100+ datasets found
  1. South African Reserve Bank Dataset

    • kaggle.com
    zip
    Updated Jul 16, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lyle Begbie (2023). South African Reserve Bank Dataset [Dataset]. https://www.kaggle.com/datasets/lylebegbie/south-african-reserve-bank-dataset
    Explore at:
    zip(1803770 bytes)Available download formats
    Dataset updated
    Jul 16, 2023
    Authors
    Lyle Begbie
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    South Africa
    Description

    This dataset contains 2395 timeseries variables in multiple frequencies. This includes South African data on: 1. Money and Banking 2. Capital Markets and Flow of Funds 3. Public Finance 4. Balance of Payments 5. National Accounts 6. Business Cycle and Labour Analysis 7. Integrated Economic Accounts

    This is probably the most extensive economic dataset for any African country. The original dataset can be obtained from the South African Reserve Bank (SARB) website.

    The first column is reserved for the date. For the yearly and monthly data, the first day of the period is used. While the last day of the period is used for quarterly data.

    The other column headers relate to each of the alpha-numeric codes that are used by the SARB. The description of each of the SARB codes is provided in the sarb_description file.

    The original SARB description file with more detailed explanations can be obtained from the SARB website.The condensed descriptions file has resulted in some information for the suffix symbols being lost. Some suffix symbols explanations include: - J-Yearly - K-Quarterly - M-Monthly

    Some other symbols include those that specify percentages, an index or accounting for inflation.

  2. T

    GDP by Country in AFRICA

    • tradingeconomics.com
    csv, excel, json, xml
    Updated May 27, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). GDP by Country in AFRICA [Dataset]. https://tradingeconomics.com/country-list/gdp?continent=africa
    Explore at:
    xml, json, csv, excelAvailable download formats
    Dataset updated
    May 27, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    Africa
    Description

    This dataset provides values for GDP reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  3. Reddit users in Africa 2020-2028

    • statista.com
    Updated Jan 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2024). Reddit users in Africa 2020-2028 [Dataset]. https://www.statista.com/topics/9922/social-media-in-africa/
    Explore at:
    Dataset updated
    Jan 10, 2024
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    Africa
    Description

    The number of Reddit users in Africa was forecast to continuously increase between 2024 and 2028 by in total 4.7 million users (+66.67 percent). After the eighth consecutive increasing year, the Reddit user base is estimated to reach 11.78 million users and therefore a new peak in 2028. Notably, the number of Reddit users of was continuously increasing over the past years.User figures, shown here with regards to the platform reddit, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period and count multiple accounts by persons only once. Reddit users encompass both users that are logged in and those that are not.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of Reddit users in countries like North America and Asia.

  4. T

    South Africa Money Supply M0

    • tradingeconomics.com
    • es.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, South Africa Money Supply M0 [Dataset]. https://tradingeconomics.com/south-africa/money-supply-m0
    Explore at:
    xml, json, csv, excelAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1964 - Oct 31, 2025
    Area covered
    South Africa
    Description

    Money Supply M0 in South Africa increased to 500340 ZAR Million in October from 483167 ZAR Million in September of 2025. This dataset provides the latest reported value for - South Africa Money Supply M0 - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  5. Number of LinkedIn users in Africa 2019-2028

    • statista.com
    Updated Jan 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2024). Number of LinkedIn users in Africa 2019-2028 [Dataset]. https://www.statista.com/topics/9922/social-media-in-africa/
    Explore at:
    Dataset updated
    Jan 10, 2024
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    Africa
    Description

    The number of LinkedIn users in Africa was forecast to continuously increase between 2024 and 2028 by in total 37 million users (+68.13 percent). After the ninth consecutive increasing year, the LinkedIn user base is estimated to reach 91.29 million users and therefore a new peak in 2028. Notably, the number of LinkedIn users of was continuously increasing over the past years.User figures, shown here with regards to the platform LinkedIn, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period and count multiple accounts by persons only once.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of LinkedIn users in countries like South America and Caribbean.

