supply chain management, banking, and healthcare.
Increased Adoption of AI: As AI is used more and more in many industries, there is a greater need for blockchain-based solutions to deal with issues with data transparency and integrity. Blockchain technology ensures the quality and dependability of AI-powered services and apps by verifying the legitimacy of the data used to train AI algorithms.
Growing worries About Data Privacy: Organizations are investigating blockchain AI solutions that provide more control over data access and usage due to growing worries about data privacy and ownership. Blockchain gives people control over their data while allowing AI algorithms to access it selectively for processing and analysis.
Demand for Transparent and Reliable AI Systems: Companies and customers alike are looking for reliable and transparent AI systems that can shed light on the decision-making process. Blockchain technology makes it possible to transparently record the decisions and acts of AI algorithms, which promotes transparency and confidence in AI-powered systems.
Decentralized AI Marketplaces Are Necessary: Blockchain technology is enabling the development of decentralized AI marketplaces, which are democratizing access to AI datasets and algorithms. These markets enable peer-to-peer exchanges and cooperation, enabling businesses and developers to profitably and effectively share AI resources.
Regulatory Compliance Requirements: The adoption of blockchain AI solutions is being driven by regulatory mandates, such as the GDPR (General Data Protection Regulation) in Europe and HIPAA (Health Insurance Portability and Accountability Act) in the healthcare industry, to ensure compliance with data protection regulations. The transparent data governance offered by blockchain’s immutability and auditability features facilitate regulatory compliance.
Growing Interest in Federated Learning: Due to privacy concerns and data localization requirements, federated learning, a distributed machine learning approach, is gaining interest. It trains AI models across various decentralized devices. Blockchain technology guarantees data privacy, integrity, and incentive among participating nodes, which can enable safe and effective federated learning.
Extension of DAOs and Smart Contracts: Automated and untrusted decision-making and agreement execution is made possible by the combination of AI systems with smart contracts and decentralized autonomous organizations (DAOs). Smart contracts built on the blockchain can carry out predetermined scenarios and transactions based on insights generated by artificial intelligence, simplifying corporate processes and lowering dependency on middlemen.
The emergence of AI-driven token economies: is being fueled by the convergence of blockchain and AI technology. In these economies, tokens are utilized as incentives for sharing data, training models, and improving algorithms. These token economies ensure equitable reward for contributions while encouraging cooperation and creativity in AI research and development.
Partnerships and Cross-Industry Collaboration: The adoption of blockchain AI solutions is being accelerated by partnerships and cross-industry collaboration among research institutions, industry consortia, and technology vendors. Inter-industry collaborations enable the sharing of knowledge, assets, and optimal methodologies, promoting the advancement of blockchain artificial intelligence solutions that are both interoperable and scalable.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
General Description
This dataset comprises 4,038 tweets in Spanish, related to discussions about artificial intelligence (AI), and was created and utilized in the publication "Enhancing Sentiment Analysis on Social Media: Integrating Text and Metadata for Refined Insights," (10.1109/IE61493.2024.10599899) presented at the 20th International Conference on Intelligent Environments. It is designed to support research on public perception, sentiment, and engagement with AI topics on social media from a Spanish-speaking perspective. Each entry includes detailed annotations covering sentiment analysis, user engagement metrics, and user profile characteristics, among others.
Data Collection Method
Tweets were gathered through the Twitter API v1.1 by targeting keywords and hashtags associated with artificial intelligence, focusing specifically on content in Spanish. The dataset captures a wide array of discussions, offering a holistic view of the Spanish-speaking public's sentiment towards AI.
Dataset Content
ID: A unique identifier for each tweet.
text: The textual content of the tweet. It is a string with a maximum allowed length of 280 characters.
polarity: The tweet's sentiment polarity (e.g., Positive, Negative, Neutral).
favorite_count: Indicates how many times the tweet has been liked by Twitter users. It is a non-negative integer.
retweet_count: The number of times this tweet has been retweeted. It is a non-negative integer.
user_verified: When true, indicates that the user has a verified account, which helps the public recognize the authenticity of accounts of public interest. It is a boolean data type with two allowed values: True or False.
user_default_profile: When true, indicates that the user has not altered the theme or background of their user profile. It is a boolean data type with two allowed values: True or False.
user_has_extended_profile: When true, indicates that the user has an extended profile. An extended profile on Twitter allows users to provide more detailed information about themselves, such as an extended biography, a header image, details about their location, website, and other additional data. It is a boolean data type with two allowed values: True or False.
