64 datasets found
  1. Total population worldwide 1950-2100

    • statista.com
    Updated Jul 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Total population worldwide 1950-2100 [Dataset]. https://www.statista.com/statistics/805044/total-population-worldwide/
    Explore at:
    Dataset updated
    Jul 28, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    The world population surpassed eight billion people in 2022, having doubled from its figure less than 50 years previously. Looking forward, it is projected that the world population will reach nine billion in 2038, and 10 billion in 2060, but it will peak around 10.3 billion in the 2080s before it then goes into decline. Regional variations The global population has seen rapid growth since the early 1800s, due to advances in areas such as food production, healthcare, water safety, education, and infrastructure, however, these changes did not occur at a uniform time or pace across the world. Broadly speaking, the first regions to undergo their demographic transitions were Europe, North America, and Oceania, followed by Latin America and Asia (although Asia's development saw the greatest variation due to its size), while Africa was the last continent to undergo this transformation. Because of these differences, many so-called "advanced" countries are now experiencing population decline, particularly in Europe and East Asia, while the fastest population growth rates are found in Sub-Saharan Africa. In fact, the roughly two billion difference in population between now and the 2080s' peak will be found in Sub-Saharan Africa, which will rise from 1.2 billion to 3.2 billion in this time (although populations in other continents will also fluctuate). Changing projections The United Nations releases their World Population Prospects report every 1-2 years, and this is widely considered the foremost demographic dataset in the world. However, recent years have seen a notable decline in projections when the global population will peak, and at what number. Previous reports in the 2010s had suggested a peak of over 11 billion people, and that population growth would continue into the 2100s, however a sooner and shorter peak is now projected. Reasons for this include a more rapid population decline in East Asia and Europe, particularly China, as well as a prolonged development arc in Sub-Saharan Africa.

  2. World Population by Country 2023

    • kaggle.com
    Updated Aug 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Joakim Arvidsson (2023). World Population by Country 2023 [Dataset]. https://www.kaggle.com/datasets/joebeachcapital/world-population-by-country-2023
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 6, 2023
    Dataset provided by
    Kaggle
    Authors
    Joakim Arvidsson
    License

    http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/

    Area covered
    World
    Description

    This list includes both countries and dependent territories. Data based on the latest United Nations Population Division estimates.

    • Country - Name of countries and dependent territories.
    • Population2023 - Population in the year 2023
    • YearlyChange - Percentage Yearly Change in Population
    • NetChange - Net Change in Population
    • Density(P/Km²)- Population density (population per square km)
    • Land Area(Km²) - Land area of countries / dependent territories.
    • Migrants(net) - Total number of migrants
    • Fert.Rate - Fertility rate
    • Med.Age - Median age of the population
    • UrbanPop%- Percentage of urban population
    • WorldShare - Population share
  3. T

    United States Population

    • tradingeconomics.com
    • es.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Dec 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2024). United States Population [Dataset]. https://tradingeconomics.com/united-states/population
    Explore at:
    excel, xml, csv, jsonAvailable download formats
    Dataset updated
    Dec 15, 2024
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1900 - Dec 31, 2024
    Area covered
    United States
    Description

    The total population in the United States was estimated at 341.2 million people in 2024, according to the latest census figures and projections from Trading Economics. This dataset provides - United States Population - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  4. Gridded Population of the World, v.4

    • pacific-data.sprep.org
    • solomonislands-data.sprep.org
    • +13more
    tiff
    Updated Nov 2, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Center for International Earth Science Information Network - CIESIN - Columbia University (2022). Gridded Population of the World, v.4 [Dataset]. https://pacific-data.sprep.org/dataset/gridded-population-world-v4
    Explore at:
    tiff(369581807), tiff(369421940), tiff(369652849), tiff(369722113), tiff(369514106)Available download formats
    Dataset updated
    Nov 2, 2022
    Dataset provided by
    Pacific Regional Environment Programmehttps://www.sprep.org/
    Authors
    Center for International Earth Science Information Network - CIESIN - Columbia University
    License

    Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
    License information was derived automatically

    Area covered
    552.10693359375 84.640776810146, POLYGON ((-172.11181640625 -86.244179470475, -172.11181640625 84.640776810146, 552.10693359375 -86.244179470475)), Global, World
    Description

    The Gridded Population of the World, Version 4 (GPWv4): Population Density, Revision 11 consists of estimates of human population density (number of persons per square kilometer) based on counts consistent with national censuses and population registers, for the years 2000, 2005, 2010, 2015, and 2020. A proportional allocation gridding algorithm, utilizing approximately 13.5 million national and sub-national administrative units, was used to assign population counts to 30 arc-second grid cells. The population density rasters were created by dividing the population count raster for a given target year by the land area raster. The data files were produced as global rasters at 30 arc-second (~1 km at the equator) resolution.

