83 datasets found
  1. w

    Education Attainment and Enrollment around the World

    • datacatalog.worldbank.org
    excel, html, pdf, zip
    Updated Nov 4, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ryan Douglas Hahn (2018). Education Attainment and Enrollment around the World [Dataset]. https://datacatalog.worldbank.org/dataset/education-attainment-and-enrollment-around-world
    Explore at:
    html, excel, pdf, zipAvailable download formats
    Dataset updated
    Nov 4, 2018
    Dataset provided by
    Ryan Douglas Hahn
    License

    https://datacatalog.worldbank.org/public-licenses?fragment=cchttps://datacatalog.worldbank.org/public-licenses?fragment=cc

    Area covered
    World
    Description

    Patterns of educational attainment vary greatly across countries, and across population groups within countries. In some countries, virtually all children complete basic education whereas in others large groups fall short. The primary purpose of this database, and the associated research program, is to document and analyze these differences using a compilation of a variety of household-based data sets: Demographic and Health Surveys (DHS); Multiple Indicator Cluster Surveys (MICS); Living Standards Measurement Study Surveys (LSMS); as well as country-specific Integrated Household Surveys (IHS) such as Socio-Economic Surveys.


    As shown at the website associated with this database, there are dramatic differences in attainment by wealth. When households are ranked according to their wealth status (or more precisely, a proxy based on the assets owned by members of the household) there are striking differences in the attainment patterns of children from the richest 20 percent compared to the poorest 20 percent.


    In Mali in 2012 only 34 percent of 15 to 19 year olds in the poorest quintile have completed grade 1 whereas 80 percent of the richest quintile have done so. In many countries, for example Pakistan, Peru and Indonesia, almost all the children from the wealthiest households have completed at least one year of schooling. In some countries, like Mali and Pakistan, wealth gaps are evident from grade 1 on, in other countries, like Peru and Indonesia, wealth gaps emerge later in the school system.


    The EdAttain website allows a visual exploration of gaps in attainment and enrollment within and across countries, based on the international database which spans multiple years from over 120 countries and includes indicators disaggregated by wealth, gender and urban/rural location. The database underlying that site can be downloaded from here.

  2. Data from: Indian Students Abroad

    • kaggle.com
    Updated Jan 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). Indian Students Abroad [Dataset]. https://www.kaggle.com/datasets/thedevastator/number-of-indian-students-studying-abroad-in-201
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 5, 2023
    Dataset provided by
    Kaggle
    Authors
    The Devastator
    Description

    Indian Students Abroad

    Country-wise Statistics

    By Harish Kumar Garg [source]

    About this dataset

    This dataset is about the number of Indian students studying abroad in different countries and the detailed information about different nations where Indian students are present. The data has been complied from the Ministry Of External Affairs to answer a question from the Member of Parliament regarding how many students from India are studying in foreign countries and which country. This dataset includes two fields, Country Name and Number of Indians Studying Abroad as of Mar 2017, giving a unique opportunity to track student mobility across various nations around the world. With this valuable data about student mobility, we can gain insights into how educational opportunities for Indian students have increased over time as well as look at trends in international education throughout different regions. From comparison among countries with similar academic opportunities to tracking regional popularity among study destinations, this dataset provides important context for studying student migration patterns. We invite everyone to explore this data further and use it to draw meaningful conclusions!

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    How to use this dataset?

    The data has two columns – Country Name and Number of Indians studying there as of March 2017. It also includes a third column, Percentage, which gives an indication about the proportion of Indian students enrolled in each country relative to total number enrolled abroad globally.

    To get started with your exploration, you can visualize the data against various parameters like geographical region or language speaking as it may provide more clarity about motives/reasons behind student’s choice. You can also group countries on basis of research opportunities available, cost consideration etc.,to understand deeper into all aspects that motivate Indians to explore further studies outside India.

    Additionally you can use this dataset for benchmarking purpose with other regional / international peer groups or aggregate regional / global reports with aim towards making better decisions or policies aiming greater outreach & support while targeting foreign universities/colleges for educational promotion activities that highlights engaging elements aimed at attracting more potential students from India aspiring higher international education experience abroad!

    Research Ideas

    • Using this dataset, educational institutions in India can set up international exchange programs with universities in other countries to facilitate and support Indian students studying abroad.
    • Higher Education Institutions can also understand the current trend of Indian students sourcing for opportunities to study abroad and use this data to build specialized short-term courses in collaboration with universities from different countries that cater to the needs of students who are interested in moving abroad permanently or even temporarily for higher studies.

    • Policy makers could use this data to assess the current trends and develop policies that aim at incentivizing international exposure among young professionals by commissioning fellowships or scholarships with an aim of exposing them to different problem sets around the world thereby making their profile more attractive while they look for better job opportunities globally

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    Unknown License - Please check the dataset description for more information.

    Columns

    File: final_data.csv | Column name | Description | |:--------------------------|:-------------------------------------------------------------------------------------------------------------------------------| | Country | Name of the country where Indian students are studying. (String) | | No of Indian Students | Number of Indian students studying in the country. (Integer) | | Percentage | Percentage of Indian students studying in the country compared to the total number of Indian students studying abroad. (Float) |

    Acknowledgements

    If you use this dataset in your research, please credit ...

  3. w

    Learning Poverty Global Database

    • data360.worldbank.org
    Updated Apr 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Learning Poverty Global Database [Dataset]. https://data360.worldbank.org/en/dataset/WB_LPGD
    Explore at:
    Dataset updated
    Apr 18, 2025
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2001 - 2023
    Area covered
    Vietnam, Thailand, Mauritius, Lesotho, Ireland, Luxembourg, Ukraine, Georgia, Uzbekistan, Uganda
    Description

