8 datasets found
  1. M

    Vital Signs: List Rents – by city

    • open-data-demo.mtc.ca.gov
    • data.bayareametro.gov
    application/rdfxml +5
    Updated Jan 19, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    real Answers (2017). Vital Signs: List Rents – by city [Dataset]. https://open-data-demo.mtc.ca.gov/dataset/Vital-Signs-List-Rents-by-city/vpmm-yh3p/about
    Explore at:
    tsv, csv, json, xml, application/rdfxml, application/rssxmlAvailable download formats
    Dataset updated
    Jan 19, 2017
    Dataset authored and provided by
    real Answers
    Description

    VITAL SIGNS INDICATOR List Rents (EC9)

    FULL MEASURE NAME List Rents

    LAST UPDATED October 2016

    DESCRIPTION List rent refers to the advertised rents for available rental housing and serves as a measure of housing costs for new households moving into a neighborhood, city, county or region.

    DATA SOURCE real Answers (1994 – 2015) no link

    Zillow Metro Median Listing Price All Homes (2010-2016) http://www.zillow.com/research/data/

    CONTACT INFORMATION vitalsigns.info@mtc.ca.gov

    METHODOLOGY NOTES (across all datasets for this indicator) List rents data reflects median rent prices advertised for available apartments rather than median rent payments; more information is available in the indicator definition above. Regional and local geographies rely on data collected by real Answers, a research organization and database publisher specializing in the multifamily housing market. real Answers focuses on collecting longitudinal data for individual rental properties through quarterly surveys. For the Bay Area, their database is comprised of properties with 40 to 3,000+ housing units. Median list prices most likely have an upward bias due to the exclusion of smaller properties. The bias may be most extreme in geographies where large rental properties represent a small portion of the overall rental market. A map of the individual properties surveyed is included in the Local Focus section.

    Individual properties surveyed provided lower- and upper-bound ranges for the various types of housing available (studio, 1 bedroom, 2 bedroom, etc.). Median lower- and upper-bound prices are determined across all housing types for the regional and county geographies. The median list price represented in Vital Signs is the average of the median lower- and upper-bound prices for the region and counties. Median upper-bound prices are determined across all housing types for the city geographies. The median list price represented in Vital Signs is the median upper-bound price for cities. For simplicity, only the mean list rent is displayed for the individual properties. The metro areas geography rely upon Zillow data, which is the median price for rentals listed through www.zillow.com during the month. Like the real Answers data, Zillow's median list prices most likely have an upward bias since small properties are underrepresented in Zillow's listings. The metro area data for the Bay Area cannot be compared to the regional Bay Area data. Due to afore mentioned data limitations, this data is suitable for analyzing the change in list rents over time but not necessarily comparisons of absolute list rents. Metro area boundaries reflects today’s metro area definitions by county for consistency, rather than historical metro area boundaries.

    Due to the limited number of rental properties surveyed, city-level data is unavailable for Atherton, Belvedere, Brisbane, Calistoga, Clayton, Cloverdale, Cotati, Fairfax, Half Moon Bay, Healdsburg, Hillsborough, Los Altos Hills, Monte Sereno, Moranga, Oakley, Orinda, Portola Valley, Rio Vista, Ross, San Anselmo, San Carlos, Saratoga, Sebastopol, Windsor, Woodside, and Yountville.

    Inflation-adjusted data are presented to illustrate how rents have grown relative to overall price increases; that said, the use of the Consumer Price Index does create some challenges given the fact that housing represents a major chunk of consumer goods bundle used to calculate CPI. This reflects a methodological tradeoff between precision and accuracy and is a common concern when working with any commodity that is a major component of CPI itself. Percent change in inflation-adjusted median is calculated with respect to the median price from the fourth quarter or December of the base year.

  2. V

    Virginia Fair Market Rent for 2024 - 2025

    • data.virginia.gov
    xlsx
    Updated Dec 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Other (2024). Virginia Fair Market Rent for 2024 - 2025 [Dataset]. https://data.virginia.gov/dataset/virginia-fair-market-rent-for-2021
    Explore at:
    xlsx(26912)Available download formats
    Dataset updated
    Dec 9, 2024
    Dataset authored and provided by
    Other
    Area covered
    Virginia
    Description

    Virginia (VA) has the 19th highest rent in the country out of 56 states and territories. The Fair Market Rent in Virginia ranges from $701 for a 2-bedroom apartment in Grayson County, VA to $1,765 for a 2-bedroom unit in Washington-Arlington-Alexandria, DC-VA-MD HUD Metro FMR Area.

