Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Corporate Profits in the United States decreased to 3203.60 USD Billion in the first quarter of 2025 from 3312 USD Billion in the fourth quarter of 2024. This dataset provides the latest reported value for - United States Corporate Profits - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Corporate Profits in the United Kingdom increased to 152043 GBP Million in the first quarter of 2025 from 148024 GBP Million in the fourth quarter of 2024. This dataset provides the latest reported value for - United Kingdom Corporate Profits - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for CORPORATE PROFITS reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Corporate Profits in Canada increased to 142196 CAD Million in the first quarter of 2025 from 137544 CAD Million in the fourth quarter of 2024. This dataset provides - Canada Corporate Profits - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Corporate Profits in Japan decreased to 28469.40 JPY Billion in the first quarter of 2025 from 28691.91 JPY Billion in the fourth quarter of 2024. This dataset provides - Japan Corporate Profits - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Annual and quarterly data for the latest profitability estimates of UK companies.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Corporate Profits in Russia increased to 11590 RUB Billion in May from 9830 RUB Billion in April of 2025. This dataset provides - Russia Corporate Profits- actual values, historical data, forecast, chart, statistics, economic calendar and news.
Small business transactions and revenue data aggregated from several credit card processors, collected by Womply and compiled by Opportunity Insights. Transactions and revenue are reported based on the ZIP code where the business is located. Data provided for CT (FIPS code 9), MA (25), NJ (34), NY (36), and RI (44). Data notes from Opportunity Insights: Seasonally adjusted change since January 2020. Data is indexed in 2019 and 2020 as the change relative to the January index period. We then seasonally adjust by dividing year-over-year, which represents the difference between the change since January observed in 2020 compared to the change since January observed since 2019. We account for differences in the dates of federal holidays between 2019 and 2020 by shifting the 2019 reference data to align the holidays before performing the year-over-year division. Small businesses are defined as those with annual revenue below the Small Business Administration’s thresholds. Thresholds vary by 6 digit NAICS code ranging from a maximum number of employees between 100 to 1500 to be considered a small business depending on the industry. County-level and metro-level data and breakdowns by High/Middle/Low income ZIP codes have been temporarily removed since the August 21st 2020 update due to revisions in the structure of the raw data we receive. We hope to add them back to the OI Economic Tracker soon. More detailed documentation on Opportunity Insights data can be found here: https://github.com/OpportunityInsights/EconomicTracker/blob/main/docs/oi_tracker_data_documentation.pdf
The global big data and business analytics (BDA) market was valued at ***** billion U.S. dollars in 2018 and is forecast to grow to ***** billion U.S. dollars by 2021. In 2021, more than half of BDA spending will go towards services. IT services is projected to make up around ** billion U.S. dollars, and business services will account for the remainder. Big data High volume, high velocity and high variety: one or more of these characteristics is used to define big data, the kind of data sets that are too large or too complex for traditional data processing applications. Fast-growing mobile data traffic, cloud computing traffic, as well as the rapid development of technologies such as artificial intelligence (AI) and the Internet of Things (IoT) all contribute to the increasing volume and complexity of data sets. For example, connected IoT devices are projected to generate **** ZBs of data in 2025. Business analytics Advanced analytics tools, such as predictive analytics and data mining, help to extract value from the data and generate business insights. The size of the business intelligence and analytics software application market is forecast to reach around **** billion U.S. dollars in 2022. Growth in this market is driven by a focus on digital transformation, a demand for data visualization dashboards, and an increased adoption of cloud.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Corporate Profits in Denmark increased to 475544 DKK Million in 2021 from 309238 DKK Million in 2020. This dataset provides - Denmark Corporate Profits- actual values, historical data, forecast, chart, statistics, economic calendar and news.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
There are two commonly understood ways in which a company is considered public: first, the company’s securities trade on public markets; and second, the company discloses certain business and financial information regularly to the public.
With the COVID-19 pandemic affecting many aspects of the business, a large portion of companies have proceeded with executive compensation adjustments as a response. Corporate boards running America’s largest public firms are giving top executives outsize compensation packages that have grown much faster than the stock market and the pay of typical workers, college graduates, and even the top 0.1%.
