100+ datasets found
  1. Average daily time spent on social media worldwide 2012-2025

    • statista.com
    Updated Jun 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Average daily time spent on social media worldwide 2012-2025 [Dataset]. https://www.statista.com/statistics/433871/daily-social-media-usage-worldwide/
    Explore at:
    Dataset updated
    Jun 19, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    How much time do people spend on social media? As of 2025, the average daily social media usage of internet users worldwide amounted to 141 minutes per day, down from 143 minutes in the previous year. Currently, the country with the most time spent on social media per day is Brazil, with online users spending an average of 3 hours and 49 minutes on social media each day. In comparison, the daily time spent with social media in the U.S. was just 2 hours and 16 minutes. Global social media usageCurrently, the global social network penetration rate is 62.3 percent. Northern Europe had an 81.7 percent social media penetration rate, topping the ranking of global social media usage by region. Eastern and Middle Africa closed the ranking with 10.1 and 9.6 percent usage reach, respectively. People access social media for a variety of reasons. Users like to find funny or entertaining content and enjoy sharing photos and videos with friends, but mainly use social media to stay in touch with current events friends. Global impact of social mediaSocial media has a wide-reaching and significant impact on not only online activities but also offline behavior and life in general. During a global online user survey in February 2019, a significant share of respondents stated that social media had increased their access to information, ease of communication, and freedom of expression. On the flip side, respondents also felt that social media had worsened their personal privacy, increased a polarization in politics and heightened everyday distractions.

  2. U.S. Facebook data requests from government agencies 2013-2023

    • statista.com
    • es.statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon, U.S. Facebook data requests from government agencies 2013-2023 [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    Facebook received 73,390 user data requests from federal agencies and courts in the United States during the second half of 2023. The social network produced some user data in 88.84 percent of requests from U.S. federal authorities. The United States accounts for the largest share of Facebook user data requests worldwide.

  3. Number of global social network users 2017-2028

    • statista.com
    • es.statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon, Number of global social network users 2017-2028 [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    How many people use social media?

                  Social media usage is one of the most popular online activities. In 2024, over five billion people were using social media worldwide, a number projected to increase to over six billion in 2028.
    
                  Who uses social media?
                  Social networking is one of the most popular digital activities worldwide and it is no surprise that social networking penetration across all regions is constantly increasing. As of January 2023, the global social media usage rate stood at 59 percent. This figure is anticipated to grow as lesser developed digital markets catch up with other regions
                  when it comes to infrastructure development and the availability of cheap mobile devices. In fact, most of social media’s global growth is driven by the increasing usage of mobile devices. Mobile-first market Eastern Asia topped the global ranking of mobile social networking penetration, followed by established digital powerhouses such as the Americas and Northern Europe.
    
                  How much time do people spend on social media?
                  Social media is an integral part of daily internet usage. On average, internet users spend 151 minutes per day on social media and messaging apps, an increase of 40 minutes since 2015. On average, internet users in Latin America had the highest average time spent per day on social media.
    
                  What are the most popular social media platforms?
                  Market leader Facebook was the first social network to surpass one billion registered accounts and currently boasts approximately 2.9 billion monthly active users, making it the most popular social network worldwide. In June 2023, the top social media apps in the Apple App Store included mobile messaging apps WhatsApp and Telegram Messenger, as well as the ever-popular app version of Facebook.
    
  4. My Digital Footprint

    • kaggle.com
    zip
    Updated Jun 29, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Girish (2023). My Digital Footprint [Dataset]. https://www.kaggle.com/datasets/girish17019/my-digital-footprint
    Explore at:
    zip(874430159 bytes)Available download formats
    Dataset updated
    Jun 29, 2023
    Authors
    Girish
    Description

    Dataset Info:

    MyDigitalFootprint (MDF) is a novel large-scale dataset composed of smartphone embedded sensors data, physical proximity information, and Online Social Networks interactions aimed at supporting multimodal context-recognition and social relationships modelling in mobile environments. The dataset includes two months of measurements and information collected from the personal mobile devices of 31 volunteer users by following the in-the-wild data collection approach: the data has been collected in the users' natural environment, without limiting their usual behaviour. Existing public datasets generally consist of a limited set of context data, aimed at optimising specific application domains (human activity recognition is the most common example). On the contrary, the dataset contains a comprehensive set of information describing the user context in the mobile environment.