    For FY 2024, the Washington-Arlington-Alexandria, DC-VA-MD HUD Metro FMR Area (Arlington County) rent for a studio or efficiency is $1,772 per month and $3,015 per month to rent a house or an apartment with 4 bedrooms. The average Fair Market Rent for a 2-bedroom home in Virginia is $1,056 per month.

    Approximately 15% of Americans qualify for some level of housing assistance. The population in Virginia is around 2,038,847 people. So, there are around 305,827 people in Virginia who could be receiving housing benefits from the HUD. For FY 2025, the Washington-Arlington-Alexandria, DC-VA-MD HUD Metro FMR Area (Arlington County) rent for a studio or efficiency is $2,012 per month and $3,413 per month to rent a house or an apartment with 4 bedrooms. The average Fair Market Rent for a 2-bedroom home in Virginia is $1,059 per month.

  3. Korean Read Speech Corpus

    • kaggle.com
    Updated Jan 27, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    hongseok deeply (2021). Korean Read Speech Corpus [Dataset]. https://www.kaggle.com/datasets/hongseokdeeply/korean-read-speech-corpus/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 27, 2021
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    hongseok deeply
    Description

    Deeply Korean Read Speech Corpus

    Summary

    Pairs of Korean speakers reading a script with , with , are recorded. The recordings took place in , which are an anechoic chamber, studio apartment, and dance studio, of which the level of reverberation differs. And in order to examine the effect of the distance of mic from the source and device, every experiment is recorded at with , iPhone X, and Galaxy S7.

    There were two individuals in a group, and each group was distinguished by a unique key(subject ID). Two speakers(speaker a, speaker b) were facing each other 1.4m apart from each other (0.7m from the middle line). They read the allocated scripts alternating between speaker a and b, as if they were talking to each other.

    Recording environmentStudio Apartment(moderate reverb),
    Dance studio(high reverb),
    Anechoic Chamber(no reverb)
    DeviceiPhone X(iOS), Samsung Galaxy S7
    Recording distance from the source0.4m, 2.0m, 4.0m
    Volume(Sample)~ 290(~ 3) hours, ~ 190,000(~ 2,000) utterances, ~ 107(~ 0.5) GB
    Formatwav/h5(16/44.1kHz, 16-bit, mono)
    LanguageKorean
    Studio ApartmentDance studioAnechoic Chamber
    https://github.com/deeplyinc/Korean-Read-Speech-Corpus/blob/main/etc/StudioApartment.jpeg?raw=true" alt="Studio">https://github.com/deeplyinc/Korean-Read-Speech-Corpus/blob/main/etc/DanceStudio.jpeg?raw=true" alt="Dacne studio">https://github.com/deeplyinc/Korean-Read-Speech-Corpus/blob/main/etc/AnechoicChamber.jpeg?raw=true" alt="Studio">

    Refer to the dataset descriptions in 'docs' for detailed description and statistics of the full set of the dataset.

    The dataset is a subset(approximately 1%) of a much bigger dataset which were recorded under the same circumstances as these open source datasets. Please contact us(contact@deeplyinc.com) for the full set with the commercial license.

    Dataset statistics

    The illustrations below are the statistics about the Deeply Korean Read Speech Corpus. The first three are from the sample dataset, And the others are from the full dataset. To attain more insight about the dataset, please refer to the detailed description in 'docs' and 'Korea_Read_Speech_Corpus.json' in 'Dataset'.