    Will all children be able to read by 2030? The ability to read with comprehension is a foundational skill that every education system around the world strives to impart by late in primary school—generally by age 10. Moreover, attaining the ambitious Sustainable Development Goals (SDGs) in education requires first achieving this basic building block, and so does improving countries’ Human Capital Index scores. Yet past evidence from many low- and middle-income countries has shown that many children are not learning to read with comprehension in primary school. To understand the global picture better, we have worked with the UNESCO Institute for Statistics (UIS) to assemble a new dataset with the most comprehensive measures of this foundational skill yet developed, by linking together data from credible cross-national and national assessments of reading. This dataset covers 115 countries, accounting for 81% of children worldwide and 79% of children in low- and middle-income countries. The new data allow us to estimate the reading proficiency of late-primary-age children, and we also provide what are among the first estimates (and the most comprehensive, for low- and middle-income countries) of the historical rate of progress in improving reading proficiency globally (for the 2000-17 period). The results show that 53% of all children in low- and middle-income countries cannot read age-appropriate material by age 10, and that at current rates of improvement, this “learning poverty” rate will have fallen only to 43% by 2030. Indeed, we find that the goal of all children reading by 2030 will be attainable only with historically unprecedented progress. The high rate of “learning poverty” and slow progress in low- and middle-income countries is an early warning that all the ambitious SDG targets in education (and likely of social progress) are at risk. Based on this evidence, we suggest a new medium-term target to guide the World Bank’s work in low- and middle- income countries: cut learning poverty by at least half by 2030. This target, together with improved measurement of learning, can be as an evidence-based tool to accelerate progress to get all children reading by age 10.

    For further details, please refer to https://thedocs.worldbank.org/en/doc/e52f55322528903b27f1b7e61238e416-0200022022/original/Learning-poverty-report-2022-06-21-final-V7-0-conferenceEdition.pdf

  4. d

    Are Students Ready for a Technology-Rich World? What PISA Studies Tell Us

    • catalog.data.gov
    • s.cnmilf.com
    Updated Mar 30, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of State (2021). Are Students Ready for a Technology-Rich World? What PISA Studies Tell Us [Dataset]. https://catalog.data.gov/dataset/are-students-ready-for-a-technology-rich-world-what-pisa-studies-tell-us
    Explore at:
    Dataset updated
    Mar 30, 2021
    Dataset provided by
    U.S. Department of State
    Area covered
    World
    Description

    ICT has profound implications for education, both because ICT can facilitate new forms of learning and because it has become important for young people to master ICT in preparation for adult life. But how extensive is access to ICT in schools and informal settings and how is it used by students? Drawing on data from the OECD’s Programme for International Student Assessment (PISA), Are Students Ready for a Technology-Rich World? What PISA Studies Tell Us, examines whether access to computers for students is equitable across countries and student groups; how students use ICT and what their attitudes are towards ICT; the relationship between students’ access to and use of ICT and their performance in PISA 2003; and the implications for educational policy.

  5. M

    Mali ML: Prevalence of Overweight: Weight for Height: % of Children Under 5

    • ceicdata.com
    Updated Nov 27, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2021). Mali ML: Prevalence of Overweight: Weight for Height: % of Children Under 5 [Dataset]. https://www.ceicdata.com/en/mali/health-statistics/ml-prevalence-of-overweight-weight-for-height--of-children-under-5
    Explore at:
    Dataset updated
    Nov 27, 2021
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 1987 - Dec 1, 2015
    Area covered
    Mali
    Description

    Mali ML: Prevalence of Overweight: Weight for Height: % of Children Under 5 data was reported at 1.900 % in 2015. This records an increase from the previous number of 1.000 % for 2010. Mali ML: Prevalence of Overweight: Weight for Height: % of Children Under 5 data is updated yearly, averaging 2.100 % from Dec 1987 (Median) to 2015, with 6 observations. The data reached an all-time high of 4.700 % in 2006 and a record low of 0.500 % in 1987. Mali ML: Prevalence of Overweight: Weight for Height: % of Children Under 5 data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Mali – Table ML.World Bank: Health Statistics. Prevalence of overweight children is the percentage of children under age 5 whose weight for height is more than two standard deviations above the median for the international reference population of the corresponding age as established by the WHO's new child growth standards released in 2006.; ; UNICEF, WHO, World Bank: Joint child malnutrition estimates (JME). Aggregation is based on UNICEF, WHO, and the World Bank harmonized dataset (adjusted, comparable data) and methodology.; Linear mixed-effect model estimates; Estimates of overweight children are also from national survey data. Once considered only a high-income economy problem, overweight children have become a growing concern in developing countries. Research shows an association between childhood obesity and a high prevalence of diabetes, respiratory disease, high blood pressure, and psychosocial and orthopedic disorders (de Onis and Blössner 2003). Childhood obesity is associated with a higher chance of obesity, premature death, and disability in adulthood. In addition to increased future risks, obese children experience breathing difficulties and increased risk of fractures, hypertension, early markers of cardiovascular disease, insulin resistance, and psychological effects. Children in low- and middle-income countries are more vulnerable to inadequate nutrition before birth and in infancy and early childhood. Many of these children are exposed to high-fat, high-sugar, high-salt, calorie-dense, micronutrient-poor foods, which tend be lower in cost than more nutritious foods. These dietary patterns, in conjunction with low levels of physical activity, result in sharp increases in childhood obesity, while under-nutrition continues

  6. g

    World Bank - Learning Poverty Global Database | gimi9.com

    • gimi9.com
    Updated Oct 18, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2019). World Bank - Learning Poverty Global Database | gimi9.com [Dataset]. https://gimi9.com/dataset/worldbank_wb_lpgd/
    Explore at:
    Dataset updated
    Oct 18, 2019
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Will all children be able to read by 2030? The ability to read with comprehension is a foundational skill that every education system around the world strives to impart by late in primary school—generally by age 10. Moreover, attaining the ambitious Sustainable Development Goals (SDGs) in education requires first achieving this basic building block, and so does improving countries’ Human Capital Index scores. Yet past evidence from many low- and middle-income countries has shown that many children are not learning to read with comprehension in primary school. To understand the global picture better, we have worked with the UNESCO Institute for Statistics (UIS) to assemble a new dataset with the most comprehensive measures of this foundational skill yet developed, by linking together data from credible cross-national and national assessments of reading. This dataset covers 115 countries, accounting for 81% of children worldwide and 79% of children in low- and middle-income countries. The new data allow us to estimate the reading proficiency of late-primary-age children, and we also provide what are among the first estimates (and the most comprehensive, for low- and middle-income countries) of the historical rate of progress in improving reading proficiency globally (for the 2000-17 period). The results show that 53% of all children in low- and middle-income countries cannot read age-appropriate material by age 10, and that at current rates of improvement, this “learning poverty” rate will have fallen only to 43% by 2030. Indeed, we find that the goal of all children reading by 2030 will be attainable only with historically unprecedented progress. The high rate of “learning poverty” and slow progress in low- and middle-income countries is an early warning that all the ambitious SDG targets in education (and likely of social progress) are at risk. Based on this evidence, we suggest a new medium-term target to guide the World Bank’s work in low- and middle- income countries: cut learning poverty by at least half by 2030. This target, together with improved measurement of learning, can be as an evidence-based tool to accelerate progress to get all children reading by age 10. For further details, please refer to https://thedocs.worldbank.org/en/doc/e52f55322528903b27f1b7e61238e416-0200022022/original/Learning-poverty-report-2022-06-21-final-V7-0-conferenceEdition.pdf

  7. w

    Poverty Mapping Project: Global Subnational Prevalence of Child Malnutrition...