    The complete analysis of the data contained in MDF has been presented in the following publication:

    https://www.sciencedirect.com/science/article/abs/pii/S1574119220301383?via%3Dihub

    The full anonymised dataset is contained in the folder MDF. Moreover, in order to demonstrate the efficacy of MDF, there are three proof of concept context-aware applications based on different machine learning tasks:

    1. A social link prediction algorithm based on physical proximity data,
    2. The recognition of daily-life activities based on smartphone-embedded sensors data,
    3. A pervasive context-aware recommender system.

    For the sake of reproducibility, the data used to evaluate the proof-of-concept applications are contained in the folders link-prediction, context-recognition, and cars, respectively.

  5. Data from: Youtube social network

    • kaggle.com
    zip
    Updated Sep 1, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lorenzo De Tomasi (2019). Youtube social network [Dataset]. https://www.kaggle.com/datasets/lodetomasi1995/youtube-social-network
    Explore at:
    zip(10604317 bytes)Available download formats
    Dataset updated
    Sep 1, 2019
    Authors
    Lorenzo De Tomasi
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    YouTube
    Description

    Youtube social network and ground-truth communities Dataset information Youtube is a video-sharing web site that includes a social network. In the Youtube social network, users form friendship each other and users can create groups which other users can join. We consider such user-defined groups as ground-truth communities. This data is provided by Alan Mislove et al.

    We regard each connected component in a group as a separate ground-truth community. We remove the ground-truth communities which have less than 3 nodes. We also provide the top 5,000 communities with highest quality which are described in our paper. As for the network, we provide the largest connected component.

    more info : https://snap.stanford.edu/data/com-Youtube.html

  6. News Popularity in Multiple Social Media Platforms

    • kaggle.com
    zip
    Updated Oct 28, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nikhil John (2020). News Popularity in Multiple Social Media Platforms [Dataset]. https://www.kaggle.com/nikhiljohnk/news-popularity-in-multiple-social-media-platforms
    Explore at:
    zip(10881978 bytes)Available download formats
    Dataset updated
    Oct 28, 2020
    Authors
    Nikhil John
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    Social Media has been taking up everything on the Internet. People getting the latest news, useful resources, life partner and what not. In a world where Social media plays a big role in giving news, we must also know that news which affects our sentiments are going to get spread like a wildfire. Based on the Headline and the title, and according to the date given and the Social media platforms, you have to predict how it has affected the human sentiment scores. You have to predict the column “SentimentTitle” and “SentimentHeadline”.

    Content

    This is a subset of the dataset of the same name available in the UCI Machine Learning Repository The collected data relates to a period of 8 months, between November 2015 and July 2016, accounting for about 100,000 news items on four different topics: economy, microsoft, obama and palestine.

    Dataset Information

    The attributes for each of the dataset are : - IDLink (numeric): Unique identifier of news items - Title (string): Title of the news item according to the official media sources - Headline (string): Headline of the news item according to the official media sources - Source (string): Original news outlet that published the news item - Topic (string): Query topic used to obtain the items in the official media sources - Publish-Date (timestamp): Date and time of the news items' publication - Facebook (numeric): Final value of the news items' popularity according to the social media source Facebook - Google-Plus (numeric): Final value of the news items' popularity according to the social media source Google+ - LinkedIn (numeric): Final value of the news items' popularity according to the social media source LinkedIn - SentimentTitle: Sentiment score of the title, Higher the score, better is the impact or +ve sentiment and vice-versa. (Target Variable 1) - SentimentHeadline: Sentiment score of the text in the news items' headline. Higher the score, better is the impact or +ve sentiment. (Target Variable 2)

  7. s

    Data from: Facebook Users

    • searchlogistics.com
    Updated Apr 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Facebook Users [Dataset]. https://www.searchlogistics.com/learn/statistics/social-media-user-statistics/
    Explore at:
    Dataset updated
    Apr 1, 2025
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Facebook is fast approaching 3 billion monthly active users. That’s about 36% of the world’s entire population that log in and use Facebook at least once a month.