    The sample is a partial set of recordings from a single subject group(sub1001), which consists of 20-year-old female(speaker a) and 49-year-old female(speaker b).

    https://github.com/deeplyinc/Korean-Read-Speech-Corpus/blob/main/etc/fig0.png?raw=true"> https://github.com/deeplyinc/Korean-Read-Speech-Corpus/blob/main/etc/fig1.png?raw=true"> https://github.com/deeplyinc/Korean-Read-Speech-Corpus/blob/main/etc/fig2.png?raw=true">

    https://github.com/deeplyinc/Korean-Read-Speech-Corpus/blob/main/etc/fig3.png?raw=true"> https://github.com/deeplyinc/Korean-Read-Speech-Corpus/blob/main/etc/fig4.png?raw=true"> https://github.com/deeplyinc/Korean-Read-Speech-Corpus/blob/main/etc/fig5.png?raw=true">

    https://github.com/deeplyinc/Korean-Read-Speech-Corpus/blob/main/etc/fig6.png?raw=true">

    Structure

    ├── Dataset
    │  ├── AirbnbStudio
    │  │  ├── sub100100a00000.wav
    │  │  └── ...
    │  ├── AnechoicChamber
    │  │  ├── sub100120a00000.wav
    │  │  └── ...
    │  ├── DanceStudio
    │  │  ├── sub100110a00000.wav
    │  │  └── ...
    │  └── Korean_Read_Speech_Corpus.json
    └── docs
      ├── Deeply Korean Read Speech Corpus_Eng.pdf
      └── Deeply Korean Read Speech Corpus_Kor.pdf
    
    Korean_Read_Speech_Corpus.json
    
    {'AirbnbStudio': 
            {'sub100100a00000': {'text_sentiment': 0,
                      'voice_sentiment': -1,
                      'subjectID': 'sub1001',
                      'speaker': 'a',
                      'age': 20,
                      'sex': 0,
                      'noise': 0,
                      'location': 0,
                      'distance': 0,
                      'device': 0,
                      'text': '저 식당 음식이 정말 맛있나 봐요.',
                      'text_code': 'aa0',
                      'rms': 0.024304501712322235,
                      'length': 2.71825},
             ...
             },
      ...
    }
    

    How to decode

    Text sentiment: {-1: negative, 0: neutral, 1: positive}

    Vocie sentiment: {-1: negative, 0: neutral, 1: positive}

    Subject ID: Unique 'sub + 4-digit' key allocated to each subject group

    Speaker: unique key allocated to each indiivdual in the subject group.

    Sex: {0: Female, 1: Male}

    Noise: {0: Noiseless, 1: Indoor no...

  4. Real Estate Price Prediction Data

    • figshare.com
    txt
    Updated Aug 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mohammad Shbool; Rand Al-Dmour; Bashar Al-Shboul; Nibal Albashabsheh; Najat Almasarwah (2024). Real Estate Price Prediction Data [Dataset]. http://doi.org/10.6084/m9.figshare.26517325.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Aug 8, 2024
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Mohammad Shbool; Rand Al-Dmour; Bashar Al-Shboul; Nibal Albashabsheh; Najat Almasarwah
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Overview: This dataset was collected and curated to support research on predicting real estate prices using machine learning algorithms, specifically Support Vector Regression (SVR) and Gradient Boosting Machine (GBM). The dataset includes comprehensive information on residential properties, enabling the development and evaluation of predictive models for accurate and transparent real estate appraisals.Data Source: The data was sourced from Department of Lands and Survey real estate listings.Features: The dataset contains the following key attributes for each property:Area (in square meters): The total living area of the property.Floor Number: The floor on which the property is located.Location: Geographic coordinates or city/region where the property is situated.Type of Apartment: The classification of the property, such as studio, one-bedroom, two-bedroom, etc.Number of Bathrooms: The total number of bathrooms in the property.Number of Bedrooms: The total number of bedrooms in the property.Property Age (in years): The number of years since the property was constructed.Property Condition: A categorical variable indicating the condition of the property (e.g., new, good, fair, needs renovation).Proximity to Amenities: The distance to nearby amenities such as schools, hospitals, shopping centers, and public transportation.Market Price (target variable): The actual sale price or listed price of the property.Data Preprocessing:Normalization: Numeric features such as area and proximity to amenities were normalized to ensure consistency and improve model performance.Categorical Encoding: Categorical features like property condition and type of apartment were encoded using one-hot encoding or label encoding, depending on the specific model requirements.Missing Values: Missing data points were handled using appropriate imputation techniques or by excluding records with significant missing information.Usage: This dataset was utilized to train and test machine learning models, aiming to predict the market price of residential properties based on the provided attributes. The models developed using this dataset demonstrated improved accuracy and transparency over traditional appraisal methods.Dataset Availability: The dataset is available for public use under the [CC BY 4.0]. Users are encouraged to cite the related publication when using the data in their research or applications.Citation: If you use this dataset in your research, please cite the following publication:[Real Estate Decision-Making: Precision in Price Prediction through Advanced Machine Learning Algorithms].