user_followers_count: The current number of followers the account has. It is a non-negative integer.
user_friends_count: The number of users that the account is following. It is a non-negative integer.
user_favourites_count: The number of tweets this user has liked since the account was created. It is a non-negative integer.
user_statuses_count: The number of tweets (including retweets) posted by the user. It is a non-negative integer.
user_protected: When true, indicates that this user has chosen to protect their tweets, meaning their tweets are not publicly visible without their permission. It is a boolean data type with two allowed values: True or False.
user_is_translator: When true, indicates that the user posting the tweet is a verified translator on Twitter. This means they have been recognized and validated by the platform as translators of content in different languages. It is a boolean data type with two allowed values: True or False.
Cite as
Guerrero-Contreras, G., Balderas-Díaz, S., Serrano-Fernández, A., & Muñoz, A. (2024, June). Enhancing Sentiment Analysis on Social Media: Integrating Text and Metadata for Refined Insights. In 2024 International Conference on Intelligent Environments (IE) (pp. 62-69). IEEE.
Potential Use Cases
This dataset is aimed at academic researchers and practitioners with interests in:
Sentiment analysis and natural language processing (NLP) with a focus on AI discussions in the Spanish language.
Social media analysis on public engagement and perception of artificial intelligence among Spanish speakers.
Exploring correlations between user engagement metrics and sentiment in discussions about AI.
Data Format and File Type
The dataset is provided in CSV format, ensuring compatibility with a wide range of data analysis tools and programming environments.
License
The dataset is available under the Creative Commons Attribution 4.0 International (CC BY 4.0) license, permitting sharing, copying, distribution, transmission, and adaptation of the work for any purpose, including commercial, provided proper attribution is given.
This dataset of historical poor law cases was created as part of a project aiming to assess the implications of the introduction of Artificial Intelligence (AI) into legal systems in Japan and the United Kingdom. The project was jointly funded by the UK’s Economic and Social Research Council, part of UKRI, and the Japanese Society and Technology Agency (JST), and involved collaboration between Cambridge University (the Centre for Business Research, Department of Computer Science and Faculty of Law) and Hitotsubashi University, Tokyo (the Graduate Schools of Law and Business Administration). As part of the project, a dataset of historic poor law cases was created to facilitate the analysis of legal texts using natural language processing methods. The dataset contains judgments of cases which have been annotated to facilitate computational analysis. Specifically, they make it possible to see how legal terms have evolved over time in the area of disputes over the law governing settlement by hiring.
A World Economic Forum meeting at Davos 2019 heralded the dawn of 'Society 5.0' in Japan. Its goal: creating a 'human-centred society that balances economic advancement with the resolution of social problems by a system that highly integrates cyberspace and physical space.' Using Artificial Intelligence (AI), robotics and data, 'Society 5.0' proposes to '...enable the provision of only those products and services that are needed to the people that need them at the time they are needed, thereby optimizing the entire social and organizational system.' The Japanese government accepts that realising this vision 'will not be without its difficulties,' but intends 'to face them head-on with the aim of being the first in the world as a country facing challenging issues to present a model future society.' The UK government is similarly committed to investing in AI and likewise views the AI as central to engineering a more profitable economy and prosperous society.
This vision is, however, starting to crystallise in the rhetoric of LegalTech developers who have the data-intensive-and thus target-rich-environment of law in their sights. Buoyed by investment and claims of superior decision-making capabilities over human lawyers and judges, LegalTech is now being deputised to usher in a new era of 'smart' law built on AI and Big Data. While there are a number of bold claims made about the capabilities of these technologies, comparatively little attention has been directed to more fundamental questions about how we might assess the feasibility of using them to replicate core aspects of legal process, and ensuring the public has a meaningful say in the development and implementation.
This innovative and timely research project intends to approach these questions from a number of vectors. At a theoretical level, we consider the likely consequences of this step using a Horizon Scanning methodology developed in collaboration with our Japanese partners and an innovative systemic-evolutionary model of law. Many aspects of legal reasoning have algorithmic features which could lend themselves to automation. However, an evolutionary perspective also points to features of legal reasoning which are inconsistent with ML: including the reflexivity of legal knowledge and the incompleteness of legal rules at the point where they encounter the 'chaotic' and unstructured data generated by other social sub-systems. We will test our theory by developing a hierarchical model (or ontology), derived from our legal expertise and public available datasets, for classifying employment relationships under UK law. This will let us probe the extent to which legal reasoning can be modelled using less computational-intensive methods such as Markov Models and Monte Carlo Trees.