  8. Facebook Group Insights Dataset

    • kaggle.com
    Updated Oct 17, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Md Arif Hasan (2023). Facebook Group Insights Dataset [Dataset]. https://www.kaggle.com/datasets/arifhasan23/short-stories-community-facebook-group-insights/data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 17, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Md Arif Hasan
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    The "**Facebook Group Insights Dataset**" on Kaggle is a concise, data-rich resource for analysing the dynamics of a specific Facebook group.

    This dataset provides key information on admins, daily metrics, member demographics, geographic distribution, popular activity times, and top-performing posts from the past 28 days. It is an essential tool for researchers, social media analysts, and data enthusiasts looking to gain insights into online community behaviour and engagement strategies. Whether you're a social media manager or a data scientist, this dataset offers precise and valuable insights into the inner workings of Facebook groups.

  9. S

    Social Media Internet Rumor Dataset

    • scidb.cn
    Updated Nov 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    彭竞杰 (2023). Social Media Internet Rumor Dataset [Dataset]. http://doi.org/10.57760/sciencedb.j00133.00313
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 10, 2023
    Dataset provided by
    Science Data Bank
    Authors
    彭竞杰
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This data list includes three real-world social media rumor datasets: Politact, Gossiptop, and Weibo. Among them, the Politact dataset and the Gossiptop dataset respectively contain tweet events, user identity information, user history post/forward tweet information, user history tweet comment information, and the relationship between tweets from the two tweet fact verification platforms Politact and Gossiptop. The Weibo dataset is a Chinese rumor dataset crawled from the Sina Weibo false information reporting platform, which includes rumor events and non rumor events in various fields. Each event in this dataset contains the text information of the original post, the user information of the post, and dissemination information. In addition, the core code of the UPBI_HGRD model is provided in this data list.

  10. I

    India Internet Usage: Social Media Market Share: All Platforms: Youku

    • ceicdata.com
    Updated Apr 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2024). India Internet Usage: Social Media Market Share: All Platforms: Youku [Dataset]. https://www.ceicdata.com/en/india/internet-usage-social-media-market-share
    Explore at:
    Dataset updated
    Apr 15, 2024
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Apr 21, 2024 - May 2, 2024
    Area covered
    India
    Description

    Internet Usage: Social Media Market Share: All Platforms: Youku data was reported at 0.040 % in 02 May 2024. This records an increase from the previous number of 0.010 % for 01 May 2024. Internet Usage: Social Media Market Share: All Platforms: Youku data is updated daily, averaging 0.000 % from Jan 2024 (Median) to 02 May 2024, with 111 observations. The data reached an all-time high of 0.200 % in 26 Mar 2024 and a record low of 0.000 % in 30 Apr 2024. Internet Usage: Social Media Market Share: All Platforms: Youku data remains active status in CEIC and is reported by Statcounter Global Stats. The data is categorized under Global Database’s India – Table IN.SC.IU: Internet Usage: Social Media Market Share.

  11. s

    Social Media Usage By Country

    • searchlogistics.com
    Updated Apr 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Social Media Usage By Country [Dataset]. https://www.searchlogistics.com/learn/statistics/social-media-addiction-statistics/
    Explore at:
    Dataset updated
    Apr 1, 2025
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The results might surprise you when looking at internet users that are active on social media in each country.