  6. T

    South Africa GDP

    • tradingeconomics.com
    • ar.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, South Africa GDP [Dataset]. https://tradingeconomics.com/south-africa/gdp
    Explore at:
    xml, excel, json, csvAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1960 - Dec 31, 2024
    Area covered
    South Africa
    Description

    The Gross Domestic Product (GDP) in South Africa was worth 400.26 billion US dollars in 2024, according to official data from the World Bank. The GDP value of South Africa represents 0.38 percent of the world economy. This dataset provides the latest reported value for - South Africa GDP - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  7. YouTube users in Africa 2020-2029

    • statista.com
    Updated Feb 15, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2025). YouTube users in Africa 2020-2029 [Dataset]. https://www.statista.com/topics/9813/internet-usage-in-africa/
    Explore at:
    Dataset updated
    Feb 15, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    Africa
    Description

    The number of Youtube users in Africa was forecast to continuously increase between 2024 and 2029 by in total 0.03 million users (+3.95 percent). The Youtube user base is estimated to amount to 0.79 million users in 2029. User figures, shown here regarding the platform youtube, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of Youtube users in countries like Worldwide and the Americas.

  8. a

    Digital Earth Africa's Cropland extents for Africa

    • deafrica.africageoportal.com
    • agriculture.africageoportal.com
    • +5more
    Updated Jan 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Africa GeoPortal (2022). Digital Earth Africa's Cropland extents for Africa [Dataset]. https://deafrica.africageoportal.com/datasets/bc6a9440f3cb41d6904b2c8831745903
    Explore at:
    Dataset updated
    Jan 13, 2022
    Dataset authored and provided by
    Africa GeoPortal
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    A central focus for governing bodies in Africa is the need to secure the necessary food sources to support their populations. It has been estimated that the current production of crops will need to double by 2050 to meet future needs for food production. Higher level crop-based products that can assist with managing food insecurity, such as cropping watering intensities, crop types, or crop productivity, require as a starting point precise and accurate cropland extent maps indicating where cropland occurs. Current cropland extent maps are either inaccurate, have coarse spatial resolutions, or are not updated regularly. An accurate, high-resolution, and regularly updated cropland area map for the African continent is therefore recognised as a gap in the current crop monitoring services. Key PropertiesGeographic Coverage: Continental Africa - approximately 37° North to 35 SouthTemporal Coverage: 2019Spatial Resolution: 10 x 10 meterUpdate Frequency: TBDNumber of Bands: 3 BandsParent Dataset: Digital Earth Africa's Sentinel-2 Semiannual GeoMADSource Data Coordinate System: WGS 84 / NSIDC EASE-Grid 2.0 Global (EPSG:6933)Service Coordinate System: WGS 84 / NSIDC EASE-Grid 2.0 Global (EPSG:6933)

    Digital Earth Africa’s cropland extent maps for Eastern, Western, and Northern Africa show the estimated location of croplands in these countries for the period of January to December 2019:

    Eastern: Tanzania, Kenya, Uganda, Ethiopia, Rwanda and BurundiWestern: Nigeria, Benin, Togo, Ghana, Cote d'Ivoire, Liberia, Sierra Leone, Guinea and Guinea-BissauNorthern: Morocco, Algeria, Tunisia, Libya and EgyptSahel: Mauritania, Senegal, Gambia, Mali, Burkina Faso, Niger, Chad, Sudan, South Sudan, Somalia and DjiboutiSouthern: South Africa, Namibia, Botswana, Lesotho and Eswatini

    Cropland is defined as:

    "a piece of land of minimum 0.01 ha (a single 10m x 10m pixel) that is sowed/planted and harvestable at least once within the 12 months after the sowing/planting date."

    This definition will exclude non-planted grazing lands and perennial crops which can be difficult for satellite imagery to differentiate from natural vegetation.

    The provisional cropland extent maps have a resolution of 10 metres and were built using Copernicus Sentinel-2 satellite images from 2019. The cropland extent maps were built separately using extensive training data from Eastern, Western, and Northern Africa, coupled with a Random Forest machine learning model. A detailed exploration of the methods used to produce the cropland extent map can be found in the Jupyter Notebooks in DE Africa’s crop-mask GitHub repository.

    Independent validation datasets suggest the following accuracies:

    The Eastern Africa cropland extent map has an overall accuracy of 90.3 %, and an f-score of 0.85 The Western Africa cropland extent map has an overall accuracy of 83.6 %, and an f-score of 0.75 The Northern Africa cropland extent map has an overall accuracy of 94.0 %, and an f-score of 0.91The Sahel Africa cropland extent map has an overall accuracy of 87.9 %, and an f-score of 0.78The Southern Africa cropland extent map has an overall accuracy of 86.4 %, and an f-score of 0.75

    The algorithms for all regions tend to report more omission errors (labelling actual crops as non-crops) than commission errors (labelling non-crops as crops). Where commission errors occur, they tend to be focussed around wetlands and seasonal grasslands which spectrally resemble some kinds of cropping.