Building upon these theoretical innovations, we will then turn our attention from modelling a legal domain using historical data to exploring whether the outcome of legal cases can be reliably predicted using various technique for optimising datasets. For this we will use a data set comprised of 24,179 cases from the High Court of England and Wales. This will allow us to harness Natural Language Processing (NLP) techniques such as named entity recognition (to identify relevant parties) and sentiment analysis (to analyse opinions and determine the disposition of a party) in addition to identifying the main legal and factual points of the dispute, remedies, costs, and trial durations. By trailing various predictive heuristics and ML techniques against this dataset we hope to develop a more granular understanding as to the feasibility of predicting dispute outcomes and insight to what factors are relevant for legal decision-making. This will allow us to then undertake a comparative analysis with the results of existing studies and shed light on the legal contexts and questions where AI can and cannot be used to produce accurate and repeatable results.
Success.ai’s Education Industry Data provides access to comprehensive profiles of global professionals in the education sector. Sourced from over 700 million verified LinkedIn profiles, this dataset includes actionable insights and verified contact details for teachers, school administrators, university leaders, and other decision-makers. Whether your goal is to collaborate with educational institutions, market innovative solutions, or recruit top talent, Success.ai ensures your efforts are supported by accurate, enriched, and continuously updated data.
Why Choose Success.ai’s Education Industry Data? 1. Comprehensive Professional Profiles Access verified LinkedIn profiles of teachers, school principals, university administrators, curriculum developers, and education consultants. AI-validated profiles ensure 99% accuracy, reducing bounce rates and enabling effective communication. 2. Global Coverage Across Education Sectors Includes professionals from public schools, private institutions, higher education, and educational NGOs. Covers markets across North America, Europe, APAC, South America, and Africa for a truly global reach. 3. Continuously Updated Dataset Real-time updates reflect changes in roles, organizations, and industry trends, ensuring your outreach remains relevant and effective. 4. Tailored for Educational Insights Enriched profiles include work histories, academic expertise, subject specializations, and leadership roles for a deeper understanding of the education sector.
Data Highlights: 700M+ Verified LinkedIn Profiles: Access a global network of education professionals. 100M+ Work Emails: Direct communication with teachers, administrators, and decision-makers. Enriched Professional Histories: Gain insights into career trajectories, institutional affiliations, and areas of expertise. Industry-Specific Segmentation: Target professionals in K-12 education, higher education, vocational training, and educational technology.
Key Features of the Dataset: 1. Education Sector Profiles Identify and connect with teachers, professors, academic deans, school counselors, and education technologists. Engage with individuals shaping curricula, institutional policies, and student success initiatives. 2. Detailed Institutional Insights Leverage data on school sizes, student demographics, geographic locations, and areas of focus. Tailor outreach to align with institutional goals and challenges. 3. Advanced Filters for Precision Targeting Refine searches by region, subject specialty, institution type, or leadership role. Customize campaigns to address specific needs, such as professional development or technology adoption. 4. AI-Driven Enrichment Enhanced datasets include actionable details for personalized messaging and targeted engagement. Highlight educational milestones, professional certifications, and key achievements.
Strategic Use Cases: 1. Product Marketing and Outreach Promote educational technology, learning platforms, or training resources to teachers and administrators. Engage with decision-makers driving procurement and curriculum development. 2. Collaboration and Partnerships Identify institutions for collaborations on research, workshops, or pilot programs. Build relationships with educators and administrators passionate about innovative teaching methods. 3. Talent Acquisition and Recruitment Target HR professionals and academic leaders seeking faculty, administrative staff, or educational consultants. Support hiring efforts for institutions looking to attract top talent in the education sector. 4. Market Research and Strategy Analyze trends in education systems, curriculum development, and technology integration to inform business decisions. Use insights to adapt products and services to evolving educational needs.
Why Choose Success.ai? 1. Best Price Guarantee Access industry-leading Education Industry Data at unmatched pricing for cost-effective campaigns and strategies. 2. Seamless Integration Easily integrate verified data into CRMs, recruitment platforms, or marketing systems using downloadable formats or APIs. 3. AI-Validated Accuracy Depend on 99% accurate data to reduce wasted outreach and maximize engagement rates. 4. Customizable Solutions Tailor datasets to specific educational fields, geographic regions, or institutional types to meet your objectives.