    Purpose: To provide estimates of population density for the years 2000, 2005, 2010, 2015, and 2020, based on counts consistent with national censuses and population registers, as raster data to facilitate data integration.

    Recommended Citation(s)*: Center for International Earth Science Information Network - CIESIN - Columbia University. 2018. Gridded Population of the World, Version 4 (GPWv4): Population Density, Revision 11. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). https://doi.org/10.7927/H49C6VHW. Accessed DAY MONTH YEAR.

  5. o

    Geonames - All Cities with a population > 1000

    • public.opendatasoft.com
    • data.smartidf.services
    • +2more
    csv, excel, geojson +1
    Updated Mar 10, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Geonames - All Cities with a population > 1000 [Dataset]. https://public.opendatasoft.com/explore/dataset/geonames-all-cities-with-a-population-1000/
    Explore at:
    csv, json, geojson, excelAvailable download formats
    Dataset updated
    Mar 10, 2024
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name

  6. World Population

    • kaggle.com
    Updated Dec 29, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    khaIid (2021). World Population [Dataset]. https://www.kaggle.com/datasets/khaiid/world-population/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 29, 2021
    Dataset provided by
    Kaggle
    Authors
    khaIid
    License

    Attribution-ShareAlike 3.0 (CC BY-SA 3.0)https://creativecommons.org/licenses/by-sa/3.0/
    License information was derived automatically

    Area covered
    World
    Description

    Content

    The dataset has 6 columns described as following:

    Rank: Country rank by population

    Country: Country name

    Region: Country region

    Population: Country population

    Percentage: Percentage of population worldwide

    Date: Date when population was measured

    Questions to be answered

    What is the population of each region ? Which country has the most population in each region ? What is the percentage of the first 10 countries ?

  7. T

    World Population

    • tradingeconomics.com
    • it.tradingeconomics.com
    • +8more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, World Population [Dataset]. https://tradingeconomics.com/world/population
    Explore at:
    excel, json, csv, xmlAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1960 - Dec 31, 2024
    Area covered
    World, World
    Description

    The total population in World was estimated at 8142.1 million people in 2024, according to the latest census figures and projections from Trading Economics. This dataset includes a chart with historical data for World Population.

  8. d

    Africa Population Distribution Database

    • search.dataone.org
    Updated Nov 17, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Deichmann, Uwe; Nelson, Andy (2014). Africa Population Distribution Database [Dataset]. https://search.dataone.org/view/Africa_Population_Distribution_Database.xml
    Explore at:
    Dataset updated
    Nov 17, 2014
    Dataset provided by
    Regional and Global Biogeochemical Dynamics Data (RGD)
    Authors
    Deichmann, Uwe; Nelson, Andy
    Time period covered
    Jan 1, 1960 - Dec 31, 1997
    Area covered
    Description

    The Africa Population Distribution Database provides decadal population density data for African administrative units for the period 1960-1990. The databsae was prepared for the United Nations Environment Programme / Global Resource Information Database (UNEP/GRID) project as part of an ongoing effort to improve global, spatially referenced demographic data holdings. The database is useful for a variety of applications including strategic-level agricultural research and applications in the analysis of the human dimensions of global change.

    This documentation describes the third version of a database of administrative units and associated population density data for Africa. The first version was compiled for UNEP's Global Desertification Atlas (UNEP, 1997; Deichmann and Eklundh, 1991), while the second version represented an update and expansion of this first product (Deichmann, 1994; WRI, 1995). The current work is also related to National Center for Geographic Information and Analysis (NCGIA) activities to produce a global database of subnational population estimates (Tobler et al., 1995), and an improved database for the Asian continent (Deichmann, 1996). The new version for Africa provides considerably more detail: more than 4700 administrative units, compared to about 800 in the first and 2200 in the second version. In addition, for each of these units a population estimate was compiled for 1960, 70, 80 and 90 which provides an indication of past population dynamics in Africa. Forthcoming are population count data files as download options.

