100+ datasets found
  1. T

    United States Stock Market Index Data

    • tradingeconomics.com
    • ar.tradingeconomics.com
    • +9more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, United States Stock Market Index Data [Dataset]. https://tradingeconomics.com/united-states/stock-market
    Explore at:
    excel, xml, json, csvAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 3, 1928 - Jul 31, 2025
    Area covered
    United States
    Description

    The main stock market index of United States, the US500, rose to 6391 points on July 31, 2025, gaining 0.45% from the previous session. Over the past month, the index has climbed 3.12% and is up 17.34% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from United States. United States Stock Market Index - values, historical data, forecasts and news - updated on July of 2025.

  2. United States US: Stocks Traded: Total Value

    • ceicdata.com
    Updated Mar 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2023). United States US: Stocks Traded: Total Value [Dataset]. https://www.ceicdata.com/en/united-states/financial-sector/us-stocks-traded-total-value
    Explore at:
    Dataset updated
    Mar 15, 2023
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2006 - Dec 1, 2017
    Area covered
    United States
    Variables measured
    Turnover
    Description

    United States US: Stocks Traded: Total Value data was reported at 39,785.881 USD bn in 2017. This records a decrease from the previous number of 42,071.330 USD bn for 2016. United States US: Stocks Traded: Total Value data is updated yearly, averaging 17,934.293 USD bn from Dec 1984 (Median) to 2017, with 34 observations. The data reached an all-time high of 47,245.496 USD bn in 2008 and a record low of 1,108.421 USD bn in 1984. United States US: Stocks Traded: Total Value data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Financial Sector. The value of shares traded is the total number of shares traded, both domestic and foreign, multiplied by their respective matching prices. Figures are single counted (only one side of the transaction is considered). Companies admitted to listing and admitted to trading are included in the data. Data are end of year values converted to U.S. dollars using corresponding year-end foreign exchange rates.; ; World Federation of Exchanges database.; Sum; Stock market data were previously sourced from Standard & Poor's until they discontinued their 'Global Stock Markets Factbook' and database in April 2013. Time series have been replaced in December 2015 with data from the World Federation of Exchanges and may differ from the previous S&P definitions and methodology.

  3. d

    Stock Market Data North America ( End of Day Pricing dataset )

    • datarade.ai
    Updated Aug 24, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Techsalerator (2023). Stock Market Data North America ( End of Day Pricing dataset ) [Dataset]. https://datarade.ai/data-products/stock-market-data-north-america-end-of-day-pricing-dataset-techsalerator
    Explore at:
    .json, .csv, .xls, .txtAvailable download formats
    Dataset updated
    Aug 24, 2023
    Dataset authored and provided by
    Techsalerator
    Area covered
    Belize, Mexico, Panama, Greenland, El Salvador, Guatemala, Honduras, Saint Pierre and Miquelon, United States of America, Bermuda, North America
    Description

    End-of-day prices refer to the closing prices of various financial instruments, such as equities (stocks), bonds, and indices, at the end of a trading session on a particular trading day. These prices are crucial pieces of market data used by investors, traders, and financial institutions to track the performance and value of these assets over time. The Techsalerator closing prices dataset is considered the most up-to-date, standardized valuation of a security trading commences again on the next trading day. This data is used for portfolio valuation, index calculation, technical analysis and benchmarking throughout the financial industry. The End-of-Day Pricing service covers equities, equity derivative bonds, and indices listed on 170 markets worldwide.

  4. United States US: Market Capitalization: Listed Domestic Companies

    • ceicdata.com
    Updated Apr 30, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2021). United States US: Market Capitalization: Listed Domestic Companies [Dataset]. https://www.ceicdata.com/en/united-states/financial-sector/us-market-capitalization-listed-domestic-companies
    Explore at:
    Dataset updated
    Apr 30, 2021
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2006 - Dec 1, 2017
    Area covered
    United States
    Variables measured
    Turnover
    Description

    United States US: Market Capitalization: Listed Domestic Companies data was reported at 32,120.703 USD bn in 2017. This records an increase from the previous number of 27,352.201 USD bn for 2016. United States US: Market Capitalization: Listed Domestic Companies data is updated yearly, averaging 11,322.354 USD bn from Dec 1980 (Median) to 2017, with 38 observations. The data reached an all-time high of 32,120.703 USD bn in 2017 and a record low of 1,263.561 USD bn in 1981. United States US: Market Capitalization: Listed Domestic Companies data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Financial Sector. Market capitalization (also known as market value) is the share price times the number of shares outstanding (including their several classes) for listed domestic companies. Investment funds, unit trusts, and companies whose only business goal is to hold shares of other listed companies are excluded. Data are end of year values converted to U.S. dollars using corresponding year-end foreign exchange rates.; ; World Federation of Exchanges database.; Sum; Stock market data were previously sourced from Standard & Poor's until they discontinued their 'Global Stock Markets Factbook' and database in April 2013. Time series have been replaced in December 2015 with data from the World Federation of Exchanges and may differ from the previous S&P definitions and methodology.