    • data.wu.ac.at
    bin
    Updated Mar 19, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Aeronautics and Space Administration (2015). Poverty Mapping Project: Global Subnational Prevalence of Child Malnutrition [Dataset]. https://data.wu.ac.at/schema/data_gov/MjcwMzZhMmEtMzc5NC00NDEyLTg1ZjItMDJkZTlmMWQ4YTM4
    Explore at:
    binAvailable download formats
    Dataset updated
    Mar 19, 2015
    Dataset provided by
    National Aeronautics and Space Administration
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Area covered
    e729ec0b421236c738315ed3a86c4cf5e090d524
    Description

    The Global Subnational Prevalence of Child Malnutrition dataset consists of estimates of the

    percentage of children with weight-for-age z-scores that are more than two standard deviations below the median of the NCHS/CDC/WHO

    International Reference Population. Data are reported for the most recent year with subnational information available at the time of

    development. The data products include a shapefile (vector data) of percentage rates, grids (raster data) of rates (per thousand in

    order to preserve precision in integer format), the number of children under five (the rate denominator), and the number of

    underweight children under five (the rate numerator), and a tabular dataset of the same and associated data. This dataset is produced

    by the Columbia University Center for International Earth Science Information Network (CIESIN).

  8. H

    2014 Global Hunger Index Data

    • dataverse.harvard.edu
    • dataone.org
    Updated Mar 31, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Welthungerhilfe (WHH) (2017). 2014 Global Hunger Index Data [Dataset]. http://doi.org/10.7910/DVN/27557
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 31, 2017
    Dataset provided by
    Harvard Dataverse
    Authors
    Welthungerhilfe (WHH)
    License

    https://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.7910/DVN/27557https://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.7910/DVN/27557

    Time period covered
    1990 - 2012
    Area covered
    CARIBBEAN; Commonwealth of Independent States; LATIN AMERICA; MIDDLE EAST; NORTH AFRICA; EAST AFRICA; EAST ASIA; SOUTH ASIA; EASTERN EUROPE; SOUTHERN AFRICA; AFRICA SOUTH OF SAHARA; AFRICA; ASIA;
    Description

    The Global Hunger Index (GHI) is a tool designed to comprehensively measure and track hunger globally and by region and country. Calculated each year by the International Food Policy Research Institute (IFPRI), the GHI highlights successes and failures in hunger reduction and provide insights into the drivers of hunger, and food and nutrition security. The 2014 GHI has been calculated for 120 countries for which data on the three component indicators are available and for which measuring hung er is considered most relevant. The GHI calculation excludes some higher income countries because the prevalence of hunger there is very low. The GHI is only as current as the data for its three component indicators. This year's GHI reflects the most recent available country level data for the three component indicators spanning the period 2009 to 2013. Besides the most recent GHI scores, this dataset also contains the GHI scores for four other reference periods- 1990, 1995, 2000, and 2005. A country's GHI score is calculated by averaging the percentage of the population that is undernourished, the percentage of children youn ger than five years old who are underweight, and the percentage of children dying before the age of five. This calculation results in a 100 point scale on which zero is the best score (no hunger) and 100 the worst, although neither of these extremes is reached in practice. The three component indicators used to calculate the GHI scores draw upon data from the following sources: 1. Undernourishment: Updated data from the Food and Agriculture Organization of the United Nations (FAO) were used for the 1990, 1995, 2000, 2005, and 2014GHI scores. Undernourishment data for the 2014 GHI are for 2011-2013. 2. Child underweight: The "child underweight" component indicator of the GHI scores includes the latest additions to the World Health Organization's (WHO) Global Database on Child Growth and Malnutrition, and additional data from the joint data base by the United Nations Children's Fund (UNICEF), WHO and the World Bank; the most recent Demographic and Health Survey (DHS) and Multiple Indicator Cluster Survey reports; and statistical tables from UNICEF. For the 2014 GHI, data on child underweight are for the latest year for which data are available in the period 2009-2014. 3. Child mortality: Updated data from the UN Inter-agency Group for Child Mortality Estimation were used for the 1990, 1995, 2000, and 2005, and 2014 GHI scores. For the 2014 GHI, data on child mortality are for 2012. Resources related to 2014 Global Hunger Index

  9. N

    Dataset for White Earth, ND Census Bureau Demographics and Population...

    • neilsberg.com
    Updated Jul 24, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Dataset for White Earth, ND Census Bureau Demographics and Population Distribution Across Age // 2024 Edition [Dataset]. https://www.neilsberg.com/research/datasets/b7bed2e5-5460-11ee-804b-3860777c1fe6/
    Explore at:
    Dataset updated
    Jul 24, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    North Dakota, White Earth
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the White Earth population by age. The dataset can be utilized to understand the age distribution and demographics of White Earth.

    Content

    The dataset constitues the following three datasets

    • White Earth, ND Age Group Population Dataset: A complete breakdown of White Earth age demographics from 0 to 85 years, distributed across 18 age groups
    • White Earth, ND Age Cohorts Dataset: Children, Working Adults, and Seniors in White Earth - Population and Percentage Analysis
    • White Earth, ND Population Pyramid Dataset: Age Groups, Male and Female Population, and Total Population for Demographics Analysis

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

  10. F

    Native American Children Facial Image Dataset for Facial Recognition

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Native American Children Facial Image Dataset for Facial Recognition [Dataset]. https://www.futurebeeai.com/dataset/image-dataset/facial-images-minor-native-american
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Dataset funded by
    FutureBeeAI
    Description

    Introduction

    The Native American Children Facial Image Dataset is a thoughtfully curated collection designed to support the development of advanced facial recognition systems, biometric identity verification, age estimation tools, and child-specific AI models. This dataset enables researchers and developers to build highly accurate, inclusive, and ethically sourced AI solutions for real-world applications.