Excessive CEO pay is a major contributor to rising inequality that we could safely do away with. CEOs are getting more because of their power to set pay and because so much of their pay (more than 80%) is stock-related, not because they are increasing their productivity or possess specific, high-demand skills. This escalation of CEO compensation, and of executive compensation more generally, has fueled the growth of top 1.0% and top 0.1% incomes, leaving less of the fruits of economic growth for ordinary workers and widening the gap between very high earners and the bottom 90%. The economy would suffer no harm if CEOs were paid less (or were taxed more).
CEO_compensation_top50_2020.csv contains data about the top 50 paid CEOs in 2020. Parameters include: - Total Granted Compensation (TGC) - Total Realized Compensation (TRC) - Total Shareholder Return (TSR) in % - TSR 1YR growth in % - TGC 1YR growth in % - TRC 1YR growth in %
CEO_largestrevenue_highestpaid_2020-21.csv contains data about the CEO & Employee pay at the largest companies by revenue in 2020/2021, as well as the New York Times published 200 highest-paid CEOs in 2020. Parameters include: - CEO Total Compensation - Median Employee Pay - Pay change over previous year - Fiscal Year Revenue - Revenue change over previous year - CEO to Employee Pay Ratio
https://brightdata.com/licensehttps://brightdata.com/license
Use our Stock prices dataset to access comprehensive financial and corporate data, including company profiles, stock prices, market capitalization, revenue, and key performance metrics. This dataset is tailored for financial analysts, investors, and researchers to analyze market trends and evaluate company performance.
Popular use cases include investment research, competitor benchmarking, and trend forecasting. Leverage this dataset to make informed financial decisions, identify growth opportunities, and gain a deeper understanding of the business landscape. The dataset includes all major data points: company name, company ID, summary, stock ticker, earnings date, closing price, previous close, opening price, and much more.
Success.ai offers a cutting-edge solution for businesses and organizations seeking Company Financial Data on private and public companies. Our comprehensive database is meticulously crafted to provide verified profiles, including contact details for financial decision-makers such as CFOs, financial analysts, corporate treasurers, and other key stakeholders. This robust dataset is continuously updated and validated using AI technology to ensure accuracy and relevance, empowering businesses to make informed decisions and optimize their financial strategies.
Key Features of Success.ai's Company Financial Data:
Global Coverage: Access data from over 70 million businesses worldwide, including public and private companies across all major industries and regions. Our datasets span 250+ countries, offering extensive reach for your financial analysis and market research.
Detailed Financial Profiles: Gain insights into company financials, including revenue, profit margins, funding rounds, and operational costs. Profiles are enriched with key contact details, including work emails, phone numbers, and physical addresses, ensuring direct access to decision-makers.
Industry-Specific Data: Tailored datasets for sectors such as financial services, manufacturing, technology, healthcare, and energy, among others. Each dataset is customized to meet the unique needs of industry professionals and analysts.
Real-Time Accuracy: With continuous updates powered by AI-driven validation, our financial data maintains a 99% accuracy rate, ensuring you have access to the most reliable and up-to-date information available.
Compliance and Security: All data is collected and processed in strict adherence to global compliance standards, including GDPR, ensuring ethical and lawful usage.
Why Choose Success.ai for Company Financial Data?
Best Price Guarantee: We pride ourselves on offering the most competitive pricing in the industry, ensuring you receive unparalleled value for comprehensive financial data.
AI-Validated Accuracy: Our advanced AI algorithms meticulously verify every data point to ensure precision and reliability, helping you avoid costly errors in your financial decision-making.
Customized Data Solutions: Whether you need data for a specific region, industry, or type of business, we tailor our datasets to align perfectly with your requirements.
Scalable Data Access: From small startups to global enterprises, our platform caters to businesses of all sizes, delivering scalable solutions to suit your operational needs.
Comprehensive Use Cases for Financial Data:
Leverage our detailed financial profiles to create accurate budgets, forecasts, and strategic plans. Gain insights into competitors’ financial health and market positions to make data-driven decisions.
Access key financial details and contact information to streamline your M&A processes. Identify potential acquisition targets or partners with verified profiles and financial data.