  5. T

    United States Stock Market Index Data

    • tradingeconomics.com
    • jp.tradingeconomics.com
    • +3more
    csv, excel, json, xml
    Updated Jul 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Stock Market Index Data [Dataset]. https://tradingeconomics.com/united-states/stock-market??sa=u&ei=ffhqvnvmn5dloatmoocabw&ved=0cjmbebywfq&usg=afqjcngzbcc8p0owixmdsdjcu_endviwgg
    Explore at:
    csv, json, excel, xmlAvailable download formats
    Dataset updated
    Jul 31, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 3, 1928 - Jul 31, 2025
    Area covered
    United States
    Description

    The main stock market index of United States, the US500, rose to 6433 points on July 31, 2025, gaining 1.11% from the previous session. Over the past month, the index has climbed 3.80% and is up 18.12% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from United States. United States Stock Market Index - values, historical data, forecasts and news - updated on July of 2025.

  6. F

    S&P 500

    • fred.stlouisfed.org
    json
    Updated Jul 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). S&P 500 [Dataset]. https://fred.stlouisfed.org/series/SP500
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 30, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval

    Description

    View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.

  7. u

    Stock market statistics, Canada and United States, Bank of Canada

    • data.urbandatacentre.ca
    • www150.statcan.gc.ca
    • +4more
    Updated Oct 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Stock market statistics, Canada and United States, Bank of Canada [Dataset]. https://data.urbandatacentre.ca/dataset/gov-canada-e037b4dd-4c13-4cc2-b8c4-0262083dbbd0
    Explore at:
    Dataset updated
    Oct 1, 2024
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Area covered
    Canada, United States
    Description

    This table contains 14 series, with data starting from 1953 (not all combinations necessarily have data for all years). This table contains data described by the following dimensions (Not all combinations are available): Geography (1 items: Canada ...), Stock market statistics (14 items: Toronto Stock Exchange; value of shares traded; United States common stocks; Dow-Jones industrials; high; United States common stocks; Dow-Jones industrials; low; Toronto Stock Exchange; volume of shares traded ...).

  8. Stock Market Data Latam/Latin America ( End of Day Pricing dataset )

    • datarade.ai
    Updated Aug 24, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Techsalerator (2023). Stock Market Data Latam/Latin America ( End of Day Pricing dataset ) [Dataset]. https://datarade.ai/data-products/stock-market-data-latam-latin-america-end-of-day-pricing-da-techsalerator
    Explore at:
    .json, .csv, .xls, .txtAvailable download formats
    Dataset updated
    Aug 24, 2023
    Dataset provided by
    Techsalerator LLC
    Authors
    Techsalerator
    Area covered
    Antigua and Barbuda, Virgin Islands (U.S.), Venezuela (Bolivarian Republic of), Saint Vincent and the Grenadines, Jamaica, Argentina, Chile, Bolivia (Plurinational State of), Dominican Republic, Aruba, Latin America
    Description

    End-of-day prices refer to the closing prices of various financial instruments, such as equities (stocks), bonds, and indices, at the end of a trading session on a particular trading day. These prices are crucial pieces of market data used by investors, traders, and financial institutions to track the performance and value of these assets over time. The Techsalerator closing prices dataset is considered the most up-to-date, standardized valuation of a security trading commences again on the next trading day. This data is used for portfolio valuation, index calculation, technical analysis and benchmarking throughout the financial industry. The End-of-Day Pricing service covers equities, equity derivative bonds, and indices listed on 170 markets worldwide.