    Facial Image Data

    The dataset includes over 1000 high-resolution image sets of children under the age of 18. Each participant contributes approximately 15 unique facial images, captured to reflect natural variations in appearance and context.

    Diversity and Representation

    Geographic Coverage: Children from USA, Canada, Mexico and more
    Age Group: All participants are minors, with a wide age spread across childhood and adolescence.
    Gender Balance: Includes both boys and girls, representing a balanced gender distribution.
    File Formats: Images are available in JPEG and HEIC formats.

    Quality and Image Conditions

    To ensure robust model training and generalizability, images are captured under varied natural conditions:

    Lighting: A mix of lighting setups, including indoor, outdoor, bright, and low-light scenarios.
    Backgrounds: Diverse backgrounds—plain, natural, and everyday environments—are included to promote realism.
    Capture Devices: All photos are taken using modern mobile devices, ensuring high resolution and sharp detail.

    Metadata

    Each child’s image set is paired with detailed, structured metadata, enabling granular control and filtering during model training:

    Unique Participant ID
    File Name
    Age
    Gender
    Country
    Demographic Attributes
    File Format

    This metadata is essential for applications that require demographic awareness, such as region-specific facial recognition or bias mitigation in AI models.

    Applications

    This dataset is ideal for a wide range of computer vision use cases, including:

    Facial Recognition: Improving identification accuracy across diverse child demographics.
    KYC and Identity Verification: Enabling more inclusive onboarding processes for child-specific platforms.
    Biometric Systems: Supporting child-focused identity verification in education, healthcare, or travel.
    Age Estimation: Training AI models to estimate age ranges of children from facial features.
    Child Safety Models: Assisting in missing child identification or online content moderation.
    Generative AI Training: Creating more representative synthetic data using real-world diverse inputs.

    Ethical Collection and Data Security

    We maintain the highest ethical and security standards throughout the data lifecycle:

    Guardian Consent: Every participant’s guardian provided informed, written consent, clearly outlining the dataset’s use cases.
    Privacy-First Approach: Personally identifiable information is not shared. Only anonymized metadata is included.
    Secure Storage: All data is

  11. Data from: Mental Health Services Children & Young People

    • kaggle.com
    Updated Jan 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). Mental Health Services Children & Young People [Dataset]. https://www.kaggle.com/datasets/thedevastator/mental-health-services-children-young-people/discussion?sort=undefined
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 21, 2023
    Dataset provided by
    Kaggle
    Authors
    The Devastator
    Description

    Mental Health Services Children & Young People

    Monthly Statistics on Referrals, Contacts and Care

    By data.world's Admin [source]

    About this dataset

    This dataset provides essential information on the mental health services provided to children and young people in England. The data contained within the Mental Health Services Data Set (MHSDS) - Children & Young People covers a variety of different categories during a given reporting period, including primary level details, secondary level descriptions, number of open referrals for children's and young people's mental health services at the end of the reporting period, as well as number of first attended contacts for referrals open in the reporting period aged 0-18. It also provides insight into how many people are in contact with mental health services aged 0 to 18 at the time of reporting, how many referrals starting during this time were self-refreshers and more. This dataset includes valuable information that is necessary to better track and understand trends in order to provide more effective care

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This guide will provide you with an overview of the data contained in this dataset as well as information on how to effectively use it for your own research or personal purposes. Let's get started!

    Overview of Data Fields

    • REPORTING_PERIOD: The month and year of the reporting period (Date)
    • BREAKDOWN: The type of breakdown of the data (String)
    • PRIMARY_LEVEL: The primary level of the data (String)
    • PRIMARY_LEVEL_DESCRIPTION: A description at the primary level of the data (String)
    • SECONDARY_LEVEL: The secondary level of the data (String)

    Research Ideas

    • Evaluating the efficacy of existing mental health services for children and young people by examining changes in relationships between different aspects of service delivery (e.g. referral activity, hospital spell activity, etc).
    • Analysing geographical trends in mental health services to inform investment decisions and policies across different regions.
    • Identifying areas of high need among vulnerable or marginalised citizens, such as those aged 0-18 or those with particular genetic makeup, to better target resources and support those most in need of help

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices.

    Columns

    File: mhsds-monthly-cyp-data-file-feb-fin-2017-1.csv | Column name | Description | |:-------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------| | REPORTING_PERIOD | The period of time for which the data was collected. (String) | | BREAKDOWN | The breakdown of the data by age group. (String) | | PRIMARY_LEVEL | The primary level of the data. (String) | | PRIMARY_LEVEL_DESCRIPTION ...

  12. w

    India - Young Lives: School Survey 2010-2011 - Dataset - waterdata

    • wbwaterdata.org
    Updated Mar 16, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). India - Young Lives: School Survey 2010-2011 - Dataset - waterdata [Dataset]. https://wbwaterdata.org/dataset/india-young-lives-school-survey-2010-2011
    Explore at:
    Dataset updated
    Mar 16, 2020
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    India
    Description