Evaluate the financial performance of public and private companies for informed investment decisions. Use our data to identify growth opportunities and assess risk factors.
Enhance your sales outreach by targeting CFOs, financial analysts, and other decision-makers with verified contact details. Utilize accurate email and phone data to increase conversion rates.
Understand market trends and financial benchmarks with our industry-specific datasets. Use the data for competitive analysis, benchmarking, and identifying market gaps.
APIs to Power Your Financial Strategies:
Enrichment API: Integrate real-time updates into your systems with our Enrichment API. Keep your financial data accurate and current to drive dynamic decision-making and maintain a competitive edge.
Lead Generation API: Supercharge your lead generation efforts with access to verified contact details for key financial decision-makers. Perfect for personalized outreach and targeted campaigns.
Tailored Solutions for Industry Professionals:
Financial Services Firms: Gain detailed insights into revenue streams, funding rounds, and operational costs for competitor analysis and client acquisition.
Corporate Finance Teams: Enhance decision-making with precise data on industry trends and benchmarks.
Consulting Firms: Deliver informed recommendations to clients with access to detailed financial datasets and key stakeholder profiles.
Investment Firms: Identify potential investment opportunities with verified data on financial performance and market positioning.
What Sets Success.ai Apart?
Extensive Database: Access detailed financial data for 70M+ companies worldwide, including small businesses, startups, and large corporations.
Ethical Practices: Our data collection and processing methods are fully comp...
Envestnet®| Yodlee®'s Consumer Spending Data (Aggregate/Row) Panels consist of de-identified, near-real time (T+1) USA credit/debit/ACH transaction level data – offering a wide view of the consumer activity ecosystem. The underlying data is sourced from end users leveraging the aggregation portion of the Envestnet®| Yodlee®'s financial technology platform.
Envestnet | Yodlee Consumer Panels (Aggregate/Row) include data relating to millions of transactions, including ticket size and merchant location. The dataset includes de-identified credit/debit card and bank transactions (such as a payroll deposit, account transfer, or mortgage payment). Our coverage offers insights into areas such as consumer, TMT, energy, REITs, internet, utilities, ecommerce, MBS, CMBS, equities, credit, commodities, FX, and corporate activity. We apply rigorous data science practices to deliver key KPIs daily that are focused, relevant, and ready to put into production.
We offer free trials. Our team is available to provide support for loading, validation, sample scripts, or other services you may need to generate insights from our data.
Investors, corporate researchers, and corporates can use our data to answer some key business questions such as: - How much are consumers spending with specific merchants/brands and how is that changing over time? - Is the share of consumer spend at a specific merchant increasing or decreasing? - How are consumers reacting to new products or services launched by merchants? - For loyal customers, how is the share of spend changing over time? - What is the company’s market share in a region for similar customers? - Is the company’s loyal user base increasing or decreasing? - Is the lifetime customer value increasing or decreasing?
Use Cases Categories (Our data provides an innumerable amount of use cases, and we look forward to working with new ones): 1. Market Research: Company Analysis, Company Valuation, Competitive Intelligence, Competitor Analysis, Competitor Analytics, Competitor Insights, Customer Data Enrichment, Customer Data Insights, Customer Data Intelligence, Demand Forecasting, Ecommerce Intelligence, Employee Pay Strategy, Employment Analytics, Job Income Analysis, Job Market Pricing, Marketing, Marketing Data Enrichment, Marketing Intelligence, Marketing Strategy, Payment History Analytics, Price Analysis, Pricing Analytics, Retail, Retail Analytics, Retail Intelligence, Retail POS Data Analysis, and Salary Benchmarking
Investment Research: Financial Services, Hedge Funds, Investing, Mergers & Acquisitions (M&A), Stock Picking, Venture Capital (VC)
Consumer Analysis: Consumer Data Enrichment, Consumer Intelligence
Market Data: Analytics B2C Data Enrichment, Bank Data Enrichment, Behavioral Analytics, Benchmarking, Customer Insights, Customer Intelligence, Data Enhancement, Data Enrichment, Data Intelligence, Data Modeling, Ecommerce Analysis, Ecommerce Data Enrichment, Economic Analysis, Financial Data Enrichment, Financial Intelligence, Local Economic Forecasting, Location-based Analytics, Market Analysis, Market Analytics, Market Intelligence, Market Potential Analysis, Market Research, Market Share Analysis, Sales, Sales Data Enrichment, Sales Enablement, Sales Insights, Sales Intelligence, Spending Analytics, Stock Market Predictions, and Trend Analysis.