  9. T

    Japan Stock Market Index (JP225) Data

    • tradingeconomics.com
    • ko.tradingeconomics.com
    • +10more
    csv, excel, json, xml
    Updated Jun 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Japan Stock Market Index (JP225) Data [Dataset]. https://tradingeconomics.com/japan/stock-market
    Explore at:
    excel, csv, xml, jsonAvailable download formats
    Dataset updated
    Jun 15, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 5, 1965 - Jul 30, 2025
    Area covered
    Japan
    Description

    Japan's main stock market index, the JP225, rose to 40839 points on July 30, 2025, gaining 0.40% from the previous session. Over the past month, the index has climbed 2.13% and is up 4.44% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Japan. Japan Stock Market Index (JP225) - values, historical data, forecasts and news - updated on July of 2025.

  10. US Stock Market Data

    • kaggle.com
    zip
    Updated Jan 14, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mohammed Obeidat (2023). US Stock Market Data [Dataset]. https://www.kaggle.com/datasets/mohammedobeidat/us-stock-market-data/code
    Explore at:
    zip(42432995 bytes)Available download formats
    Dataset updated
    Jan 14, 2023
    Authors
    Mohammed Obeidat
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    The dataset contains the file required for training and testing and split accordingly.

    There are two groups of features that you can use for prediction:

    1. Fundamentals and ratios: Values collected form statements and balance sheets for each ticker
    2. Technical indicators and strategy flags: Technical indicators calculated on close value of each day and buy and sell signals generated using some commonly used trading strategies.

    Files found in Fundamentals folder is a processed format of the files found in raw folder. Ratios and other values are stretched to match the length of the closing price column such that the value in the pe_ratio column for example is the PE ratio from the most recent quarter and this applies for every column.

    Technical indicators are calculated with the default parameters used in Pandas_TA package.

    Data is collected form finance.yahoo.com and macrotrends.net Timeframe for the given data is different from one ticker to another because of unavailability of some stocks for a given time frame on either of the websites.

    All code required to collect the data and perform preprocessing and feature engineering to get the data in the given format can be found in the following notebooks:

    1. https://www.kaggle.com/code/mohammedobeidat/us-stocks-data-collection
    2. https://www.kaggle.com/code/mohammedobeidat/us-stocks-technicals-feature-engineering-and-eda
    3. https://www.kaggle.com/code/mohammedobeidat/us-stocks-fundamentals-preprocessing-and-eda

    Files

    • {<>_ticker_train}.csv - the training set
    • {<>_ticker_train}.csv - the test set

    Columns

    Columns names are supposed to be self-explanatory assuming you are familiar with the stock market. Some acronyms you may encounter:

    1. tmm is short for Trailing Twelve Months
    2. pe is short for Price to Earnings
    3. pb is short for Price to Book Value
    4. ps is short for Price to Sales
    5. fcf is short for Free Cash Flow
    6. eps is short for Earnings per Share
  11. T

    United Kingdom Stock Market Index (GB100) Data

    • tradingeconomics.com
    • ko.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, United Kingdom Stock Market Index (GB100) Data [Dataset]. https://tradingeconomics.com/united-kingdom/stock-market
    Explore at:
    excel, xml, json, csvAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 3, 1984 - Jul 31, 2025
    Area covered
    United Kingdom
    Description

    United Kingdom's main stock market index, the GB100, fell to 9133 points on July 31, 2025, losing 0.05% from the previous session. Over the past month, the index has climbed 3.96% and is up 10.25% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from United Kingdom. United Kingdom Stock Market Index (GB100) - values, historical data, forecasts and news - updated on July of 2025.

  12. Beat US Stock market (2019 edition)

    • kaggle.com
    Updated Jan 13, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nicolas Carbone (2020). Beat US Stock market (2019 edition) [Dataset]. https://www.kaggle.com/datasets/cnic92/beat-us-stock-market-data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 13, 2020
    Dataset provided by
    Kaggle
    Authors
    Nicolas Carbone
    Description

    Context

    The algorithmic trading space is buzzing with new strategies. Companies have spent billions in infrastructures and R&D to be able to jump ahead of the competition and beat the market. Still, it is well acknowledged that the buy & hold strategy is able to outperform many of the algorithmic strategies, especially in the long-run. However, finding value in stocks is an art that very few mastered, can a computer do that?

    Content

    This Data repo contains two datasets:

    1. Example_2019_price_var.csv. I built this dataset thanks to Financial Modeling Prep API and to pandas_datareader. Each row is a stock from the technology sector of the US stock market (that is available from the aforementioned API, which is free and highly recommended). The column contains the percent price variation of each stock for the year 2019. In other words, it collects the percent price variation of each stock from the first trading day on Jan 2019 to the last trading day of Dec 2019. To compute this price variation I decided to consider the Adjusted Close Price.