    African population density data were compiled from a large number of heterogeneous sources, including official government censuses and estimates/projections derived from yearbooks, gazetteers, area handbooks, and other country studies. The political boundaries template (PONET) of the Digital Chart of the World (DCW) was used delineate national boundaries and coastlines for African countries.

    For more information on African population density and administrative boundary data sets, see metadata files at [http://na.unep.net/datasets/datalist.php3] which provide information on file identification, format, spatial data organization, distribution, and metadata reference.

    References:

    Deichmann, U. 1994. A medium resolution population database for Africa, Database documentation and digital database, National Center for Geographic Information and Analysis, University of California, Santa Barbara.

    Deichmann, U. and L. Eklundh. 1991. Global digital datasets for land degradation studies: A GIS approach, GRID Case Study Series No. 4, Global Resource Information Database, United Nations Environment Programme, Nairobi.

    UNEP. 1997. World Atlas of Desertification, 2nd Ed., United Nations Environment Programme, Edward Arnold Publishers, London.

    WRI. 1995. Africa data sampler, Digital database and documentation, World Resources Institute, Washington, D.C.

  9. Global Human Settlement - Urban Centres Database

    • hub.arcgis.com
    Updated Sep 16, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Deutschland (2020). Global Human Settlement - Urban Centres Database [Dataset]. https://hub.arcgis.com/datasets/2344906dc4a04c748b690b9a92c8446c
    Explore at:
    Dataset updated
    Sep 16, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Deutschland
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    “The Global Human Settlement Layer Urban Centres Database (GHS-UCDB) is the most complete database on cities to date, publicly released as an open and free dataset. The database represents the global status on Urban Centres in 2015 by offering cities location, their extent (surface, shape), and describing each city with a set of geographical, socio-economic and environmental attributes, many of them going back 25 or even 40 years in time.”Zusätzliche Informationen The Urban Centres are defined by specific cut-off values on resdient population and built-up surfac share in a 1x1km uniform global grid.See ghs_stat_ucdb2015mt_globe_r2019a_v1_0_web_1.pdf for more information.Views of this layer are used in web maps for the ArcGIS Living Atlas of the World.QuelleGlobal Human Settlement - Urban Centre database R2019A - European Commission | Zuletzt Aufgerufen am 25.04.2025Datenbestand2019

  10. G

    GPWv411: Population Density (Gridded Population of the World Version 4.11)

    • developers.google.com
    Updated Aug 11, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NASA SEDAC at the Center for International Earth Science Information Network (2019). GPWv411: Population Density (Gridded Population of the World Version 4.11) [Dataset]. http://doi.org/10.7927/H49C6VHW
    Explore at:
    Dataset updated
    Aug 11, 2019
    Dataset provided by
    NASA SEDAC at the Center for International Earth Science Information Network
    Time period covered
    Jan 1, 2000 - Jan 1, 2020
    Area covered
    Earth
    Description

    This dataset contains estimates of the number of persons per square kilometer consistent with national censuses and population registers. There is one image for each modeled year. General Documentation The Gridded Population of World Version 4 (GPWv4), Revision 11 models the distribution of global human population for the years 2000, 2005, 2010, 2015, and 2020 on 30 arc-second (approximately 1 km) grid cells. Population is distributed to cells using proportional allocation of population from census and administrative units. Population input data are collected at the most detailed spatial resolution available from the results of the 2010 round of censuses, which occurred between 2005 and 2014. The input data are extrapolated to produce population estimates for each modeled year.

  11. N

    White Earth, ND Annual Population and Growth Analysis Dataset: A...