  12. Data from: Early prediction and characterization of high-impact world events...

    • figshare.com
    txt
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mauricio Quezada; jkalyana@ucsd.edu; bpoblete@dcc.uchile.cl; gert@ece.ucsd.edu (2023). Early prediction and characterization of high-impact world events using social media [Dataset]. http://doi.org/10.6084/m9.figshare.3465974.v4
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    figshare
    Authors
    Mauricio Quezada; jkalyana@ucsd.edu; bpoblete@dcc.uchile.cl; gert@ece.ucsd.edu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    World
    Description

    This dataset consists on 5234 news events obtained from Twitter. The file tweets.csv.gz (available upon request via email to the authors) contains a CSV file, called tweets.csv, with all the tweets IDs corresponding to each event in events.csv. The format of each line of the file is the following:tweet_id, event_idWhere:tweet_id is an long number indicating the Twitter ID of the given tweet. Using the Twitter REST API it is possible to retrieve all the information about the given tweet.event_id corresponds to the event ID of the given tweet. The file events.csv.gz contains a CSV file, called events.csv with all the news events captured from Twitter since August, 2013 until June, 2014. The format of each line of the file is the following:

    event_ID,date,total_keywords,total_tweets,keywords

    Where:

    event_ID is an integer which identifies the corresponding event. There are 5234 events, then event_ID ranges from 1 to 5234. date is the date of the event or connected component. The format is YYYY-MM-DD. total_keywords is an integer indicating how many keywords are in the event or connected component. total_tweets is an integer indicating how many tweets belongs to this event. keywords is a string containing total keywords keywords. There is a semicolon between two keywords.

    The files cluster_labels.txt and time_resolutions.txt contain the cluster labels for each event and the time resolutions learned from all events, respectively.

    cluster_labels.txt contains one integer number per line, from 0 to 19. In line i, the cluster label in that line corresponds to the event ID number i. time_resolutions.txt contains one floating point number per line, indicating the time resolution learned for all events, in minutes. There are 20 numbers in the file, one per line, in increasing order, with at most 13 decimal numbers after the point.

  13. Social Media Sentiment Data

    • kaggle.com
    Updated Aug 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Behara Vikram (2024). Social Media Sentiment Data [Dataset]. https://www.kaggle.com/datasets/beharavikram/social-media-sentiment-data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 20, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Behara Vikram
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Dataset

    This dataset was created by Behara Vikram

    Released under CC0: Public Domain

    Contents

  14. Individual Internet Usage

    • data.gov.sg
    Updated Jun 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Info-communications Media Development Authority (2024). Individual Internet Usage [Dataset]. https://data.gov.sg/datasets/d_fcc02bc884c54a09e8665443bff2f4c2/view
    Explore at:
    Dataset updated
    Jun 6, 2024
    Dataset provided by
    Infocomm Media Development Authorityhttp://www.imda.gov.sg/
    Authors
    Info-communications Media Development Authority
    License

    https://data.gov.sg/open-data-licencehttps://data.gov.sg/open-data-licence

    Time period covered
    Jan 2000 - Dec 2018
    Description

    Dataset from Info-communications Media Development Authority. For more information, visit https://data.gov.sg/datasets/d_fcc02bc884c54a09e8665443bff2f4c2/view

  15. Data from: Social Ads

    • kaggle.com
    Updated Dec 31, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chandresh Kumar (2022). Social Ads [Dataset]. https://www.kaggle.com/datasets/ehtck13/social-ads/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 31, 2022
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Chandresh Kumar
    Description

    Dataset

    This dataset was created by Chandresh Kumar

    Contents

  16. Facebook users worldwide 2017-2027

    • statista.com
    • es.statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon, Facebook users worldwide 2017-2027 [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    The global number of Facebook users was forecast to continuously increase between 2023 and 2027 by in total 391 million users (+14.36 percent). After the fourth consecutive increasing year, the Facebook user base is estimated to reach 3.1 billion users and therefore a new peak in 2027. Notably, the number of Facebook users was continuously increasing over the past years. User figures, shown here regarding the platform Facebook, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period and count multiple accounts by persons only once.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).