    2. Example_DATASET.csv. I built this dataset thanks to Financial Modeling Prep API. Each row is a stock from the technology sector of the US stock market (that is available from the aforementioned API). Each column is a financial indicator that can be found in the 2018 10-K filings of each company. There are no Nans or empty cells. Furthermore, the last column is the CLASS of each stock, where:

      1. class = 1 if the price of the stock increases during 2019
      2. class = 0 if the price of the stock decreases during 2019

    In other words, the last column is used to classify each stock in buy-worthy or not, and this relationship is what should allow a machine learning model to learn to recognize stocks that will increase their value from those that won't.

    NOTE: the number of stocks does not match between the two datasets because the API did not have all the required financial indicators for some stocks. It is possible to remove from Example_2019_price_var.csv those rows that do not appear in Example_DATASET.csv.

    Inspiration

    I built this dataset during the 2019 winter holidays period, because I wanted to answer a simple question: is it possible to have a machine learning model learn the differences between stocks that perform well and those that don't, and then leverage this knowledge in order to predict which stock will be worth buying? Moreover, is it possible to achieve this simply by looking at financial indicators found in the 10-K filings?

  13. United States US: Stocks Traded: Turnover Ratio of Domestic Shares

    • ceicdata.com
    Updated Nov 22, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States US: Stocks Traded: Turnover Ratio of Domestic Shares [Dataset]. https://www.ceicdata.com/en/united-states/financial-sector/us-stocks-traded-turnover-ratio-of-domestic-shares
    Explore at:
    Dataset updated
    Nov 22, 2021
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2006 - Dec 1, 2017
    Area covered
    United States
    Variables measured
    Turnover
    Description

    United States US: Stocks Traded: Turnover Ratio of Domestic Shares data was reported at 116.078 % in 2017. This records an increase from the previous number of 94.719 % for 2016. United States US: Stocks Traded: Turnover Ratio of Domestic Shares data is updated yearly, averaging 114.857 % from Dec 1984 (Median) to 2017, with 34 observations. The data reached an all-time high of 407.630 % in 2008 and a record low of 51.444 % in 1991. United States US: Stocks Traded: Turnover Ratio of Domestic Shares data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Financial Sector. Turnover ratio is the value of domestic shares traded divided by their market capitalization. The value is annualized by multiplying the monthly average by 12.; ; World Federation of Exchanges database.; Weighted average; Stock market data were previously sourced from Standard & Poor's until they discontinued their 'Global Stock Markets Factbook' and database in April 2013. Time series have been replaced in December 2015 with data from the World Federation of Exchanges and may differ from the previous S&P definitions and methodology.

  14. United States US: Stocks Traded: Total Value: % of GDP

    • ceicdata.com
    Updated Mar 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2023). United States US: Stocks Traded: Total Value: % of GDP [Dataset]. https://www.ceicdata.com/en/united-states/financial-sector/us-stocks-traded-total-value--of-gdp
    Explore at:
    Dataset updated
    Mar 15, 2023
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2005 - Dec 1, 2016
    Area covered
    United States
    Variables measured
    Turnover
    Description

    United States US: Stocks Traded: Total Value: % of GDP data was reported at 205.181 % in 2017. This records a decrease from the previous number of 225.893 % for 2016. United States US: Stocks Traded: Total Value: % of GDP data is updated yearly, averaging 155.485 % from Dec 1984 (Median) to 2017, with 34 observations. The data reached an all-time high of 320.992 % in 2008 and a record low of 27.431 % in 1984. United States US: Stocks Traded: Total Value: % of GDP data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Financial Sector. The value of shares traded is the total number of shares traded, both domestic and foreign, multiplied by their respective matching prices. Figures are single counted (only one side of the transaction is considered). Companies admitted to listing and admitted to trading are included in the data. Data are end of year values.; ; World Federation of Exchanges database.; Weighted average; Stock market data were previously sourced from Standard & Poor's until they discontinued their 'Global Stock Markets Factbook' and database in April 2013. Time series have been replaced in December 2015 with data from the World Federation of Exchanges and may differ from the previous S&P definitions and methodology.