    • neilsberg.com
    csv, json
    Updated Jul 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). White Earth, ND Annual Population and Growth Analysis Dataset: A Comprehensive Overview of Population Changes and Yearly Growth Rates in White Earth from 2000 to 2023 // 2024 Edition [Dataset]. https://www.neilsberg.com/insights/white-earth-nd-population-by-year/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Jul 30, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    North Dakota, White Earth
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2023, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2023. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2023. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the White Earth population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of White Earth across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2023, the population of White Earth was 93, a 0% decrease year-by-year from 2022. Previously, in 2022, White Earth population was 93, a decline of 4.12% compared to a population of 97 in 2021. Over the last 20 plus years, between 2000 and 2023, population of White Earth increased by 28. In this period, the peak population was 99 in the year 2020. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2023

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2023)
    • Population: The population for the specific year for the White Earth is shown in this column.
    • Year on Year Change: This column displays the change in White Earth population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for White Earth Population by Year. You can refer the same here

  12. Number of global social network users 2017-2028

    • statista.com
    • es.statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon, Number of global social network users 2017-2028 [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    How many people use social media?

                  Social media usage is one of the most popular online activities. In 2024, over five billion people were using social media worldwide, a number projected to increase to over six billion in 2028.
    
                  Who uses social media?
                  Social networking is one of the most popular digital activities worldwide and it is no surprise that social networking penetration across all regions is constantly increasing. As of January 2023, the global social media usage rate stood at 59 percent. This figure is anticipated to grow as lesser developed digital markets catch up with other regions
                  when it comes to infrastructure development and the availability of cheap mobile devices. In fact, most of social media’s global growth is driven by the increasing usage of mobile devices. Mobile-first market Eastern Asia topped the global ranking of mobile social networking penetration, followed by established digital powerhouses such as the Americas and Northern Europe.
    
                  How much time do people spend on social media?
                  Social media is an integral part of daily internet usage. On average, internet users spend 151 minutes per day on social media and messaging apps, an increase of 40 minutes since 2015. On average, internet users in Latin America had the highest average time spent per day on social media.
    
                  What are the most popular social media platforms?
                  Market leader Facebook was the first social network to surpass one billion registered accounts and currently boasts approximately 2.9 billion monthly active users, making it the most popular social network worldwide. In June 2023, the top social media apps in the Apple App Store included mobile messaging apps WhatsApp and Telegram Messenger, as well as the ever-popular app version of Facebook.
    
  13. World cities database

    • kaggle.com
    Updated May 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Juanma Hernández (2025). World cities database [Dataset]. http://doi.org/10.34740/kaggle/dsv/11944536
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 25, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Juanma Hernández
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The data is from:

    https://simplemaps.com/data/world-cities

    We're proud to offer a simple, accurate and up-to-date database of the world's cities and towns. We've built it from the ground up using authoritative sources such as the NGIA, US Geological Survey, US Census Bureau, and NASA.

    Our database is:

    • Up-to-date: It was last refreshed on May 11, 2025.
    • Comprehensive: Over 4 million unique cities and towns from every country in the world (about 48 thousand in basic database).
    • Accurate: Cleaned and aggregated from official sources. Includes latitude and longitude coordinates.
    • Simple: A single CSV file, concise field names, only one entry per city.
  14. a

    Global Human Footprint Index

    • hub.arcgis.com
    • cacgeoportal.com
    • +1more
    Updated Jul 14, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Columbia (2015). Global Human Footprint Index [Dataset]. https://hub.arcgis.com/maps/65518e782be04e7db31de65d53d591a9
    Explore at:
    Dataset updated
    Jul 14, 2015
    Dataset authored and provided by
    Columbia
    Area covered
    Description

    Global Human Footprint Index represents the relative human influence in each terrestrial biome expressed as a percentage. The purpose is to provide an updated map of anthropogenic impacts on the environment in geographic projection which can be used in wildlife conservation planning, natural resource management, and research on human-environment interactions. Dataset SummaryThe Global Human Footprint Index Dataset of the Last of the Wild Project, Version 2, 2005 (LWP-2) is the Human Influence Index (HII) normalized by biome and realm. The HII is a global dataset of 1-kilometer grid cells, created from nine global data layers of human population pressure (population density), human land use and infrastructure (built-up areas, nighttime lights, land use/land cover), and human access (coastlines, roads, railroads, navigable rivers). A value of zero represents the least influenced–the “most wild” part of the biome with value of 100 representing the most influenced (least wild) part of the biome. The dataset is produced by the Wildlife Conservation Society (WCS) and the Columbia University Center for International Earth Science Information Network (CIESIN).Recommended CitationWildlife Conservation Society - WCS, and Center for International Earth Science Information Network - CIESIN - Columbia University. 2005. Last of the Wild Project, Version 2, 2005 (LWP-2): Global Human Footprint Dataset (Geographic). Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). http://dx.doi.org/10.7927/H4M61H5F. Accessed DAY MONTH YEAR.