  17. IBERIFIER Digital Media Dataset

    • zenodo.org
    • portalcientifico.unav.edu
    • +1more
    csv
    Updated Sep 23, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ramón Salaverría; Ramón Salaverría; María-Pilar Martínez-Costa; María-Pilar Martínez-Costa; Samuel Negredo; Samuel Negredo; Miguel Paisana; Miguel Paisana; Miguel Crespo; Miguel Crespo (2024). IBERIFIER Digital Media Dataset [Dataset]. http://doi.org/10.5281/zenodo.7335551
    Explore at:
    csvAvailable download formats
    Dataset updated
    Sep 23, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Ramón Salaverría; Ramón Salaverría; María-Pilar Martínez-Costa; María-Pilar Martínez-Costa; Samuel Negredo; Samuel Negredo; Miguel Paisana; Miguel Paisana; Miguel Crespo; Miguel Crespo
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    IBERIFIER Digital Media Dataset collects more than 5,000 digital media from Spain and Portugal. This dataset has been produced by the IBERIFIER - Iberian Digital Media Research & Fact-Checking project ( www.iberifier.eu ; ref. 2020-EU-IA-0252), funded by the European Commission. Coordinated from the University of Navarra, this project is made up of 23 institutions from Spain and Portugal.

    As regards the data from Spain, this dataset is based on the work carried out in several R+D+i projects financed by the Ministry of Science and Innovation of Spain: USPRINME (2016-2018), ref. CSO2015-64662-C4-1-R ; DIGINATIVEMEDIA (2019-2021), ref. RTI2018-093346-B-C31; and DIGINATIVEMEDIA II (2022-2024), ref. PID2021-122534OB-C22.

    Regarding the data from Portugal, this dataset is based on the directory of Portuguese media compiled by ERC - Entidade Reguladora para a Comunicação Social (version: Jan. 3th, 2021).

  18. s

    How Many Social Media Accounts Does The Average Person Have?

    • searchlogistics.com
    Updated Apr 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). How Many Social Media Accounts Does The Average Person Have? [Dataset]. https://www.searchlogistics.com/learn/statistics/social-media-addiction-statistics/
    Explore at:
    Dataset updated
    Apr 1, 2025
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The average person has 8-9 social media accounts. This has doubled since 2013, when the average person just had 4-5 accounts.

  19. Data from: social network data

    • kaggle.com
    zip
    Updated Nov 22, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ria Kapoor (2020). social network data [Dataset]. https://www.kaggle.com/riyakapoor/social-network-data
    Explore at:
    zip(3349 bytes)Available download formats
    Dataset updated
    Nov 22, 2020
    Authors
    Ria Kapoor
    Description

    Dataset

    This dataset was created by Ria Kapoor

    Contents

  20. m

    Data from: MonkeyPox2022Tweets: The First Public Twitter Dataset on the 2022...

    • data.mendeley.com
    Updated Jul 25, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nirmalya Thakur (2022). MonkeyPox2022Tweets: The First Public Twitter Dataset on the 2022 MonkeyPox Outbreak [Dataset]. http://doi.org/10.17632/xmcg82mx9k.3
    Explore at:
    Dataset updated
    Jul 25, 2022
    Authors
    Nirmalya Thakur
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Please cite the following paper when using this dataset: N. Thakur, “MonkeyPox2022Tweets: The first public Twitter dataset on the 2022 MonkeyPox outbreak,” Preprints, 2022, DOI: 10.20944/preprints202206.0172.v2