  15. T

    United States Stock Market Index Data

    • tradingeconomics.com
    • id.tradingeconomics.com
    • +5more
    csv, excel, json, xml
    Updated Jul 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Stock Market Index Data [Dataset]. https://tradingeconomics.com/united-states/stock-market??sa=u&ei=ffhqvnvmn5dloatmoocabw&ved=0cjmbebywfq&usg=afqjcngzbcc8p0owixmdsdjcu_endviwgg/survey
    Explore at:
    xml, excel, csv, jsonAvailable download formats
    Dataset updated
    Jul 31, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 3, 1928 - Jul 31, 2025
    Area covered
    United States
    Description

    The main stock market index of United States, the US500, rose to 6420 points on July 31, 2025, gaining 0.90% from the previous session. Over the past month, the index has climbed 3.58% and is up 17.87% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from United States. United States Stock Market Index - values, historical data, forecasts and news - updated on July of 2025.

  16. High-Tech Companies on NASDAQ

    • kaggle.com
    Updated Feb 11, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). High-Tech Companies on NASDAQ [Dataset]. https://www.kaggle.com/datasets/thedevastator/high-tech-companies-on-nasdaq
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 11, 2023
    Dataset provided by
    Kaggle
    Authors
    The Devastator
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    High-Tech Companies on NASDAQ

    Market Capitalization and Performance Metrics

    By [source]

    About this dataset

    This dataset offers an insightful look into the performance of high-tech companies listed on the NASDAQ exchange in the United States. With information pertaining to over 8,000 companies in the electronics, computers, telecommunications, and biotechnology sectors, this is an incredibly useful source of insight for researchers, traders, investors and data scientists interested in acquiring information about these firms.

    The dataset includes detailed variables such as stock symbols and names to provide quick identification of individual companies along with pricing changes and percentages from the previous day’s value as well as sector and industry breakdowns for comprehensive analysis. Other metrics like market capitalization values help to assess a firm’s relative size compared to competitors while share volume data can give a glimpse into how actively traded each company is. Additionally provided numbers include earnings per share breakdowns to gauge profits along with dividend pay date symbols for yield calculation purposes as well as beta values that further inform risk levels associated with investing in particular firms within this high-tech sector. Finally this dataset also collects any potential errors found amongst such extensive scrapes of company performance data giving users valuable reassurance no sensitive areas are missed when assessing various firms on an individual basis or all together as part of an overarching system

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This dataset is invaluable for researchers, traders, investors and data scientists who want to obtain the latest information about high-tech companies listed on the NASDAQ exchange in the United States. It contains data on more than 8,000 companies from a wide range of sectors such as electronics, computers, telecommunications, biotechnology and many more. In this guide we will learn how to use this dataset effectively.

    Basics: The basics of working with this dataset include understanding various columns like symbol, name, price,pricing_changes, pricing_percentage_changes,sector,industry,market_cap,share_volume,earnings_per_share. Each column is further described below: - Symbol: This column gives you the stock symbol of the company. (String) - Name: This column gives you the name of the company. (String)
    - Price: The current price of each stock given by symbol is mentioned here.(Float) - Pricing Changes: This represents change in stock price from previous day.(Float) - Pricing Percentage Changes :This provides percentage change in stock prices from previous day.(Float) - Sector : It give information about sector in which company belongs .(String). - Industry : Describe industry in which company lies.(string). - Market Capitalization : Give market capitalization .(String). - Share Volume : It refers to number share traded last 24 hrs.(Integer). - Earnings Per Share : It refer to earnings per share per Stock yearly divided by Dividend Yield ,Symbol Yield and Beta .It also involves Errors related with Data Set so errors specified here proviedes details regarding same if any errors occured while collecting data set or manipulation on it.. (float/string )

    Advanced Use Cases: Now that we understand what each individual feature stands for it's time to delve deeper into optimizing returns using this data set as basis for our decision making processes such as selecting right portfolio formation techniques or selecting stocks wisely contrarian investment style etc. We can do a comparison using multiple factors like Current Price followed by Price Change percentage or Earnings feedback loop which would help us identify Potentially Undervalued investments both Short Term & Long Term ones at same time and We could dive into analysis showing Relationship between Price & Volumne across Sectors and

    Research Ideas

    • Analyzing stock trends - The dataset enables users to make informed decisions by tracking and analyzing changes in indicators such as price, sector, industry or market capitalization trends over time.
    • Exploring correlations between different factors - By exploring the correlation between different factors such as pricing changes, earning per share or beta etc., it enables us to get a better understanding of how these elements influence each other and what implications it may have on our investments

    Acknowledgements

    &g...