  15. World Population by Country

    • kaggle.com
    Updated Sep 15, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    chupstee (2020). World Population by Country [Dataset]. https://www.kaggle.com/zhuzha565/population-2019/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 15, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    chupstee
    Area covered
    World
    Description

    Context

    The current US Census Bureau world population estimate in June 2019 shows that the current global population is 7,577,130,400 people on earth, which far exceeds the world population of 7.2 billion from 2015. Our own estimate based on UN data shows the world's population surpassing 7.7 billion.

  16. N

    United States Age Group Population Dataset: A complete breakdown of United...

    • neilsberg.com
    csv, json
    Updated Sep 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). United States Age Group Population Dataset: A complete breakdown of United States age demographics from 0 to 85 years, distributed across 18 age groups [Dataset]. https://www.neilsberg.com/research/datasets/5fd2b2bb-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Sep 16, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Variables measured
    Population Under 5 Years, Population over 85 years, Population Between 5 and 9 years, Population Between 10 and 14 years, Population Between 15 and 19 years, Population Between 20 and 24 years, Population Between 25 and 29 years, Population Between 30 and 34 years, Population Between 35 and 39 years, Population Between 40 and 44 years, and 9 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the United States population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for United States. The dataset can be utilized to understand the population distribution of United States by age. For example, using this dataset, we can identify the largest age group in United States.

    Key observations

    The largest age group in United States was for the group of age 25-29 years with a population of 22,854,328 (6.93%), according to the 2021 American Community Survey. At the same time, the smallest age group in United States was the 80-84 years with a population of 5,932,196 (1.80%). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Variables / Data Columns

    • Age Group: This column displays the age group in consideration
    • Population: The population for the specific age group in the United States is shown in this column.
    • % of Total Population: This column displays the population of each age group as a proportion of United States total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for United States Population by Age. You can refer the same here

  17. f

    ORBIT: A real-world few-shot dataset for teachable object recognition...

    • city.figshare.com
    bin
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Daniela Massiceti; Lida Theodorou; Luisa Zintgraf; Matthew Tobias Harris; Simone Stumpf; Cecily Morrison; Edward Cutrell; Katja Hofmann (2023). ORBIT: A real-world few-shot dataset for teachable object recognition collected from people who are blind or low vision [Dataset]. http://doi.org/10.25383/city.14294597.v3
    Explore at:
    binAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    City, University of London
    Authors
    Daniela Massiceti; Lida Theodorou; Luisa Zintgraf; Matthew Tobias Harris; Simone Stumpf; Cecily Morrison; Edward Cutrell; Katja Hofmann
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Object recognition predominately still relies on many high-quality training examples per object category. In contrast, learning new objects from only a few examples could enable many impactful applications from robotics to user personalization. Most few-shot learning research, however, has been driven by benchmark datasets that lack the high variation that these applications will face when deployed in the real-world. To close this gap, we present the ORBIT dataset, grounded in a real-world application of teachable object recognizers for people who are blind/low vision. We provide a full, unfiltered dataset of 4,733 videos of 588 objects recorded by 97 people who are blind/low-vision on their mobile phones, and a benchmark dataset of 3,822 videos of 486 objects collected by 77 collectors. The code for loading the dataset, computing all benchmark metrics, and running the baseline models is available at https://github.com/microsoft/ORBIT-DatasetThis version comprises several zip files:- train, validation, test: benchmark dataset, organised by collector, with raw videos split into static individual frames in jpg format at 30FPS- other: data not in the benchmark set, organised by collector, with raw videos split into static individual frames in jpg format at 30FPS (please note that the train, validation, test, and other files make up the unfiltered dataset)- *_224: as for the benchmark, but static individual frames are scaled down to 224 pixels.- *_unfiltered_videos: full unfiltered dataset, organised by collector, in mp4 format.