    Abstract The world is currently facing an outbreak of the monkeypox virus, and confirmed cases have been reported from 28 countries. Following a recent “emergency meeting”, the World Health Organization just declared monkeypox a global health emergency. As a result, people from all over the world are using social media platforms, such as Twitter, for information seeking and sharing related to the outbreak, as well as for familiarizing themselves with the guidelines and protocols that are being recommended by various policy-making bodies to reduce the spread of the virus. This is resulting in the generation of tremendous amounts of Big Data related to such paradigms of social media behavior. Mining this Big Data and compiling it in the form of a dataset can serve a wide range of use-cases and applications such as analysis of public opinions, interests, views, perspectives, attitudes, and sentiment towards this outbreak. Therefore, this work presents MonkeyPox2022Tweets, an open-access dataset of Tweets related to the 2022 monkeypox outbreak that were posted on Twitter since the first detected case of this outbreak on May 7, 2022. The dataset is compliant with the privacy policy, developer agreement, and guidelines for content redistribution of Twitter, as well as with the FAIR principles (Findability, Accessibility, Interoperability, and Reusability) principles for scientific data management.

    Data Description The dataset consists of a total of 255,363 Tweet IDs of the same number of tweets about monkeypox that were posted on Twitter from 7th May 2022 to 23rd July 2022 (the most recent date at the time of dataset upload). The Tweet IDs are presented in 6 different .txt files based on the timelines of the associated tweets. The following provides the details of these dataset files. • Filename: TweetIDs_Part1.txt (No. of Tweet IDs: 13926, Date Range of the Tweet IDs: May 7, 2022 to May 21, 2022) • Filename: TweetIDs_Part2.txt (No. of Tweet IDs: 17705, Date Range of the Tweet IDs: May 21, 2022 to May 27, 2022) • Filename: TweetIDs_Part3.txt (No. of Tweet IDs: 17585, Date Range of the Tweet IDs: May 27, 2022 to June 5, 2022) • Filename: TweetIDs_Part4.txt (No. of Tweet IDs: 19718, Date Range of the Tweet IDs: June 5, 2022 to June 11, 2022) • Filename: TweetIDs_Part5.txt (No. of Tweet IDs: 47718, Date Range of the Tweet IDs: June 12, 2022 to June 30, 2022) • Filename: TweetIDs_Part6.txt (No. of Tweet IDs: 138711, Date Range of the Tweet IDs: July 1, 2022 to July 23, 2022)

    The dataset contains only Tweet IDs in compliance with the terms and conditions mentioned in the privacy policy, developer agreement, and guidelines for content redistribution of Twitter. The Tweet IDs need to be hydrated to be used.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Average daily time spent on social media worldwide 2012-2025 [Dataset]. https://www.statista.com/statistics/433871/daily-social-media-usage-worldwide/
Organization logo

Average daily time spent on social media worldwide 2012-2025

Explore at:
Dataset updated
Jun 19, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
Worldwide
Description

How much time do people spend on social media? As of 2025, the average daily social media usage of internet users worldwide amounted to 141 minutes per day, down from 143 minutes in the previous year. Currently, the country with the most time spent on social media per day is Brazil, with online users spending an average of 3 hours and 49 minutes on social media each day. In comparison, the daily time spent with social media in the U.S. was just 2 hours and 16 minutes. Global social media usageCurrently, the global social network penetration rate is 62.3 percent. Northern Europe had an 81.7 percent social media penetration rate, topping the ranking of global social media usage by region. Eastern and Middle Africa closed the ranking with 10.1 and 9.6 percent usage reach, respectively. People access social media for a variety of reasons. Users like to find funny or entertaining content and enjoy sharing photos and videos with friends, but mainly use social media to stay in touch with current events friends. Global impact of social mediaSocial media has a wide-reaching and significant impact on not only online activities but also offline behavior and life in general. During a global online user survey in February 2019, a significant share of respondents stated that social media had increased their access to information, ease of communication, and freedom of expression. On the flip side, respondents also felt that social media had worsened their personal privacy, increased a polarization in politics and heightened everyday distractions.

Search
Clear search
Close search
Google apps
Main menu