    Available BandsBand IDDescriptionValue rangeData typeNoData/Fill valuemaskcrop extent (pixel)0 - 1uint80probcrop probability (pixel)0 - 100uint80filteredcrop extent (object-based)0 - 1uint80

    mask: This band displays cropped regions as a binary map. Values of 1 indicate the presence of crops, while a value of 0 indicates the absence of cropping. This band is a pixel-based cropland extent map, meaning the map displays the raw output of the pixel-based Random Forest classification.

    prob: This band displays the prediction probabilities for the ‘crop’ class. As this service uses a random forest classifier, the prediction probabilities refer to the percentage of trees that voted for the random forest classification. For example, if the model had 200 decision trees in the random forest, and 150 of the trees voted ‘crop’, the prediction probability is 150 / 200 x 100 = 75 %. Thresholding this band at > 50 % will produce a map identical to mask.

    filtered: This band displays cropped regions as a binary map. Values of 1 indicate the presence of crops, while a value of 0 indicates the absence of cropping. This band is an object-based cropland extent map where the mask band has been filtered using an image segmentation algorithm (see this paper for details on the algorithm used). During this process, segments smaller than 1 Ha (100 10m x 10m pixels) are merged with neighbouring segments, resulting in a map where the smallest classified region is 1 Ha in size. The filtered dataset is provided as a complement to the mask band; small commission errors are removed by object-based filtering, and the ‘salt and pepper’ effect typical of classifying pixels is diminished.

    More details on this dataset can be found here.

  9. Facebook users in Africa 2019-2028

    • statista.com
    Updated Feb 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2025). Facebook users in Africa 2019-2028 [Dataset]. https://www.statista.com/topics/9813/internet-usage-in-africa/
    Explore at:
    Dataset updated
    Feb 15, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    Africa
    Description

    The number of Facebook users in Africa was forecast to continuously increase between 2024 and 2028 by in total 141.6 million users (+56.79 percent). After the ninth consecutive increasing year, the Facebook user base is estimated to reach 390.94 million users and therefore a new peak in 2028. Notably, the number of Facebook users of was continuously increasing over the past years.User figures, shown here regarding the platform facebook, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period and count multiple accounts by persons only once.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of Facebook users in countries like Europe and Asia.

  10. w

    Afrobarometer Survey 1 1999-2000, Merged 7 Country - Botswana, Lesotho,...

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Apr 27, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Institute for Democracy in South Africa (IDASA) (2021). Afrobarometer Survey 1 1999-2000, Merged 7 Country - Botswana, Lesotho, Malawi, Namibia, South Africa, Zambia, Zimbabwe [Dataset]. https://microdata.worldbank.org/index.php/catalog/889
    Explore at:
    Dataset updated
    Apr 27, 2021
    Dataset provided by
    Institute for Democracy in South Africa (IDASA)
    Michigan State University (MSU)
    Ghana Centre for Democratic Development (CDD-Ghana)
    Time period covered
    1999 - 2000
    Area covered
    Namibia, Africa, Malawi, Botswana, Zambia, Lesotho, Zimbabwe, South Africa
    Description

    Abstract

    Round 1 of the Afrobarometer survey was conducted from July 1999 through June 2001 in 12 African countries, to solicit public opinion on democracy, governance, markets, and national identity. The full 12 country dataset released was pieced together out of different projects, Round 1 of the Afrobarometer survey,the old Southern African Democracy Barometer, and similar surveys done in West and East Africa.

    The 7 country dataset is a subset of the Round 1 survey dataset, and consists of a combined dataset for the 7 Southern African countries surveyed with other African countries in Round 1, 1999-2000 (Botswana, Lesotho, Malawi, Namibia, South Africa, Zambia and Zimbabwe). It is a useful dataset because, in contrast to the full 12 country Round 1 dataset, all countries in this dataset were surveyed with the identical questionnaire

    Geographic coverage

    Botswana Lesotho Malawi Namibia South Africa Zambia Zimbabwe

    Analysis unit

    Basic units of analysis that the study investigates include: individuals and groups

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    A new sample has to be drawn for each round of Afrobarometer surveys. Whereas the standard sample size for Round 3 surveys will be 1200 cases, a larger sample size will be required in societies that are extremely heterogeneous (such as South Africa and Nigeria), where the sample size will be increased to 2400. Other adaptations may be necessary within some countries to account for the varying quality of the census data or the availability of census maps.