Strategic APIs for Enhanced Campaigns: 1. Data Enrichment API Enrich existing records with verified education professional profiles to enhance engagement and targeting. 2. Lead Generation API Automate lead generation for a consistent pipeline of qualified professionals in the education sector. Success.ai’s Education Industry Data enables you to connect with educators, administrators, and decision-makers transforming global...
https://media.market.us/privacy-policyhttps://media.market.us/privacy-policy
Global Generative AI in Healthcare Market size is expected to be worth around US$ 17.2 Billion by 2032 from US$ 1.1 Billion in 2023, growing at a CAGR of 37% during the forecast period from 2024 to 2032. In 2022, North America led the market, achieving over 36.0% share with a revenue of US$ 0.2 Billion.
Generative AI is enhancing medical imaging, aiding clinical decisions, and streamlining operations. Its application in virtual nursing assistants could save healthcare providers up to USD 20 billion annually. Additionally, its integration into clinical settings, including diagnostics, telemedicine, patient care management, and telehealth applications, has secured its top market share.
However, challenges such as data privacy concerns, the need for high-quality data sets, and sophisticated infrastructure may hinder its growth. Balancing AI’s potential benefits with these challenges is crucial for sustainable market expansion.
Recent developments illustrate the dynamic nature of this market, with major investments and collaborations focused on harnessing GPT-4 and other advanced AI technologies for healthcare applications. Microsoft Corp. and Epic Systems Corp. recently collaborated to integrate generative AI into electronic health records to increase patient outcomes and effectiveness of healthcare delivery.
North America has led in terms of healthcare infrastructure and adoption rate of new technologies; while Asia Pacific appears poised for explosive growth as technological innovations meet rising healthcare demands and supportive government initiatives.
At present, the market for generative AI in healthcare is at an important juncture, only just beginning to realize its full potential. Projected growth highlights a shift toward more AI-integrated healthcare solutions which promise increased efficiency, better patient outcomes and significant economic advantages.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘ Predicting Student Performance’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/yamqwe/student-performance on 28 January 2022.
--- Dataset description provided by original source is as follows ---
- This data approach student achievement in secondary education of two Portuguese schools. The data attributes include student grades, demographic, social and school related features) and it was collected by using school reports and questionnaires. Two datasets are provided regarding the performance in two distinct subjects: Mathematics (mat) and Portuguese language (por). In [Cortez and Silva, 2008], the two datasets were modeled under binary/five-level classification and regression tasks. Important note: the target attribute G3 has a strong correlation with attributes G2 and G1. This occurs because G3 is the final year grade (issued at the 3rd period), while G1 and G2 correspond to the 1st and 2nd period grades. It is more difficult to predict G3 without G2 and G1, but such prediction is much more useful (see paper source for more details).
- Predict Student's future performance
- Understand the root causes for low performance
- More datasets
If you use this dataset in your research, please credit ewenme
--- Original source retains full ownership of the source dataset ---
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Meta Kaggle Code is an extension to our popular Meta Kaggle dataset. This extension contains all the raw source code from hundreds of thousands of public, Apache 2.0 licensed Python and R notebooks versions on Kaggle used to analyze Datasets, make submissions to Competitions, and more. This represents nearly a decade of data spanning a period of tremendous evolution in the ways ML work is done.
By collecting all of this code created by Kaggle’s community in one dataset, we hope to make it easier for the world to research and share insights about trends in our industry. With the growing significance of AI-assisted development, we expect this data can also be used to fine-tune models for ML-specific code generation tasks.
Meta Kaggle for Code is also a continuation of our commitment to open data and research. This new dataset is a companion to Meta Kaggle which we originally released in 2016. On top of Meta Kaggle, our community has shared nearly 1,000 public code examples. Research papers written using Meta Kaggle have examined how data scientists collaboratively solve problems, analyzed overfitting in machine learning competitions, compared discussions between Kaggle and Stack Overflow communities, and more.
The best part is Meta Kaggle enriches Meta Kaggle for Code. By joining the datasets together, you can easily understand which competitions code was run against, the progression tier of the code’s author, how many votes a notebook had, what kinds of comments it received, and much, much more. We hope the new potential for uncovering deep insights into how ML code is written feels just as limitless to you as it does to us!