  18. n

    Global contemporary effective population sizes across taxonomic groups

    • data.niaid.nih.gov
    • search.dataone.org
    • +2more
    zip
    Updated May 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shannon H. Clarke; Elizabeth R. Lawrence; Jean-Michel Matte; Sarah J. Salisbury; Sozos N. Michaelides; Ramela Koumrouyan; Daniel E. Ruzzante; James W. A. Grant; Dylan J. Fraser (2024). Global contemporary effective population sizes across taxonomic groups [Dataset]. http://doi.org/10.5061/dryad.p2ngf1vzm
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 3, 2024
    Dataset provided by
    Dalhousie University
    Concordia University
    Authors
    Shannon H. Clarke; Elizabeth R. Lawrence; Jean-Michel Matte; Sarah J. Salisbury; Sozos N. Michaelides; Ramela Koumrouyan; Daniel E. Ruzzante; James W. A. Grant; Dylan J. Fraser
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    Effective population size (Ne) is a particularly useful metric for conservation as it affects genetic drift, inbreeding and adaptive potential within populations. Current guidelines recommend a minimum Ne of 50 and 500 to avoid short-term inbreeding and to preserve long-term adaptive potential, respectively. However, the extent to which wild populations reach these thresholds globally has not been investigated, nor has the relationship between Ne and human activities. Through a quantitative review, we generated a dataset with 4610 georeferenced Ne estimates from 3829 unique populations, extracted from 723 articles. These data show that certain taxonomic groups are less likely to meet 50/500 thresholds and are disproportionately impacted by human activities; plant, mammal, and amphibian populations had a <54% probability of reaching = 50 and a <9% probability of reaching = 500. Populations listed as being of conservation concern according to the IUCN Red List had a smaller median than unlisted populations, and this was consistent across all taxonomic groups. was reduced in areas with a greater Global Human Footprint, especially for amphibians, birds, and mammals, however relationships varied between taxa. We also highlight several considerations for future works, including the role that gene flow and subpopulation structure plays in the estimation of in wild populations, and the need for finer-scale taxonomic analyses. Our findings provide guidance for more specific thresholds based on Ne and help prioritize assessment of populations from taxa most at risk of failing to meet conservation thresholds. Methods Literature search, screening, and data extraction A primary literature search was conducted using ISI Web of Science Core Collection and any articles that referenced two popular single-sample Ne estimation software packages: LDNe (Waples & Do, 2008), and NeEstimator v2 (Do et al., 2014). The initial search included 4513 articles published up to the search date of May 26, 2020. Articles were screened for relevance in two steps, first based on title and abstract, and then based on the full text. For each step, a consistency check was performed using 100 articles to ensure they were screened consistently between reviewers (n = 6). We required a kappa score (Collaboration for Environmental Evidence, 2020) of ³ 0.6 in order to proceed with screening of the remaining articles. Articles were screened based on three criteria: (1) Is an estimate of Ne or Nb reported; (2) for a wild animal or plant population; (3) using a single-sample genetic estimation method. Further details on the literature search and article screening are found in the Supplementary Material (Fig. S1). We extracted data from all studies retained after both screening steps (title and abstract; full text). Each line of data entered in the database represents a single estimate from a population. Some populations had multiple estimates over several years, or from different estimation methods (see Table S1), and each of these was entered on a unique row in the database. Data on N̂e, N̂b, or N̂c were extracted from tables and figures using WebPlotDigitizer software version 4.3 (Rohatgi, 2020). A full list of data extracted is found in Table S2. Data Filtering After the initial data collation, correction, and organization, there was a total of 8971 Ne estimates (Fig. S1). We used regression analyses to compare Ne estimates on the same populations, using different estimation methods (LD, Sibship, and Bayesian), and found that the R2 values were very low (R2 values of <0.1; Fig. S2 and Fig. S3). Given this inconsistency, and the fact that LD is the most frequently