    The sample is designed as a representative cross-section of all citizens of voting age in a given country. The goal is to give every adult citizen an equal and known chance of selection for interview. We strive to reach this objective by (a) strictly applying random selection methods at every stage of sampling and by (b) applying sampling with probability proportionate to population size wherever possible. A randomly selected sample of 1200 cases allows inferences to national adult populations with a margin of sampling error of no more than plus or minus 2.5 percent with a confidence level of 95 percent. If the sample size is increased to 2400, the confidence interval shrinks to plus or minus 2 percent.

    Sample Universe

    The sample universe for Afrobarometer surveys includes all citizens of voting age within the country. In other words, we exclude anyone who is not a citizen and anyone who has not attained this age (usually 18 years) on the day of the survey. Also excluded are areas determined to be either inaccessible or not relevant to the study, such as those experiencing armed conflict or natural disasters, as well as national parks and game reserves. As a matter of practice, we have also excluded people living in institutionalized settings, such as students in dormitories and persons in prisons or nursing homes.

    What to do about areas experiencing political unrest? On the one hand we want to include them because they are politically important. On the other hand, we want to avoid stretching out the fieldwork over many months while we wait for the situation to settle down. It was agreed at the 2002 Cape Town Planning Workshop that it is difficult to come up with a general rule that will fit all imaginable circumstances. We will therefore make judgments on a case-by-case basis on whether or not to proceed with fieldwork or to exclude or substitute areas of conflict. National Partners are requested to consult Core Partners on any major delays, exclusions or substitutions of this sort.

    Sample Design

    The sample design is a clustered, stratified, multi-stage, area probability sample.

    To repeat the main sampling principle, the objective of the design is to give every sample element (i.e. adult citizen) an equal and known chance of being chosen for inclusion in the sample. We strive to reach this objective by (a) strictly applying random selection methods at every stage of sampling and by (b) applying sampling with probability proportionate to population size wherever possible.

    In a series of stages, geographically defined sampling units of decreasing size are selected. To ensure that the sample is representative, the probability of selection at various stages is adjusted as follows:

    The sample is stratified by key social characteristics in the population such as sub-national area (e.g. region/province) and residential locality (urban or rural). The area stratification reduces the likelihood that distinctive ethnic or language groups are left out of the sample. And the urban/rural stratification is a means to make sure that these localities are represented in their correct proportions. Wherever possible, and always in the first stage of sampling, random sampling is conducted with probability proportionate to population size (PPPS). The purpose is to guarantee that larger (i.e., more populated) geographical units have a proportionally greater probability of being chosen into the sample. The sampling design has four stages

    A first-stage to stratify and randomly select primary sampling units;

    A second-stage to randomly select sampling start-points;

    A third stage to randomly choose households;

    A final-stage involving the random selection of individual respondents

    We shall deal with each of these stages in turn.

    STAGE ONE: Selection of Primary Sampling Units (PSUs)

    The primary sampling units (PSU's) are the smallest, well-defined geographic units for which reliable population data are available. In most countries, these will be Census Enumeration Areas (or EAs). Most national census data and maps are broken down to the EA level. In the text that follows we will use the acronyms PSU and EA interchangeably because, when census data are employed, they refer to the same unit.

    We strongly recommend that NIs use official national census data as the sampling frame for Afrobarometer surveys. Where recent or reliable census data are not available, NIs are asked to inform the relevant Core Partner before they substitute any other demographic data. Where the census is out of date, NIs should consult a demographer to obtain the best possible estimates of population growth rates. These should be applied to the outdated census data in order to make projections of population figures for the year of the survey. It is important to bear in mind that population growth rates vary by area (region) and (especially) between rural and urban localities. Therefore, any projected census data should include adjustments to take such variations into account.