  5. c

    Housing Receiving Incentives Open Data

    • opendata.cityofboise.org
    • housing-data-portal-boise.hub.arcgis.com
    Updated Jul 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Boise, Idaho (2023). Housing Receiving Incentives Open Data [Dataset]. https://opendata.cityofboise.org/documents/1423afcc749646649c82d7cdc718e4f5
    Explore at:
    Dataset updated
    Jul 5, 2023
    Dataset authored and provided by
    City of Boise, Idaho
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Thumbnail image by Tony Moody.This dataset includes all housing developments approved by the City of Boise’s (“city”) Planning Division since 2020 that are known by the city to have received or are expected to receive support or incentives from a government entity. Each row represents one development. Data may be unavailable for some projects and details are subject to change until construction is complete. Addresses are excluded for projects with fewer than five homes for privacy reasons.

    The dataset includes details on the number of “homes” in a development. We use the word "home" to refer to any single unit of housing regardless of size, type, or whether it is rented or owned. For example, a building with 40 apartments counts as 40 homes, and a single detached house counts as one home.

    The dataset includes details about the phase of each project. The process for build a new development is as follows: First, one must receive approval from the city’s Planning Division, which is also known as being “entitled.” Next, one must apply for and receive a permit from the city’s Building Division before beginning construction. Finally, once construction is complete and all city inspections have been passed, the building can be occupied.

    The dataset also includes data on the affordability level of each development. To receive a government incentive, a developer is typically required to rent or sell a specified number of homes to households that have an income below limits set by the government and their housing cost must not exceed 30% of their income. The federal government determines income limits based on a standard called “area median income.” The city considers housing affordable if is targeted to households earning at or below 80% of the area median income. For a three-person household in Boise, that equates to an annual income of $60,650 and monthly rent or mortgage of $1,516. See Boise Income Guidelines for more details.Project Address(es) – Includes all addresses that are included as part of the development project.Address – The primary address for the development.Parcel Number(s) – The identification code for all parcels of land included in the development.Acreage – The number of acres for the parcel(s) included in the project.Planning Permit Number – The identification code for all permits the development has received from the Planning Division for the City of Boise. The number and types of permits required vary based on the location and type of development.Date Entitled – The date a development was approved by the City’s Planning Division.Building Permit Number – The identification code for all permits the development has received from the city’s Building Division.Date Building Permit Issued – Building permits are required to begin construction on a development.Date Final Certificate of Occupancy Issued – A certificate of occupancy is the final approval by the city for a development, once construction is complete. Not all developments require a certificate of occupancy.Studio – The number of homes in the development that are classified as a studio. A studio is typically defined as a home in which there is no separate bedroom. A single room serves as both a bedroom and a living room.1-Bedroom – The number of homes in a development that have exactly one bedroom.2-Bedroom – The number of homes in a development that have exactly two bedrooms.3-Bedroom – The number of homes in a development that have exactly three bedrooms.4+ Bedroom – The number of homes in a development that have four or more bedrooms.# of Total Project Units – The total number of homes in the development.# of units toward goals – The number of homes in a development that contribute to either the city’s goal to produce housing affordable at or under 60% of area median income, or the city’s goal to create permanent supportive housing for households experiencing homelessness.Rent at or under 60% AMI - The number of homes in a development that are required to be rented at or below 60% of area median income. See the description of the dataset above for an explanation of area median income or see Boise Income Guidelines for more details. Boise defines a home as “affordable” if it is rented or sold at or below 80% of area median income.Rent 61-80% AMI – The number of homes in a development that are required to be rented at between 61% and 80% of area median income. See the description of the dataset above for an explanation of area median income or see Boise Income Guidelines for more details. Boise defines a home as “affordable” if it is rented or sold at or below 80% of area median income.Rent 81-120% AMI - The number of homes in a development that are required to be rented at between 81% and 120% of area median income. See the description of the dataset above for an explanation of area median income or see Boise Income Guidelines for more details.Own at or under 60% AMI - The number of homes in a development that are required to be sold at or below 60% of area median income. See the description of the dataset above for an explanation of area median income or see Boise Income Guidelines for more details. Boise defines a home as “affordable” if it is rented or sold at or below 80% of area median income.Own 61-80% AMI – The number of homes in a development that are required to be sold at between 61% and 80% of area median income. See the description of the dataset above for an explanation of area median income or see Boise Income Guidelines for more details. Boise defines a home as “affordable” if it is rented or sold at or below 80% of area median income.Own 81-120% AMI - The number of homes in a development that are required to be sold at between 81% and 120% of area median income. See the description of the dataset above for an explanation of area median income or see Boise Income Guidelines for more details.Housing Land Trust – “Yes” if a development receives or is expected to receive this incentive. The Housing Land Trust is a model in which the city owns land that it leases to a developer to build affordable housing.City Investment – “Yes” if the city invests funding or contributes land to an affordable development.Zoning Incentive - The city's zoning code provides incentives for developers to create affordable housing. Incentives may include the ability to build an extra floor or be subject to reduced parking requirements. “Yes” if a development receives or is expected to receive one of these incentives.Project Management - The city provides a developer and their design team a single point of contact who works across city departments to simplify the permitting process, and assists the applicants in understanding the city’s requirements to avoid possible delays. “Yes” if a development receives or is expected to receive this incentive.Low-Income Housing Tax Credit (LIHTC) - A federal tax credit available to some new affordable housing developments. The Idaho Housing and Finance Association is a quasi-governmental agency that administers these federal tax credits. “Yes” if a development receives or is expected to receive this incentive.CCDC Investment - The Capital City Development Corp (CCDC) is a public agency that financially supports some affordable housing development in Urban Renewal Districts. “Yes” if a development receives or is expected to receive this incentive. If “Yes” the field identifies the Urban Renewal District associated with the development.City Goal – The city has set goals to produce housing affordable to households at or below 60% of area median income, and to create permanent supportive housing for households experiencing homelessness. This field identifies whether a development contributes to one of those goals.Project Phase - The process for build a new development is as follows: First, one must receive approval from the city’s Planning Division, which is also known as being “entitled.” Next, one must apply for and receive a permit from the city’s Building Division before beginning construction. Finally, once construction is complete and all city inspections have been passed, the building can be occupied.