used method in the literature (74% of our database), we proceeded with only using the LD estimates for our analyses. We further filtered the data to remove estimates where no sample size was reported or no bias correction (Waples, 2006) was applied (see Fig. S6 for more details). Ne is sometimes estimated to be infinity or negative within a population, which may reflect that a population is very large (i.e., where the drift signal-to-noise ratio is very low), and/or that there is low precision with the data due to small sample size or limited genetic marker resolution (Gilbert & Whitlock, 2015; Waples & Do, 2008; Waples & Do, 2010) We retained infinite and negative estimates only if they reported a positive lower confidence interval (LCI), and we used the LCI in place of a point estimate of Ne or Nb. We chose to use the LCI as a conservative proxy for in cases where a point estimate could not be generated, given its relevance for conservation (Fraser et al., 2007; Hare et al., 2011; Waples & Do 2008; Waples 2023). We also compared results using the LCI to a dataset where infinite or negative values were all assumed to reflect very large populations and replaced the estimate with an arbitrary large value of 9,999 (for reference in the LCI dataset only 51 estimates, or 0.9%, had an or > 9999). Using this 9999 dataset, we found that the main conclusions from the analyses remained the same as when using the LCI dataset, with the exception of the HFI analysis (see discussion in supplementary material; Table S3, Table S4 Fig. S4, S5). We also note that point estimates with an upper confidence interval of infinity (n = 1358) were larger on average (mean = 1380.82, compared to 689.44 and 571.64, for estimates with no CIs or with an upper boundary, respectively). Nevertheless, we chose to retain point estimates with an upper confidence interval of infinity because accounting for them in the analyses did not alter the main conclusions of our study and would have significantly decreased our sample size (Fig. S7, Table S5). We also retained estimates from populations that were reintroduced or translocated from a wild source (n = 309), whereas those from captive sources were excluded during article screening (see above). In exploratory analyses, the removal of these data did not influence our results, and many of these populations are relevant to real-world conservation efforts, as reintroductions and translocations are used to re-establish or support small, at-risk populations. We removed estimates based on duplication of markers (keeping estimates generated from SNPs when studies used both SNPs and microsatellites), and duplication of software (keeping estimates from NeEstimator v2 when studies used it alongside LDNe). Spatial and temporal replication were addressed with two separate datasets (see Table S6 for more information): the full dataset included spatially and temporally replicated samples, while these two types of replication were removed from the non-replicated dataset. Finally, for all populations included in our final datasets, we manually extracted their protection status according to the IUCN Red List of Threatened Species. Taxa were categorized as “Threatened” (Vulnerable, Endangered, Critically Endangered), “Nonthreatened” (Least Concern, Near Threatened), or “N/A” (Data Deficient, Not Evaluated). Mapping and Human Footprint Index (HFI) All populations were mapped in QGIS using the coordinates extracted from articles. The maps were created using a World Behrmann equal area projection. For the summary maps, estimates were grouped into grid cells with an area of 250,000 km2 (roughly 500 km x 500 km, but the dimensions of each cell vary due to distortions from the projection). Within each cell, we generated the count and median of Ne. We used the Global Human Footprint dataset (WCS & CIESIN, 2005) to generate a value of human influence (HFI) for each population at its geographic coordinates. The footprint ranges from zero (no human influence) to 100 (maximum human influence). Values were available in 1 km x 1 km grid cell size and were projected over the point estimates to assign a value of human footprint to each population. The human footprint values were extracted from the map into a spreadsheet to be used for statistical analyses. Not all geographic coordinates had a human footprint value associated with them (i.e., in the oceans and other large bodies of water), therefore marine fishes were not included in our HFI analysis. Overall, 3610 Ne estimates in our final dataset had an associated footprint value.