    Indeed, we urge NIs to establish collegial working relationships within professionals in the national census bureau, not only to obtain the most recent census data, projections, and maps, but to gain access to sampling expertise. NIs may even commission a census statistician to draw the sample to Afrobarometer specifications, provided that provision for this service has been made in the survey budget.

    Regardless of who draws the sample, the NIs should thoroughly acquaint themselves with the strengths and weaknesses of the available census data and the availability and quality of EA maps. The country and methodology reports should cite the exact census data used, its known shortcomings, if any, and any projections made from the data. At minimum, the NI must know the size of the population and the urban/rural population divide in each region in order to specify how to distribute population and PSU's in the first stage of sampling. National investigators should obtain this written data before they attempt to stratify the sample.

    Once this data is obtained, the sample population (either 1200 or 2400) should be stratified, first by area (region/province) and then by residential locality (urban or rural). In each case, the proportion of the sample in each locality in each region should be the same as its proportion in the national population as indicated by the updated census figures.

    Having stratified the sample, it is then possible to determine how many PSU's should be selected for the country as a whole, for each region, and for each urban or rural locality.

    The total number of PSU's to be selected for the whole country is determined by calculating the maximum degree of clustering of interviews one can accept in any PSU. Because PSUs (which are usually geographically small EAs) tend to be socially homogenous we do not want to select too many people in any one place. Thus, the Afrobarometer has established a standard of no more than 8 interviews per PSU. For a sample size of 1200, the sample must therefore contain 150 PSUs/EAs (1200 divided by 8). For a sample size of 2400, there must be 300 PSUs/EAs.

    These PSUs should then be allocated proportionally to the urban and rural localities within each regional stratum of the sample. Let's take a couple of examples from a country with a sample size of 1200. If the urban locality of Region X in this country constitutes 10 percent of the current national population, then the sample for this stratum should be 15 PSUs (calculated as 10 percent of 150 PSUs). If the rural population of Region Y constitutes 4 percent of the current national population, then the sample for this stratum should be 6 PSU's.

    The next step is to select particular PSUs/EAs using random methods. Using the above example of the rural localities in Region Y, let us say that you need to pick 6 sample EAs out of a census list that contains a total of 240 rural EAs in Region Y. But which 6? If the EAs created by the national census bureau are of equal or roughly equal population size, then selection is relatively straightforward. Just number all EAs consecutively, then make six selections using a table of random numbers. This procedure, known as simple random sampling (SRS), will

  11. o

    Sub-Saharan Africa - Utilities Technical, Financial, and Tariff Databases...

    • open.africa
    Updated Aug 11, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). Sub-Saharan Africa - Utilities Technical, Financial, and Tariff Databases (2016) - Dataset - openAFRICA [Dataset]. https://open.africa/dataset/making-power-affordable-for-africa-and-viable-for-its-utilities
    Explore at:
    Dataset updated
    Aug 11, 2017
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Sub-Saharan Africa, Africa
    Description

    The databases contain all the technical, financial, and tariff data collected through the study "Making power affordable in Africa and viable for its utilities." The WB study uses national household expenditure surveys conducted since 2008 in 22 countries; it makes use of tariff schedules in effect as of July 2014 in 39 countries, including all of the 22 countries with household surveys. The objective of making the database public is to make data collected through the study available to utility companies, regulators, and practitioners to provide benchmarks and help inform analysis. The databases will be updated from time to time to make corrections or updates for latest data available and therefore may differ from data that appears in the reports. This database is a publication of the African Renewable Energy Access Program (AFREA), a World Bank Trust Fund Grant Program funded by the Kingdom of the Netherlands through ESMAP. It was prepared by staff of the International Bank for Reconstruction and Development / The World Bank. The full report is available at https://openknowledge.worldbank.org/handle/10986/25091 Last Updated 26-Oct-2016 Citation: Trimble, Chris; Kojima, Masami; Perez Arroyo, Ines; Mohammadzadeh, Farah. 2016. Financial Viability of Electricity Sectors in Sub-Saharan Africa: Quasi-Fiscal Deficits and Hidden Costs. Policy Research Working Paper; No. 7788.