Additional Use Cases: - Use spending data to analyze sales/revenue broadly (sector-wide) or granular (company-specific). Historically, our tracked consumer spend has correlated above 85% with company-reported data from thousands of firms. Users can sort and filter by many metrics and KPIs, such as sales and transaction growth rates and online or offline transactions, as well as view customer behavior within a geographic market at a state or city level. - Reveal cohort consumer behavior to decipher long-term behavioral consumer spending shifts. Measure market share, wallet share, loyalty, consumer lifetime value, retention, demographics, and more.) - Study the effects of inflation rates via such metrics as increased total spend, ticket size, and number of transactions. - Seek out alpha-generating signals or manage your business strategically with essential, aggregated transaction and spending data analytics.
Supermarket XYZ has been operating since 2008 and business flourished until 2016. They have a large database but they do not use them to achieve better business solutions. Their annual revenues have declined 10% and it seems to stay that way every year.
These datasets are used to analyse a supermarket in United States for the purpose of increasing revenue.
50_Supermarket_Branches.csv contains the information of 50 supermarket branches such as their spending on the advertisement, administration and promotion, states and profits.
Ads_CTR_Optimisation.csv is based on the Click-Through Rates (CTR) from 10000 users in 10 different advertisements.
Market_Basket_Optimisation.csv . This dataset contains 7500 sales transactions in a week.
Supermarket_CustomerMembers.csv . This dataset can be used for customer segmentation.
These datasets in 'U.S. Supermarket Data' are available and legal for everyone who needs it for any kind of analytics project.
Transform Your Business with Our Comprehensive B2B Marketing Data Our B2B Marketing Data is designed to be a cornerstone for data-driven professionals looking to optimize their business strategies. With an unwavering commitment to data integrity and quality, our dataset empowers you to make informed decisions, enhance your outreach efforts, and drive business growth.
Why Choose Our B2B Marketing Data? Unmatched Data Integrity and Quality Our data is meticulously sourced and validated through rigorous processes to ensure its accuracy, relevance, and reliability. This commitment to excellence guarantees that you are equipped with the most up-to-date information, empowering your business to thrive in a competitive landscape.
Versatile and Strategic Applications This versatile dataset caters to a wide range of business needs, including:
Lead Generation: Identify and connect with potential clients who align with your business goals. Market Segmentation: Tailor your marketing efforts by segmenting your audience based on industry, company size, or geographical location. Personalized Marketing Campaigns: Craft personalized outreach strategies that resonate with your target audience, increasing engagement and conversion rates. B2B Communication Strategies: Enhance your communication efforts with direct access to decision-makers, ensuring your message reaches the right people. Comprehensive Data Attributes Our B2B Marketing Data offers more than just basic contact information. With over 20+ attributes, you gain in-depth insights into:
Decision-Maker Roles: Understand the responsibilities and influence of key figures within an organization, such as CEOs, executives, and other senior management. Industry Affiliations: Analyze industry-specific data to tailor your approach to the unique dynamics of each sector. Contact Information: Direct email addresses and phone numbers streamline communication, enabling you to engage with your audience effectively and efficiently. Expansive Global Coverage Our dataset spans a wide array of countries, providing a truly global perspective for your business initiatives. Whether you're looking to expand into new markets or strengthen your presence in existing ones, our data ensures comprehensive coverage across the following regions:
North America: United States, Canada, Mexico Europe: United Kingdom, Germany, France, Italy, Spain, Netherlands, Sweden, and more Asia: China, Japan, India, South Korea, Singapore, Malaysia, and more South America: Brazil, Argentina, Chile, Colombia, and more Africa: South Africa, Nigeria, Kenya, Egypt, and more Australia and Oceania: Australia, New Zealand Middle East: United Arab Emirates, Saudi Arabia, Israel, Qatar, and more Industry-Wide Reach Our B2B Marketing Data covers an extensive range of industries, ensuring that no matter your focus, you have access to the insights you need:
Finance and Banking Technology Healthcare Manufacturing Retail Education Energy Real Estate Telecommunications Hospitality Transportation and Logistics Government and Public Sector Non-Profit Organizations And many more… Comprehensive Employee and Revenue Size Information Our dataset includes detailed records on company size and revenue, offering you the ability to:
Employee Size: From small businesses with a handful of employees to large multinational corporations, we provide data across all scales. Revenue Size: Analyze companies based on their revenue brackets, allowing for precise market segmentation and targeted marketing efforts. Seamless Integration with Broader Data Offerings Our B2B Marketing Data is not just a standalone product; it integrates seamlessly with our broader suite of premium datasets. This integration enables you to create a holistic and customized approach to your data-driven initiatives, ensuring that every aspect of your business strategy is informed by the most accurate and comprehensive data available.