    The Young Lives survey is an innovative long-term project investigating the changing nature of childhood poverty in four developing countries. The purpose of the project is to improve understanding of the causes and consequences of childhood poverty and examine how policies affect children's well-being, in order to inform the development of future policy and to target child welfare interventions more effectively. The objectives of the study are to provide good quality long-term data about the lives of children living in poverty, trace linkages between key policy changes and child welfare, and inform and respond to the needs of policymakers, planners and other stakeholders. Research activities of the project include the collection of data on a set of child welfare outcomes and their determinants and the monitoring of changes in policy, in order to explore the links between the policy environment and outcomes for children. The study is being conducted in Ethiopia, India (in Andhra Pradesh), Peru and Vietnam. These countries were selected because they reflect a range of cultural, geographical and social contexts and experience differing issues facing the developing world; high debt burden, emergence from conflict, and vulnerability to environmental conditions such as drought and flood. The Young Lives study aims to track the lives of 12,000 children over a 15-year period. This is the time-frame set by the UN to assess progress towards the Millennium Development Goals. Round 1 of the study followed 2,000 children (aged between 6 and 18 months in 2002) and their households, from both urban and rural communities, in each of the four countries (8,000 children in total). Data were also collected on an older cohort of 1,000 children aged 7 to 8 years in each country, in order to provide a basis for comparison with the younger children when they reach that age. Round 2 of the study returned to the same children who were aged 1-year-old in Round 1 when they were aged approximately 5-years-old, and to the children aged 8-years-old in Round 1 when they were approximately 12-years-old. Round 3 of the study returned to the same children again when they were aged 7 to 8 years (the same as the older cohort in Round 1) and 14 to 15 years. It is envisaged that subsequent survey waves will take place in 2013 and 2016. Thus the younger children are being tracked from infancy to their mid-teens and the older children through into adulthood, when some will become parents themselves. Further information about the survey, including publications, can be downloaded from the Young Lives website. School Survey: A school survey was introduced into Young Lives in 2010, following the third round of the household survey, in order to capture detailed information about children’s experiences of schooling. It addressed two main research questions: • how do the relationships between poverty and child development manifest themselves and impact upon children's educational experiences and outcomes? • to what extent does children’s experience of school reinforce or compensate for disadvantage in terms of child development and poverty? The survey allows researchers to link longitudinal information on household and child characteristics from the household survey with data on the schools attended by the Young Lives children and children's achievements inside and outside the school. A wide range of stakeholders, including government representatives at national and sub-national levels, NGOs and donor organisations were involved in the design of the school survey, so the researchers could be sure that the ‘right questions’ were being asked to address major policy concerns. This consultation process means that policymakers already understand the context and potential of the Young Lives research and are interested to utilise the data and analysis to inform their policy decisions. The survey provides policy-relevant information on the relationship between child development (and its determinants) and children’s experience of school, including access, quality and progression. This combination of household, child and school-level data over time constitutes the comparative advantage of the Young Lives study. School Survey data are currently only available for India and Peru. The Peru data are available from the UK Data Archive under SN 7479. Further information is available from the Young Lives School Survey webpages.

  13. g

    World Bank - ID4D Global Dataset | gimi9.com

    • gimi9.com
    Updated May 10, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). World Bank - ID4D Global Dataset | gimi9.com [Dataset]. https://gimi9.com/dataset/worldbank_wb_id4d/
    Explore at:
    Dataset updated
    May 10, 2025
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    The Identification for Development (ID4D) Global Dataset, compiled by the World Bank Group's Identification for Development (ID4D) Initiative, presents a collection of indicators that are of relevance for the estimation of adult and child ID coverage and for understanding foundational ID systems' digital capabilities. The indicators have been compiled from multiple sources, including a specialized ID module included in the Global Findex survey and officially recognized international sources such as UNICEF. Although there is no single, globally recognized measure of having a "proof of legal identity" that would cover children and adults at all ages or, of the digital capabilities of foundational ID systems, the combination of these indicators can help better understand where and what gaps in remain in accessing identification and, in turn, in accessing the services and transactions for which an official proof of identity is often required. Newly in 2022, adult ID ownership data is primarily based on survey data questions collected in partnership with the Global Findex Survey, while coverage for children is based on birth registration rates compiled by UNICEF. These data series are accessible directly from the World Bank's Databank: https://databank.worldbank.org/source/identification-for-development-(id4d)-data. Prior editions of the data from 2017 and 2018 are available for download here. Updates were released on a yearly basis until 2018; beginning in 2021-2022, the dataset will be released every three years to align with the Findex survey. For further details, please refer to https://id4d.worldbank.org/annual-reports This collection includes only a subset of indicators from the source dataset.

  14. g

    NACCRRA, Head Start Allocation and State-Funded Prekindergarten...

    • geocommons.com
    Updated May 6, 2008
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data (2008). NACCRRA, Head Start Allocation and State-Funded Prekindergarten Participation, USA, 2004 [Dataset]. http://geocommons.com/search.html
    Explore at:
    Dataset updated
    May 6, 2008
    Dataset provided by
    National Association of Child Care Resources and Referral Agencies
    data
    Description

    This dataset explores Early Care and Education Funding: Head Start Allocation and State-Funded Prekindergarten Participation. This data is state level and expresses the participation per state. Head Start and Early Head Start are comprehensive child development programs that serve children from birth to age 5, their families, and pregnant women. The overall goal of these programs is to increase the school readiness of young children in families earning low incomes. The Head Start program delivers comprehensive services including: education, health, nutrition, screening for developmental delays, and a variety of social services, if the family needs them. The program is designed to meet the social, emotional, physical and cognitive development of children. This data is from Latest Data: Fiscal Year 2004 (Head Start) and School Year 2002-2003 (State Funded Prekindergarten). This data is from National Child Care Information Center. Refer to NCCIC Child Care Database for detailed state information (http://nccic.org/IMS/Results.asp). Compiled by: National Association of Child Care Resources and Referral Agencies (http://www.naccrra.org/randd/head_start/expenditure.php)

  15. Baltimore City Child Health

    • kaggle.com
    Updated Jan 24, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). Baltimore City Child Health [Dataset]. https://www.kaggle.com/datasets/thedevastator/baltimore-city-child-health
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 24, 2023
    Dataset provided by
    Kaggle
    Authors
    The Devastator
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    Baltimore
    Description

    Baltimore City Child Health

    An Exploration of 2010 Birth, Prenatal Visit, Lead Exposure and Teen Birth Rates

    By City of Baltimore [source]

    About this dataset

    This Baltimore City Child and Family Health Indicators dataset provides us with crucial information that can support the health and well-being of Baltimore City residents. It contains 13 indicators such as low birth weight, prenatal visits, teen births, and more. This data is sourced from the Maryland Department of Health & Mental Hygiene (DHMH), Baltimore Substance Abuse Systems (BSAS), theBaltimore City Health Department, and the US Census Bureau. Through this data set we can gain a better understanding of how Baltimore City citizens’ health compares to other areas and how it has changed over time. By investigating this dataset we are given an opportunity to create potential strategies for providing better care for our community. With discoveries from these indicators, together as a city we can bring about lasting change in protecting public health within Baltimore

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This dataset provides valuable information about the health and wellbeing of children and families in Baltimore City in 2010. The data is organized by CSA (Census Statistical Area) and includes stats on term births, low birth weight births, prenatal visits, teen births, and lead testing. This dataset can be used to analyze trends in children's health over time as well as identify potential areas that need more attention or resources.