While we have made an attempt to filter out notebooks containing potentially sensitive information published by Kaggle users, the dataset may still contain such information. Research, publications, applications, etc. relying on this data should only use or report on publicly available, non-sensitive information.
The files contained here are a subset of the KernelVersions
in Meta Kaggle. The file names match the ids in the KernelVersions
csv file. Whereas Meta Kaggle contains data for all interactive and commit sessions, Meta Kaggle Code contains only data for commit sessions.
The files are organized into a two-level directory structure. Each top level folder contains up to 1 million files, e.g. - folder 123 contains all versions from 123,000,000 to 123,999,999. Each sub folder contains up to 1 thousand files, e.g. - 123/456 contains all versions from 123,456,000 to 123,456,999. In practice, each folder will have many fewer than 1 thousand files due to private and interactive sessions.
The ipynb files in this dataset hosted on Kaggle do not contain the output cells. If the outputs are required, the full set of ipynbs with the outputs embedded can be obtained from this public GCS bucket: kaggle-meta-kaggle-code-downloads
. Note that this is a "requester pays" bucket. This means you will need a GCP account with billing enabled to download. Learn more here: https://cloud.google.com/storage/docs/requester-pays
We love feedback! Let us know in the Discussion tab.
Happy Kaggling!
The quality of AI-generated images has rapidly increased, leading to concerns of authenticity and trustworthiness.
CIFAKE is a dataset that contains 60,000 synthetically-generated images and 60,000 real images (collected from CIFAR-10). Can computer vision techniques be used to detect when an image is real or has been generated by AI?
Dataset details The dataset contains two classes - REAL and FAKE. For REAL, we collected the images from Krizhevsky & Hinton's CIFAR-10 dataset For the FAKE images, we generated the equivalent of CIFAR-10 with Stable Diffusion version 1.4 There are 100,000 images for training (50k per class) and 20,000 for testing (10k per class)
References If you use this dataset, you must cite the following sources
Krizhevsky, A., & Hinton, G. (2009). Learning multiple layers of features from tiny images.
Bird, J.J., Lotfi, A. (2023). CIFAKE: Image Classification and Explainable Identification of AI-Generated Synthetic Images. arXiv preprint arXiv:2303.14126.
Real images are from Krizhevsky & Hinton (2009), fake images are from Bird & Lotfi (2023). The Bird & Lotfi study is a preprint currently available on ArXiv and this description will be updated when the paper is published.
License This dataset is published under the same MIT license as CIFAR-10:
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Success.ai’s Company Data Solutions provide businesses with powerful, enterprise-ready B2B company datasets, enabling you to unlock insights on over 28 million verified company profiles. Our solution is ideal for organizations seeking accurate and detailed B2B contact data, whether you’re targeting large enterprises, mid-sized businesses, or small business contact data.
Success.ai offers B2B marketing data across industries and geographies, tailored to fit your specific business needs. With our white-glove service, you’ll receive curated, ready-to-use company datasets without the hassle of managing data platforms yourself. Whether you’re looking for UK B2B data or global datasets, Success.ai ensures a seamless experience with the most accurate and up-to-date information in the market.
Why Choose Success.ai’s Company Data Solution? At Success.ai, we prioritize quality and relevancy. Every company profile is AI-validated for a 99% accuracy rate and manually reviewed to ensure you're accessing actionable and GDPR-compliant data. Our price match guarantee ensures you receive the best deal on the market, while our white-glove service provides personalized assistance in sourcing and delivering the data you need.
Why Choose Success.ai?
Our database spans 195 countries and covers 28 million public and private company profiles, with detailed insights into each company’s structure, size, funding history, and key technologies. We provide B2B company data for businesses of all sizes, from small business contact data to large corporations, with extensive coverage in regions such as North America, Europe, Asia-Pacific, and Latin America.
Comprehensive Data Points: Success.ai delivers in-depth information on each company, with over 15 data points, including:
Company Name: Get the full legal name of the company. LinkedIn URL: Direct link to the company's LinkedIn profile. Company Domain: Website URL for more detailed research. Company Description: Overview of the company’s services and products. Company Location: Geographic location down to the city, state, and country. Company Industry: The sector or industry the company operates in. Employee Count: Number of employees to help identify company size. Technologies Used: Insights into key technologies employed by the company, valuable for tech-based outreach. Funding Information: Track total funding and the most recent funding dates for investment opportunities. Maximize Your Sales Potential: With Success.ai’s B2B contact data and company datasets, sales teams can build tailored lists of target accounts, identify decision-makers, and access real-time company intelligence. Our curated datasets ensure you’re always focused on high-value leads—those who are most likely to convert into clients. Whether you’re conducting account-based marketing (ABM), expanding your sales pipeline, or looking to improve your lead generation strategies, Success.ai offers the resources you need to scale your business efficiently.