  6. W

    Distribution of Monthly Household Expenditure by Type of Goods and Services...

    • cloud.csiss.gmu.edu
    csv
    Updated Jun 24, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Singapore (2019). Distribution of Monthly Household Expenditure by Type of Goods and Services (Detailed) and Type of Dwelling [Dataset]. https://cloud.csiss.gmu.edu/uddi/dataset/distribution-monthly-household-expenditure-type-goods-services-detailed-type-dwelling
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 24, 2019
    Dataset provided by
    Singapore
    Description

    The Singapore Department of Statistics undertakes the Household Expenditure Survey (HES) once in 5 years to collect detailed information from resident households in Singapore. The latest HES was conducted from Oct 2012 to Sep 2013. Topics covered include household consumption expenditure, households' income, socio-economic characteristics and ownership of selected consumer durables.

    Goods and Services:

    • Total - Expenditure data include imputed rental of owner-occupied accommodation.

    Dwelling:

    • Total (All dwellings)- Total includes other types of dwellings not shown, e.g. non-HDB shophouses, etc.

    • HDB Dwellings- Total- Total HDB includes non-privatised Housing and Urban Development Corporation (HUDC) flats.

    • HDB Dwellings- 1- & 2-Room Flats- 1- & 2-Room includes HDB studio apartments.

  7. a

    Home For Everyone Tracker Open Data

    • city-of-boise.opendata.arcgis.com
    Updated Jul 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Boise, Idaho (2023). Home For Everyone Tracker Open Data [Dataset]. https://city-of-boise.opendata.arcgis.com/datasets/home-for-everyone-tracker-open-data
    Explore at:
    Dataset updated
    Jul 5, 2023
    Dataset authored and provided by
    City of Boise, Idaho
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    A Home for Everyone is the City of Boise’s (city) initiative to address needs in the community by supporting the development and preservation of housing affordable to residents on Boise budgets. A Home for Everyone has three core goals: produce new homes affordable at 60% of area median income, create permanent supportive housing for households experiencing homelessness, and preserve home affordable at 80% of area median income. This dataset includes information about all homes that count toward the city’s Home for Everyone goals.