    To use this dataset: - Read through the data dictionary to understand what each column represents.
    - Choose which columns you would like to explore further.
    - Filter or subset the data as you see fit then visualize it with graphs or maps to better understand how conditions vary across neighborhoods in Baltimore City.
    - Consider comparing the data from this year with prior years if available for deeper analysis of changes over time.
    - Look for correlations among columns that could help explain disparities between neighborhoods and create strategies for improving outcomes through policy interventions or other programs designed specifically for those areas needs

    Research Ideas

    • Mapping health disparities in high-risk areas to target public health interventions.
    • Identifying neighborhoods in need of additional resources for prenatal care, infant care, and lead testing and create specific programs to address these needs.
    • Creating an online dashboard that displays real time data on Baltimore City’s population health indicators such as birth weight, teenage pregnancies, and lead poisoning for the public to access easily

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    License: CC0 1.0 Universal (CC0 1.0) - Public Domain Dedication No Copyright - You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission. See Other Information.

    Columns

    File: BNIA_Child_Fam_Health_2010.csv | Column name | Description | |:---------------|:----------------------------------------------------------| | the_geom | Geometry of the Census Statistical Area (CSA) (Geometry) | | CSA2010 | Census Statistical Area (CSA) (String) | | termbir10 | Total number of term births in 2010 (Integer) | | birthwt10 | Total number of low birth weight births in 2010 (Integer) | | prenatal10 | Total number of prenatal visits in 2010 (Integer) | | teenbir10 | Total number of teen births in 2010 (Integer) | | leadtest10 | Total number of lead tests conducted in 2010 (Integer) |

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. If you use this dataset in your research, please credit City of Baltimore.

  16. w

    Global Education Policy Dashboard 2022 - Sierra Leone

    • microdata.worldbank.org
    • datacatalog.ihsn.org
    • +1more
    Updated Nov 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Brian Stacy (2024). Global Education Policy Dashboard 2022 - Sierra Leone [Dataset]. https://microdata.worldbank.org/index.php/catalog/6401
    Explore at:
    Dataset updated
    Nov 1, 2024
    Dataset provided by
    Marie Helene Cloutier
    Adrien Ciret
    Sergio Venegas Marin
    Halsey Rogers
    Brian Stacy
    Time period covered
    2022
    Area covered
    Sierra Leone
    Description

    Abstract

    The dashboard project collects new data in each country using three new instruments: a School Survey, a Policy Survey, and a Survey of Public Officials. Data collection involves school visits, classroom observations, legislative reviews, teacher and student assessments, and interviews with teachers, principals, and public officials. In addition, the project draws on some existing data sources to complement the new data it collects. A major objective of the GEPD project was to develop focused, cost-effective instruments and data-collection procedures, so that the dashboard can be inexpensive enough to be applied (and re-applied) in many countries. The team achieved this by streamlining and simplifying existing instruments, and thereby reducing the time required for data collection and training of enumerators.

    Geographic coverage

    National

    Analysis unit

    Schools, teachers, students, public officials

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The aim of the Global Education Policy Dashboard school survey is to produce nationally representative estimates, which will be able to detect changes in the indicators over time at a minimum power of 80% and with a 0.05 significance level. We also wish to detect differences by urban/rural location. For our school survey, we will employ a two-stage random sample design, where in the first stage a sample of typically around 200 schools, based on local conditions, is drawn, chosen in advance by the Bank staff. In the second stage, a sample of teachers and students will be drawn to answer questions from our survey modules, chosen in the field. A total of 10 teachers will be sampled for absenteeism. Five teachers will be interviewed and given a content knowledge exam. Three 1st grade students will be assessed at random, and a classroom of 4th grade students will be assessed at random. Stratification will be based on the school’s urban/rural classification and based on region. When stratifying by region, we will work with our partners within the country to make sure we include all relevant geographical divisions. For our Survey of Public Officials, we will sample a total of 200 public officials. Roughly 60 officials are typically surveyed at the federal level, while 140 officials will be surveyed at the regional/district level. For selection of officials at the regional and district level, we will employ a cluster sampling strategy, where roughly 10 regional offices (or whatever the secondary administrative unit is called) are chosen at random from among the regions in which schools were sampled. Then among these 10 regions, we also typically select around 10 districts (tertiary administrative level units) from among the districts in which schools werer sampled. The result of this sampling approach is that for 10 clusters we will have links from the school to the district office to the regional office to the central office. Within the regions/districts, five or six officials will be sampled, including the head of organization, HR director, two division directors from finance and planning, and one or two randomly selected professional employees among the finance, planning, and one other service related department chosen at random. At the federal level, we will interview the HR director, finance director, planning director, and three randomly selected service focused departments. In addition to the directors of each of these departments, a sample of 9 professional employees will be chosen in each department at random on the day of the interview.

    Sampling deviation

    The sample for the Global Education Policy Dashboard in SLE was based in part on a previous sample of 260 schools which were part of an early EGRA study. Details from the sampling for that study are quoted below. An additional booster sample of 40 schools was chosen to be representative of smaller schools of less than 30 learners.

    EGRA Details:

    "The sampling frame began with the 2019 Annual School Census (ASC) list of primary schools as provided by UNICEF/MBSSE where the sample of 260 schools for this study were obtained from an initial list of 7,154 primary schools. Only schools that meet a pre-defined selection criteria were eligible for sampling.

    To achieve the recommended sample size of 10 learners per grade, schools that had an enrolment of at least 30 learners in Grade 2 in 2019 were considered. To achieve a high level of confidence in the findings and generate enough data for analysis, the selection criteria only considered schools that: • had an enrolment of at least 30 learners in grade 1; and • had an active grade 4 in 2019 (enrolment not zero)

    The sample was taken from a population of 4,597 primary schools that met the eligibility criteria above, representing 64.3% of all the 7,154 primary schools in Sierra Leone (as per the 2019 school census). Schools with higher numbers of learners were purposefully selected to ensure the sample size could be met in each site.