Tailored for Your Industry: Success.ai serves multiple industries, including technology, healthcare, finance, manufacturing, and more. Our B2B marketing data solutions are particularly valuable for businesses looking to reach professionals in key sectors. You’ll also have access to small business contact data, perfect for reaching new markets or uncovering high-growth startups.
From UK B2B data to contacts across Europe and Asia, our datasets provide global coverage to expand your business reach and identify new markets. With continuous data updates, Success.ai ensures you’re always working with the freshest information.
Key Use Cases:
https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy
According to Cognitive Market Research, the global Ai Training Data market size is USD 1865.2 million in 2023 and will expand at a compound annual growth rate (CAGR) of 23.50% from 2023 to 2030.
The demand for Ai Training Data is rising due to the rising demand for labelled data and diversification of AI applications.
Demand for Image/Video remains higher in the Ai Training Data market.
The Healthcare category held the highest Ai Training Data market revenue share in 2023.
North American Ai Training Data will continue to lead, whereas the Asia-Pacific Ai Training Data market will experience the most substantial growth until 2030.
Market Dynamics of AI Training Data Market
Key Drivers of AI Training Data Market
Rising Demand for Industry-Specific Datasets to Provide Viable Market Output
A key driver in the AI Training Data market is the escalating demand for industry-specific datasets. As businesses across sectors increasingly adopt AI applications, the need for highly specialized and domain-specific training data becomes critical. Industries such as healthcare, finance, and automotive require datasets that reflect the nuances and complexities unique to their domains. This demand fuels the growth of providers offering curated datasets tailored to specific industries, ensuring that AI models are trained with relevant and representative data, leading to enhanced performance and accuracy in diverse applications.
In July 2021, Amazon and Hugging Face, a provider of open-source natural language processing (NLP) technologies, have collaborated. The objective of this partnership was to accelerate the deployment of sophisticated NLP capabilities while making it easier for businesses to use cutting-edge machine-learning models. Following this partnership, Hugging Face will suggest Amazon Web Services as a cloud service provider for its clients.
(Source: about:blank)
Advancements in Data Labelling Technologies to Propel Market Growth
The continuous advancements in data labelling technologies serve as another significant driver for the AI Training Data market. Efficient and accurate labelling is essential for training robust AI models. Innovations in automated and semi-automated labelling tools, leveraging techniques like computer vision and natural language processing, streamline the data annotation process. These technologies not only improve the speed and scalability of dataset preparation but also contribute to the overall quality and consistency of labelled data. The adoption of advanced labelling solutions addresses industry challenges related to data annotation, driving the market forward amidst the increasing demand for high-quality training data.
In June 2021, Scale AI and MIT Media Lab, a Massachusetts Institute of Technology research centre, began working together. To help doctors treat patients more effectively, this cooperation attempted to utilize ML in healthcare.
www.ncbi.nlm.nih.gov/pmc/articles/PMC7325854/
Restraint Factors Of AI Training Data Market
Data Privacy and Security Concerns to Restrict Market Growth
A significant restraint in the AI Training Data market is the growing concern over data privacy and security. As the demand for diverse and expansive datasets rises, so does the need for sensitive information. However, the collection and utilization of personal or proprietary data raise ethical and privacy issues. Companies and data providers face challenges in ensuring compliance with regulations and safeguarding against unauthorized access or misuse of sensitive information. Addressing these concerns becomes imperative to gain user trust and navigate the evolving landscape of data protection laws, which, in turn, poses a restraint on the smooth progression of the AI Training Data market.
How did COVID–19 impact the Ai Training Data market?
The COVID-19 pandemic has had a multifaceted impact on the AI Training Data market. While the demand for AI solutions has accelerated across industries, the availability and collection of training data faced challenges. The pandemic disrupted traditional data collection methods, leading to a slowdown in the generation of labeled datasets due to restrictions on physical operations. Simultaneously, the surge in remote work and the increased reliance on AI-driven technologies for various applications fueled the need for diverse and relevant training data. This duali...