    While the “produce affordable housing” and “create permanent supportive housing” goals are focused on supporting the development of new housing, the preservation goal is focused on maintaining existing housing affordable. As a result, many of the data fields related to new development are not relevant to preservation projects. For example, zoning incentives are only applicable to new construction projects.

    Data may be unavailable for some projects and details are subject to change until construction is complete. Addresses are excluded for projects with fewer than five homes for privacy reasons.

    The dataset includes details on the number of “homes”. We use the word "home" to refer to any single unit of housing regardless of size, type, or whether it is rented or owned. For example, a building with 40 apartments counts as 40 homes, and a single detached house counts as one home.

    The dataset includes details about the phase of each project when a project involves constructing new housing. The process for building a new development is as follows: First, one must receive approval from the city’s Planning Division, which is also known as being “entitled.” Next, one must apply for and receive a permit from the city’s Building Division before beginning construction. Finally, once construction is complete and all city inspections have been passed, the building can be occupied.

    To contribute to a city goal, homes must meet affordability requirements based on a standard called area median income. The city considers housing affordable if is targeted to households earning at or below 80% of the area median income. For a three-person household in Boise, that equates to an annual income of $60,650 and monthly housing cost of $1,516. Deeply affordable housing sets the income limit at 60% of area median income, or even 30% of area median income. See Boise Income Guidelines for more details.Project Name – The name of each project. If a row is related to the Home Improvement Loan program, that row aggregates data for all homes that received a loan in that quarter or year. Primary Address – The primary address for the development. Some developments encompass multiple addresses.Project Address(es) – Includes all addresses that are included as part of the development project.Parcel Number(s) – The identification code for all parcels of land included in the development.Acreage – The number of acres for the parcel(s) included in the project.Planning Permit Number – The identification code for all permits the development has received from the Planning Division for the City of Boise. The number and types of permits required vary based on the location and type of development.Date Entitled – The date a development was approved by the City’s Planning Division.Building Permit Number – The identification code for all permits the development has received from the city’s Building Division.Date Building Permit Issued – Building permits are required to begin construction on a development.Date Final Certificate of Occupancy Issued – A certificate of occupancy is the final approval by the city for a development, once construction is complete. Not all developments require a certificate of occupancy.Studio – The number of homes in the development that are classified as a studio. A studio is typically defined as a home in which there is no separate bedroom. A single room serves as both a bedroom and a living room.1-Bedroom – The number of homes in a development that have exactly one bedroom.2-Bedroom – The number of homes in a development that have exactly two bedrooms.3-Bedroom – The number of homes in a development that have exactly three bedrooms.4+ Bedroom – The number of homes in a development that have four or more bedrooms.# of Total Project Units – The total number of homes in the development.# of units toward goals – The number of homes in a development that contribute to either the city’s goal to produce housing affordable at or under 60% of area median income, or the city’s goal to create permanent supportive housing for households experiencing homelessness. Rent at or under 60% AMI - The number of homes in a development that are required to be rented at or below 60% of area median income. See the description of the dataset above for an explanation of area median income or see Boise Income Guidelines for more details. Boise defines a home as “affordable” if it is rented or sold at or below 80% of area median income.Rent 61-80% AMI – The number of homes in a development that are required to be rented at between 61% and 80% of area median income. See the description of the dataset above for an explanation of area median income or see Boise Income Guidelines for more details. Boise defines a home as “affordable” if it is rented or sold at or below 80% of area median income.Rent 81-120% AMI - The number of homes in a development that are required to be rented at between 81% and 120% of area median income. See the description of the dataset above for an explanation of area median income or see Boise Income Guidelines for more details.Own at or under 60% AMI - The number of homes in a development that are required to be sold at or below 60% of area median income. See the description of the dataset above for an explanation of area median income or see Boise Income Guidelines for more details. Boise defines a home as “affordable” if it is rented or sold at or below 80% of area median income.

  8. A

    ‘Housing Prices in London’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Jan 28, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘Housing Prices in London’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-housing-prices-in-london-0285/latest
    Explore at:
    Dataset updated
    Jan 28, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    London
    Description

    Analysis of ‘Housing Prices in London’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/arnavkulkarni/housing-prices-in-london on 28 January 2022.