    As a result, a sample of 260 schools were drawn using proportional to size allocation with simple random sampling without replacement in each stratum. In the population, there were 16 districts and five school ownership categories (community, government, mission/religious, private and others). A total of 63 strata were made by forming combinations of the 16 districts and school ownership categories. In each stratum, a sample size was computed proportional to the total population and samples were drawn randomly without replacement. Drawing from other EGRA/EGMA studies conducted by Montrose in the past, a backup sample of up to 78 schools (30% of the sample population) with which enumerator teams can replace sample schools was also be drawn.

    In the distribution of sampled schools by ownership, majority of the sampled schools are owned by mission/religious group (62.7%, n=163) followed by the government owned schools at 18.5% (n=48). Additionally, in school distribution by district, majority of the sampled schools (54%) were found in Bo, Kambia, Kenema, Kono, Port Loko and Kailahun districts. Refer to annex 9. for details on the population and sample distribution by district."

    Because of the restriction that at least 30 learners were available in Grade 2, we chose to add an additional 40 schools to the sample from among smaller schools, with between 3 and 30 grade 2 students. The objective of this supplement was to make the sample more nationally representative, as the restriction reduced the sampling frame for the EGRA/EGMA sample by over 1,500 schools from 7,154 to 4,597.

    The 40 schools were chosen in a manner consistent with the original set of EGRA/EGMA schools. The 16 districts formed the strata. In each stratum, the number of schools selected were proportional to the total population of the stratum, and within stratum schools were chosen with probability proportional to size.

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    The dashboard project collects new data in each country using three new instruments: a School Survey, a Policy Survey, and a Survey of Public Officials. Data collection involves school visits, classroom observations, legislative reviews, teacher and student assessments, and interviews with teachers, principals, and public officials. In addition, the project draws on some existing data sources to complement the new data it collects. A major objective of the GEPD project was to develop focused, cost-effective instruments and data-collection procedures, so that the dashboard can be inexpensive enough to be applied (and re-applied) in many countries. The team achieved this by streamlining and simplifying existing instruments, and thereby reducing the time required for data collection and training of enumerators.

    More information pertaining to each of the three instruments can be found below: - School Survey: The School Survey collects data primarily on practices (the quality of service delivery in schools), but also on some de facto policy indicators. It consists of streamlined versions of existing instruments—including Service Delivery Surveys on teachers and inputs/infrastructure, Teach on pedagogical practice, Global Early Child Development Database (GECDD) on school readiness of young children, and the Development World Management Survey (DWMS) on management quality—together with new questions to fill gaps in those instruments. Though the number of modules is similar to the full version of the Service Delivery Indicators (SDI) Survey, the number of items and the complexity of the questions within each module is significantly lower. The School Survey includes 8 short modules: School Information, Teacher Presence, Teacher Survey, Classroom Observation, Teacher Assessment, Early Learner Direct Assessment, School Management Survey, and 4th-grade Student Assessment. For a team of two enumerators, it takes on average about 4 hours to collect all information in a given school. For more information, refer to the Frequently Asked Questions.

    • Policy Survey: The Policy Survey collects information to feed into the policy de jure indicators. This survey is filled out by key informants in each country, drawing on their knowledge to identify key elements of the policy framework (as in the SABER approach to policy-data collection that the Bank has used over the past 7 years). The survey includes questions on policies related to teachers, school management, inputs and infrastructure, and learners. In total, there are 52 questions in the survey as of June 2020. The key informant is expected to spend 2-3 days gathering and analyzing the relavant information to answer the survey
  17. Baby Names by Year

    • kaggle.com
    Updated Sep 20, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2022). Baby Names by Year [Dataset]. https://www.kaggle.com/datasets/thedevastator/us-baby-names-by-year-of-birth/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 20, 2022
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    The Devastator
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    About this dataset

    This dataset contains US baby names from the Social Security Administration dating back to 1879. With over 150 years of data, this is one of the most comprehensive datasets on baby names in the US. The data includes the name, year of birth, sex, and number of babies with that name for each year. This dataset is a great resource for anyone interested in studying baby naming trends over time

    How to use the dataset

    How to use the US Baby Names by Year of Birth dataset:

    This dataset is a compilation of over 140 years of data from the Social Security Administration. It includes data on baby names, year of birth, and sex. There are also columns for the number of babies with that name born in that year.

    This dataset can be used to track changes in baby naming trends over time, or to study how popular names have changed in popularity. It can also be used to study how naming trends differ between sexes, or between different years

    Research Ideas

    This dataset could be used for a number of things, including: 1. Determining baby name trends over time 2. Finding out what the most popular baby names are in the US 3. Analyzing how baby name popularity has changed over the years

    Columns

    • index: the index of the dataframe
    • YearOfBirth: the year in which the baby was born
    • Name: the name of the baby
    • Sex: the sex of the baby
    • Number: the number of babies with that name and sex

    Acknowledgements

    If you use this dataset in your research, please credit @nickgott, @rflprr and the Social Security Administration via Data.gov

    Data Source

  18. Poverty Mapping Project: Global Subnational Prevalence of Child Malnutrition...

    • data.staging.idas-ds1.appdat.jsc.nasa.gov
    • data.nasa.gov
    Updated Apr 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nasa.gov (2025). Poverty Mapping Project: Global Subnational Prevalence of Child Malnutrition - Dataset - NASA Open Data Portal [Dataset]. https://data.staging.idas-ds1.appdat.jsc.nasa.gov/dataset/poverty-mapping-project-global-subnational-prevalence-of-child-malnutrition
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Description

    The Poverty Mapping Project: Global Subnational Prevalence of Child Malnutrition data set consists of estimates of the percentage of children with weight-for-age z-scores that are more than two standard deviations below the median of the NCHS/CDC/WHO International Reference Population. Data are reported for the most recent year with subnational information available at the time of development. The data products include a shapefile (vector data) of percentage rates, grids (raster data) of rates (per thousand in order to preserve precision in integer format), the number of children under five (the rate denominator), and the number of underweight children under five (the rate numerator), and a tabular data set of the same and associated data. This data set is produced by the Columbia University Center for International Earth Science Information Network (CIESIN).

  19. m

    Data from: Impacts of the Covid-19 Pandemic on Life of Higher Education...