  17. United States Turnover: NYSE: Value: Avg Daily: Stocks

    • ceicdata.com
    Updated Jun 15, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2021). United States Turnover: NYSE: Value: Avg Daily: Stocks [Dataset]. https://www.ceicdata.com/en/united-states/nyse-turnover/turnover-nyse-value-avg-daily-stocks
    Explore at:
    Dataset updated
    Jun 15, 2018
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    May 1, 2017 - Apr 1, 2018
    Area covered
    United States
    Variables measured
    Turnover
    Description

    United States Turnover: NYSE: Value: Avg Daily: Stocks data was reported at 74.151 USD bn in Sep 2018. This records an increase from the previous number of 60.740 USD bn for Aug 2018. United States Turnover: NYSE: Value: Avg Daily: Stocks data is updated monthly, averaging 52.690 USD bn from Jan 1991 (Median) to Sep 2018, with 333 observations. The data reached an all-time high of 144.530 USD bn in Jan 2008 and a record low of 5.262 USD bn in Jan 1991. United States Turnover: NYSE: Value: Avg Daily: Stocks data remains active status in CEIC and is reported by New York Stock Exchange. The data is categorized under Global Database’s United States – Table US.Z003: NYSE: Turnover.

  18. h

    stock-dataset

    • huggingface.co
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Baidalin Adilzhan, stock-dataset [Dataset]. https://huggingface.co/datasets/Adilbai/stock-dataset
    Explore at:
    Authors
    Baidalin Adilzhan
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    📈 S&P 500 Comprehensive Stock Market Dataset

      🎯 Dataset Overview
    

    This comprehensive dataset contains 620,095 daily observations of S&P 500 companies with 73 meticulously engineered features spanning the last 5 years. Designed specifically for time series forecasting, stock price prediction, and advanced financial modeling tasks.

      📊 Key Statistics
    

    Metric Value

    Total Records 620,095 daily observations

    Features 73 comprehensive features… See the full description on the dataset page: https://huggingface.co/datasets/Adilbai/stock-dataset.

  19. India Stock Market (daily updated)

    • kaggle.com
    Updated Jan 31, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Larxel (2022). India Stock Market (daily updated) [Dataset]. https://www.kaggle.com/datasets/andrewmvd/india-stock-market/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 31, 2022
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Larxel
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    India
    Description

    About this dataset

    India's National Stock Exchange (NSE) has a total market capitalization of more than US$3.4 trillion, making it the world's 10th-largest stock exchange as of August 2021, with a trading volume of ₹8,998,811 crore (US$1.2 trillion) and more 2000 total listings.

    NSE's flagship index, the NIFTY 50, is a 50 stock index is used extensively by investors in India and around the world as a barometer of the Indian capital market.

    This dataset contains data of all company stocks listed in the NSE, allowing anyone to analyze and make educated choices about their investments, while also contributing to their countries economy.

    How to use this dataset

    • Create a time series regression model to predict NIFTY-50 value and/or stock prices.
    • Explore the most the returns, components and volatility of the stocks.
    • Identify high and low performance stocks among the list.

    Highlighted Notebooks

    Acknowledgements

    License

    CC0: Public Domain

    Splash banner

    Stonks by unknown memer.

  20. F

    Dow Jones Industrial Average

    • fred.stlouisfed.org
    json
    Updated Jul 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Dow Jones Industrial Average [Dataset]. https://fred.stlouisfed.org/series/DJIA
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 29, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval

    Description

    Graph and download economic data for Dow Jones Industrial Average (DJIA) from 2015-07-30 to 2025-07-29 about stock market, average, industry, and USA.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
TRADING ECONOMICS, United States Stock Market Index Data [Dataset]. https://tradingeconomics.com/united-states/stock-market

United States Stock Market Index Data

United States Stock Market Index - Historical Dataset (1928-01-03/2025-07-31)

Explore at:
19 scholarly articles cite this dataset (View in Google Scholar)
excel, xml, json, csvAvailable download formats
Dataset authored and provided by
TRADING ECONOMICS
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
Jan 3, 1928 - Jul 31, 2025
Area covered
United States
Description

The main stock market index of United States, the US500, rose to 6391 points on July 31, 2025, gaining 0.45% from the previous session. Over the past month, the index has climbed 3.12% and is up 17.34% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from United States. United States Stock Market Index - values, historical data, forecasts and news - updated on July of 2025.

Search
Clear search
Close search
Google apps
Main menu