  19. Z

    RealVAD: A Real-world Dataset for Voice Activity Detection

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jul 3, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vittorio Murino (2020). RealVAD: A Real-world Dataset for Voice Activity Detection [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_3928150
    Explore at:
    Dataset updated
    Jul 3, 2020
    Dataset provided by
    Muhammad Shahid
    Cigdem Beyan
    Vittorio Murino
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    RealVAD: A Real-world Dataset for Voice Activity Detection

    The task of automatically detecting “Who is Speaking and When” is broadly named as Voice Activity Detection (VAD). Automatic VAD is a very important task and also the foundation of several domains, e.g., human-human, human-computer/ robot/ virtual-agent interaction analyses, and industrial applications.

    RealVAD dataset is constructed from a YouTube video composed of a panel discussion lasting approx. 83 minutes. The audio is available from a single channel. There is one static camera capturing all panelists, the moderator and audiences.

    Particular aspects of RealVAD dataset are:

    It is composed of panelists with different nationalities (British, Dutch, French, German, Italian, American, Mexican, Columbian, Thai). This aspect allows studying the effect of ethnic origin variety to the automatic VAD.

    There is a gender balance such that there are four female and five male panelists.

    The panelists are sitting in two rows and they can be gazing audience, other panelists, their laptop, the moderator or anywhere in the room while speaking or not-speaking. Therefore, they were captured not only from frontal-view but also from side-view varying based on their instant posture and head orientation.

    The panelists are moving freely and are doing various spontaneous actions (e.g., drinking water, checking their cell phone, using their laptop, etc.), resulting in different postures.

    The panelists’ body parts are sometimes partially occluded by their/other's body part or belongings (e.g., laptop).

    There are also natural changes of illumination and shadow rising on the wall behind the panelists in the back row.

    Especially, for the panelists sitting in the front row, there is sometimes background motion occurring when the person(s) behind them moves.

    The annotations includes:

    The upper body detection of nine panelists in bounding box form.

    Associated VAD ground-truth (speaking, not-speaking) for nine panelists.

    Acoustic features extracted from the video: MFCC and raw filterbank energies.

    All info regarding the annotations are given in the ReadMe.txt and Acoustic Features README.txt files.

    When using this dataset for your research, please cite the following paper in your publication:

    C. Beyan, M. Shahid and V. Murino, "RealVAD: A Real-world Dataset and A Method for Voice Activity Detection by Body Motion Analysis", in IEEE Transactions on Multimedia, 2020.

  20. Population Dataset Country-Wise

    • kaggle.com
    zip
    Updated Mar 9, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Akshit Batra (2020). Population Dataset Country-Wise [Dataset]. https://www.kaggle.com/akshitbatra/population-dataset-countrywise
    Explore at:
    zip(67274 bytes)Available download formats
    Dataset updated
    Mar 9, 2020
    Authors
    Akshit Batra
    Description

    Context

    Learning Web Scraping in order to build my own datasets, and this is the first one in the learning process. Let's try and build great datasets in the future for better analysis and predictions.

    Content

    Scraped the data on March 10, 2020, from https://www.worldometers.info/world-population/population-by-country/ Dataset represents the population count country-wise for a specific time period.

    Acknowledgements

    Firstly, Thanks to the Content creator on the website https://www.worldometers.info, who provides reliable data on the internet. Secondly, To the Tutor who taught me how to scrape websites.

    Inspiration

    Is this dataset valuable? Where can we utilize this dataset in data science?

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Total population worldwide 1950-2100 [Dataset]. https://www.statista.com/statistics/805044/total-population-worldwide/
Organization logo

Total population worldwide 1950-2100

Explore at:
21 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jul 28, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
World
Description

The world population surpassed eight billion people in 2022, having doubled from its figure less than 50 years previously. Looking forward, it is projected that the world population will reach nine billion in 2038, and 10 billion in 2060, but it will peak around 10.3 billion in the 2080s before it then goes into decline. Regional variations The global population has seen rapid growth since the early 1800s, due to advances in areas such as food production, healthcare, water safety, education, and infrastructure, however, these changes did not occur at a uniform time or pace across the world. Broadly speaking, the first regions to undergo their demographic transitions were Europe, North America, and Oceania, followed by Latin America and Asia (although Asia's development saw the greatest variation due to its size), while Africa was the last continent to undergo this transformation. Because of these differences, many so-called "advanced" countries are now experiencing population decline, particularly in Europe and East Asia, while the fastest population growth rates are found in Sub-Saharan Africa. In fact, the roughly two billion difference in population between now and the 2080s' peak will be found in Sub-Saharan Africa, which will rise from 1.2 billion to 3.2 billion in this time (although populations in other continents will also fluctuate). Changing projections The United Nations releases their World Population Prospects report every 1-2 years, and this is widely considered the foremost demographic dataset in the world. However, recent years have seen a notable decline in projections when the global population will peak, and at what number. Previous reports in the 2010s had suggested a peak of over 11 billion people, and that population growth would continue into the 2100s, however a sooner and shorter peak is now projected. Reasons for this include a more rapid population decline in East Asia and Europe, particularly China, as well as a prolonged development arc in Sub-Saharan Africa.

Search
Clear search
Close search
Google apps
Main menu