Elevate Your Business with Data-Driven Precision Optimize your marketing strategies with our high-quality, reliable, and scalable B2B Marketing Data. Identify new opportunities, understand market dynamics, and connect with key decision-makers to drive your business forward. With our dataset, you’ll stay ahead of the competition and foster meaningful business relationships that lead to sustained growth.
Unlock the full potential of your business with our B2B Marketing Data – the ultimate resource for growth, reliability, and scalability.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
By [source]
This dataset contains customer data from multiple sources that can be used to predict customer churn and analyze its effect on revenue. We'll use this data to gain insights into customer behavior, such as when customers are likely to churn, how their behavior affects revenue and what patterns of behavior can help us better understand customers. This dataset features several different attributes for each customer: their unique identifier, total charges paid over time, contract information and more. Additionally, we can use the predictive analytical models based on this data to identify at-risk customers that may be more likely to churn in the near future. By gaining deep insight into which customers are most likely to leave and why they are leaving, businesses will be better equipped with tools necessary for taking proactive measures against potential revenue losses due to customer churn
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset is an excellent tool for businesses to understand what factors are associated with customer churn and its impact on revenue. It can provide insights into which customers are most likely to leave, and how companies can prevent them from leaving.
To use this dataset, here are the steps businesses can follow: 1. Understand each of the data points available in the dataset and what they represent - For example, CustomerID is a unique identifier for each customer, Churn indicates if a customer has left the company or not, gender denotes what gender the customer is etc. 2. Analyze any trends or patterns in your data – Look out for correlations between different variables like OnlineSecurity usage and Churn rate or MonthlyCharges and tenure to determine how these variables affect customers’ decisions to stay with a company or leave it etc. 3. Use machine learning models on your dataset – Utilize supervised learning algorithms such as logistic regression on this dataset to determine which variable most closely correlates with loyalty of customers i.e., which variable will decide whether a particular customer will stay with your company or not?
4. Explore various ways of increasing retention rates – Think about ways you could incentivize customers who might be considering leaving their current provider (for example, offer discounts, free trials etc.). You could try different strategies like A/B testing too see which incentive works best for churn prevention/retention rate increase etc. 5.. Test out strategies before implementing them - Once you have decided on incentives that might work well, run small scale tests to check if they generate desired results before investing resources into full rollout programs .The systems based on machine learning algorithms allows you to quickly test assumptions efficiently without large investments in time & money prior committing these changes fully operational processes
- Using customer data to identify and target customers who are at a high risk of churning to counter this effect with relevant customer service initiatives.
- Analyzing the effects of promotional campaigns and loyalty programs on customer retention rates and overall revenue.
- Machine learning models that predict future chances of customer churn which can be used by businesses to improve strategies for better retention & profitability
If you use this dataset in your research, please credit the original authors. Data Source
License
License: CC0 1.0 Universal (CC0 1.0) - Public Domain Dedication No Copyright - You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission. See Other Information.
File: dataset1.csv | Column name | Description | |:---------------------|:-----------------------------------------------------------------| | CustomerID | Unique identifier for each customer. (Integer) | | Churn | Whether or not the customer has churned. (Boolean) | | gender | Gender of the customer. (String) | | SeniorCitizen | Whether or not the customer is a senior citizen. (Boolean) ...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Germany Largest Companies’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/yamqwe/germany-largest-companiese on 13 February 2022.