    • data.mendeley.com
    Updated Nov 4, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aleksander Aristovnik (2021). Impacts of the Covid-19 Pandemic on Life of Higher Education Students: Global Survey Dataset from the First Wave [Dataset]. http://doi.org/10.17632/88y3nffs82.1
    Explore at:
    Dataset updated
    Nov 4, 2021
    Authors
    Aleksander Aristovnik
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The Covid-19 pandemic caused by the novel coronavirus SARS-CoV-2 has completely reshaped the lives of people around the world, including higher education students. Beyond serious health consequences for a proportion of those directly affected by the virus, the pandemic holds important implications for the life and work of higher education students, considerably affecting their physical and mental well-being. To capture how students perceived the first wave of the pandemic’s impact, one of the most comprehensive and large-scale online surveys across the world was conducted. Carried out between 5 May 2020 and 15 June 2020, the survey came at a time when most countries were experiencing the arduous lockdown restrictions. The online questionnaire was prepared in seven different languages (English, Italian, North Macedonian, Portuguese, Romanian, Spanish, Turkish) and covered various aspects of higher education students’ life, including socio-demographic and academic characteristics, academic life, infrastructure and skills for studying from home, social life, emotional life and life circumstances. Using the convenience sampling method, the online questionnaire was distributed to higher education students aged 18 and over and enrolled in a higher education institution. The final dataset consisted of 31,212 responses from 133 countries and 6 continents. The data may prove useful for researchers studying the pandemic’s impacts on various aspects of student life. Policymakers can utilize the data to determine the best solutions as they formulate policy recommendations and strategies to support students during this and any future pandemic.

    Acknowledgments The extensive dataset could not be collected without the numerous international partners who provided the exceptional assistance with questionnaire translation and/or data collection. This work also acknowledges the international partners, who may have been unintentionally omitted from authorship due to the snowball recruitment technique. Special thanks go also to anonymous global survey participants for their valuable insights into the lives of students, which they shared selflessly. The authors also acknowledge the CovidSocLab project (http://www.covidsoclab.org/) as a working platform for international collaboration.

    Funding The authors acknowledge the financial support from the Slovenian Research Agency (research core funding No. P5-0093).

  20. U

    United States US: Prevalence of Underweight: Weight for Age: % of Children...

    • ceicdata.com
    Updated Mar 15, 2009
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2009). United States US: Prevalence of Underweight: Weight for Age: % of Children Under 5 [Dataset]. https://www.ceicdata.com/en/united-states/health-statistics/us-prevalence-of-underweight-weight-for-age--of-children-under-5
    Explore at:
    Dataset updated
    Mar 15, 2009
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 1969 - Dec 1, 2012
    Area covered
    United States
    Description

    United States US: Prevalence of Underweight: Weight for Age: % of Children Under 5 data was reported at 0.500 % in 2012. This records a decrease from the previous number of 0.800 % for 2009. United States US: Prevalence of Underweight: Weight for Age: % of Children Under 5 data is updated yearly, averaging 0.900 % from Dec 1991 (Median) to 2012, with 5 observations. The data reached an all-time high of 1.100 % in 2005 and a record low of 0.500 % in 2012. United States US: Prevalence of Underweight: Weight for Age: % of Children Under 5 data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Health Statistics. Prevalence of underweight children is the percentage of children under age 5 whose weight for age is more than two standard deviations below the median for the international reference population ages 0-59 months. The data are based on the WHO's child growth standards released in 2006.; ; UNICEF, WHO, World Bank: Joint child malnutrition estimates (JME). Aggregation is based on UNICEF, WHO, and the World Bank harmonized dataset (adjusted, comparable data) and methodology.; Linear mixed-effect model estimates; Undernourished children have lower resistance to infection and are more likely to die from common childhood ailments such as diarrheal diseases and respiratory infections. Frequent illness saps the nutritional status of those who survive, locking them into a vicious cycle of recurring sickness and faltering growth (UNICEF, www.childinfo.org). Estimates of child malnutrition, based on prevalence of underweight and stunting, are from national survey data. The proportion of underweight children is the most common malnutrition indicator. Being even mildly underweight increases the risk of death and inhibits cognitive development in children. And it perpetuates the problem across generations, as malnourished women are more likely to have low-birth-weight babies. Stunting, or being below median height for age, is often used as a proxy for multifaceted deprivation and as an indicator of long-term changes in malnutrition.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Ryan Douglas Hahn (2018). Education Attainment and Enrollment around the World [Dataset]. https://datacatalog.worldbank.org/dataset/education-attainment-and-enrollment-around-world

Education Attainment and Enrollment around the World

Explore at:
12 scholarly articles cite this dataset (View in Google Scholar)
html, excel, pdf, zipAvailable download formats
Dataset updated
Nov 4, 2018
Dataset provided by
Ryan Douglas Hahn
License

https://datacatalog.worldbank.org/public-licenses?fragment=cchttps://datacatalog.worldbank.org/public-licenses?fragment=cc

Area covered
World
Description

Patterns of educational attainment vary greatly across countries, and across population groups within countries. In some countries, virtually all children complete basic education whereas in others large groups fall short. The primary purpose of this database, and the associated research program, is to document and analyze these differences using a compilation of a variety of household-based data sets: Demographic and Health Surveys (DHS); Multiple Indicator Cluster Surveys (MICS); Living Standards Measurement Study Surveys (LSMS); as well as country-specific Integrated Household Surveys (IHS) such as Socio-Economic Surveys.


As shown at the website associated with this database, there are dramatic differences in attainment by wealth. When households are ranked according to their wealth status (or more precisely, a proxy based on the assets owned by members of the household) there are striking differences in the attainment patterns of children from the richest 20 percent compared to the poorest 20 percent.


In Mali in 2012 only 34 percent of 15 to 19 year olds in the poorest quintile have completed grade 1 whereas 80 percent of the richest quintile have done so. In many countries, for example Pakistan, Peru and Indonesia, almost all the children from the wealthiest households have completed at least one year of schooling. In some countries, like Mali and Pakistan, wealth gaps are evident from grade 1 on, in other countries, like Peru and Indonesia, wealth gaps emerge later in the school system.


The EdAttain website allows a visual exploration of gaps in attainment and enrollment within and across countries, based on the international database which spans multiple years from over 120 countries and includes indicators disaggregated by wealth, gender and urban/rural location. The database underlying that site can be downloaded from here.

Search
Clear search
Close search
Google apps
Main menu