    --- Dataset description provided by original source is as follows ---

    Content

    This dataset comprises of various house listings in London and neighbouring region. It also encompasses the parameters listed below, the definitions of which are quite self-explanatory. • Property Name • Price • House Type - Contains one of the following types of houses (House, Flat/Apartment, New Development, Duplex, Penthouse, Studio, Bungalow, Mews) • Area in sq ft • No. of Bedrooms • No. of Bathrooms • No. of Receptions • Location • City/County - Includes London, Essex, Middlesex, Hertfordshire, Kent, and Surrey. • Postal Code

    Inspiration

    This dataset has various parameters for each house listing which can be used to conduct Exploratory Data Analysis. It can also be used to predict the house prices in various regions of London by means of Regression Analysis or other learning methods.

    --- Original source retains full ownership of the source dataset ---

  9. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
real Answers (2017). Vital Signs: List Rents – by city [Dataset]. https://open-data-demo.mtc.ca.gov/dataset/Vital-Signs-List-Rents-by-city/vpmm-yh3p/about

Vital Signs: List Rents – by city

Explore at:
tsv, csv, json, xml, application/rdfxml, application/rssxmlAvailable download formats
Dataset updated
Jan 19, 2017
Dataset authored and provided by
real Answers
Description

VITAL SIGNS INDICATOR List Rents (EC9)

FULL MEASURE NAME List Rents

LAST UPDATED October 2016

DESCRIPTION List rent refers to the advertised rents for available rental housing and serves as a measure of housing costs for new households moving into a neighborhood, city, county or region.

DATA SOURCE real Answers (1994 – 2015) no link

Zillow Metro Median Listing Price All Homes (2010-2016) http://www.zillow.com/research/data/

CONTACT INFORMATION vitalsigns.info@mtc.ca.gov

METHODOLOGY NOTES (across all datasets for this indicator) List rents data reflects median rent prices advertised for available apartments rather than median rent payments; more information is available in the indicator definition above. Regional and local geographies rely on data collected by real Answers, a research organization and database publisher specializing in the multifamily housing market. real Answers focuses on collecting longitudinal data for individual rental properties through quarterly surveys. For the Bay Area, their database is comprised of properties with 40 to 3,000+ housing units. Median list prices most likely have an upward bias due to the exclusion of smaller properties. The bias may be most extreme in geographies where large rental properties represent a small portion of the overall rental market. A map of the individual properties surveyed is included in the Local Focus section.

Individual properties surveyed provided lower- and upper-bound ranges for the various types of housing available (studio, 1 bedroom, 2 bedroom, etc.). Median lower- and upper-bound prices are determined across all housing types for the regional and county geographies. The median list price represented in Vital Signs is the average of the median lower- and upper-bound prices for the region and counties. Median upper-bound prices are determined across all housing types for the city geographies. The median list price represented in Vital Signs is the median upper-bound price for cities. For simplicity, only the mean list rent is displayed for the individual properties. The metro areas geography rely upon Zillow data, which is the median price for rentals listed through www.zillow.com during the month. Like the real Answers data, Zillow's median list prices most likely have an upward bias since small properties are underrepresented in Zillow's listings. The metro area data for the Bay Area cannot be compared to the regional Bay Area data. Due to afore mentioned data limitations, this data is suitable for analyzing the change in list rents over time but not necessarily comparisons of absolute list rents. Metro area boundaries reflects today’s metro area definitions by county for consistency, rather than historical metro area boundaries.

Due to the limited number of rental properties surveyed, city-level data is unavailable for Atherton, Belvedere, Brisbane, Calistoga, Clayton, Cloverdale, Cotati, Fairfax, Half Moon Bay, Healdsburg, Hillsborough, Los Altos Hills, Monte Sereno, Moranga, Oakley, Orinda, Portola Valley, Rio Vista, Ross, San Anselmo, San Carlos, Saratoga, Sebastopol, Windsor, Woodside, and Yountville.

Inflation-adjusted data are presented to illustrate how rents have grown relative to overall price increases; that said, the use of the Consumer Price Index does create some challenges given the fact that housing represents a major chunk of consumer goods bundle used to calculate CPI. This reflects a methodological tradeoff between precision and accuracy and is a common concern when working with any commodity that is a major component of CPI itself. Percent change in inflation-adjusted median is calculated with respect to the median price from the fourth quarter or December of the base year.

Search
Clear search
Close search
Google apps
Main menu