--- Dataset description provided by original source is as follows ---
From the Forbes Global 2000 list last updated on May 2013. Forbes publishes an annual list of the world's 2000 largest publicly listed corporations. The Forbes Global 2000 weighs sales, profits, assets and market value equally so companies can be ranked by size. Figures for all companies are in US dollars.
Source: Economy Watch
This dataset was created by Finance and contains around 0 samples along with Profits ($billion), Assets ($billion), technical information and other features such as: - Sales ($billion) - Market Value ($billion) - and more.
- Analyze Global Rank in relation to Profits ($billion)
- Study the influence of Assets ($billion) on Sales ($billion)
- More datasets
If you use this dataset in your research, please credit Finance
--- Original source retains full ownership of the source dataset ---
In 2023, Meta Platforms had a total annual revenue of over 134 billion U.S. dollars, up from 116 billion in 2022. LinkedIn reported its highest annual revenue to date, generating over 15 billion USD, whilst Snapchat reported an annual revenue of 4.6 billion USD.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Microsoft is an American company that develops and distributes software and services such as: a search engine (Bing), cloud solutions and the computer operating system Windows.
Market capitalization of Microsoft (MSFT)
Market cap: $3.085 Trillion USD
As of February 2025 Microsoft has a market cap of $3.085 Trillion USD. This makes Microsoft the world's 2nd most valuable company by market cap according to our data. The market capitalization, commonly called market cap, is the total market value of a publicly traded company's outstanding shares and is commonly used to measure how much a company is worth.
Revenue for Microsoft (MSFT)
Revenue in 2024 (TTM): $254.19 Billion USD
According to Microsoft's latest financial reports the company's current revenue (TTM ) is $254.19 Billion USD. In 2023 the company made a revenue of $227.58 Billion USD an increase over the revenue in the year 2022 that were of $204.09 Billion USD. The revenue is the total amount of income that a company generates by the sale of goods or services. Unlike with the earnings no expenses are subtracted.
Earnings for Microsoft (MSFT)
Earnings in 2024 (TTM): $110.77 Billion USD
According to Microsoft's latest financial reports the company's current earnings are $254.19 Billion USD. In 2023 the company made an earning of $101.21 Billion USD, an increase over its 2022 earnings that were of $82.58 Billion USD. The earnings displayed on this page are the earnings before interest and taxes or simply EBIT.
End of Day market cap according to different sources On Feb 2nd, 2025 the market cap of Microsoft was reported to be:
$3.085 Trillion USD by Nasdaq
$3.085 Trillion USD by CompaniesMarketCap
$3.085 Trillion USD by Yahoo Finance
Geography: USA
Time period: March 1986- February 2025
Unit of analysis: Microsoft Stock Data 2025
Variable | Description |
---|---|
date | date |
open | The price at market open. |
high | The highest price for that day. |
low | The lowest price for that day. |
close | The price at market close, adjusted for splits. |
adj_close | The closing price after adjustments for all applicable splits and dividend distributions. Data is adjusted using appropriate split and dividend multipliers, adhering to Center for Research in Security Prices (CRSP) standards. |
volume | The number of shares traded on that day. |
This dataset belongs to me. I’m sharing it here for free. You may do with it as you wish.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F18335022%2F0304ad0416e7e55515daf890288d7f7f%2FScreenshot%202025-02-03%20152019.png?generation=1738662588735376&alt=media" alt="">
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F18335022%2Fba7629dd0c4dc3e2ea1dbac361b94de1%2FScreenshot%202025-02-03%20152147.png?generation=1738662611945343&alt=media" alt="">
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F18335022%2Fa9f48f1ec5fdf2a363a138389294d5b0%2FScreenshot%202025-02-03%20152159.png?generation=1738662631268574&alt=media" alt="">
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Corporate Profits in the United States decreased to 3203.60 USD Billion in the first quarter of 2025 from 3312 USD Billion in the fourth quarter of 2024. This dataset provides the latest reported value for - United States Corporate Profits - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.