  12. a

    Digital Earth Africa's Sentinel-2 Annual GeoMAD

    • morocco.africageoportal.com
    • deafrica.africageoportal.com
    • +5more
    Updated Sep 23, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Africa GeoPortal (2021). Digital Earth Africa's Sentinel-2 Annual GeoMAD [Dataset]. https://morocco.africageoportal.com/datasets/a1c5888827b34aaa809427e31bbc2673
    Explore at:
    Dataset updated
    Sep 23, 2021
    Dataset authored and provided by
    Africa GeoPortal
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    GeoMAD is the Digital Earth Africa (DE Africa) surface reflectance geomedian and triple Median Absolute Deviation data service. It is a cloud-free composite of satellite data compiled over specific timeframes. This service is ideal for longer-term time series analysis, cloudless imagery and statistical accuracy.

    GeoMAD has two main components: Geomedian and Median Absolute Deviations (MADs)

    The geomedian component combines measurements collected over the specified timeframe to produce one representative, multispectral measurement for every pixel unit of the African continent. The end result is a comprehensive dataset that can be used to generate true-colour images for visual inspection of anthropogenic or natural landmarks. The full spectral dataset can be used to develop more complex algorithms.

    For each pixel, invalid data is discarded, and remaining observations are mathematically summarised using the geomedian statistic. Flyover coverage provided by collecting data over a period of time also helps scope intermittently cloudy areas.

    Variations between the geomedian and the individual measurements are captured by the three Median Absolute Deviation (MAD) layers. These are higher-order statistical measurements calculating variation relative to the geomedian. The MAD layers can be used on their own or together with geomedian to gain insights about the land surface and understand change over time.Key PropertiesGeographic Coverage: Continental Africa - approximately 37° North to 35° SouthTemporal Coverage: 2017 – 2022*Spatial Resolution: 10 x 10 meterUpdate Frequency: Annual from 2017 - 2022Product Type: Surface Reflectance (SR)Product Level: Analysis Ready (ARD)Number of Bands: 14 BandsParent Dataset: Sentinel-2 Level-2A Surface ReflectanceSource Data Coordinate System: WGS 84 / NSIDC EASE-Grid 2.0 Global (EPSG:6933)Service Coordinate System: WGS 84 / NSIDC EASE-Grid 2.0 Global (EPSG:6933)*Time is enabled on this service using UTC – Coordinated Universal Time. To assure you are seeing the correct year for each annual slice of data, the time zone must be set specifically to UTC in the Map Viewer settings each time this layer is opened in a new map. More information on this setting can be found here: Set the map time zone.ApplicationsGeoMAD is the Digital Earth Africa (DE Africa) surface reflectance geomedian and triple Median Absolute Deviation data service. It is a cloud-free composite of satellite data compiled over specific timeframes. This service is ideal for:Longer-term time series analysisCloud-free imageryStatistical accuracyAvailable BandsBand IDDescriptionValue rangeData typeNo data valueB02Geomedian B02 (Blue)1 - 10000uint160B03Geomedian B03 (Green)1 - 10000uint160B04Geomedian B04 (Red)1 - 10000uint160B05Geomedian B05 (Red edge 1)1 - 10000uint160B06Geomedian B06 (Red edge 2)1 - 10000uint160B07Geomedian B07 (Red edge 3)1 - 10000uint160B08Geomedian B08 (Near infrared (NIR) 1)1 - 10000uint160B8AGeomedian B8A (NIR 2)1 - 10000uint160B11Geomedian B11 (Short-wave infrared (SWIR) 1)1 - 10000uint160B12Geomedian B12 (SWIR 2)1 - 10000uint160SMADSpectral Median Absolute Deviation0 - 1float32NaNEMADEuclidean Median Absolute Deviation0 - 31623float32NaNBCMADBray-Curtis Median Absolute Deviation0 - 1float32NaNCOUNTNumber of clear observations1 - 65535uint160Bands can be subdivided as follows:

    Geomedian — 10 bands: The geomedian is calculated using the spectral bands of data collected during the specified time period. Surface reflectance values have been scaled between 1 and 10000 to allow for more efficient data storage as unsigned 16-bit integers (uint16). Note parent datasets often contain more bands, some of which are not used in GeoMAD. The geomedian band IDs correspond to bands in the parent Sentinel-2 Level-2A data. For example, the Annual GeoMAD band B02 contains the annual geomedian of the Sentinel-2 B02 band. Median Absolute Deviations (MADs) — 3 bands: Deviations from the geomedian are quantified through median absolute deviation calculations. The GeoMAD service utilises three MADs, each stored in a separate band: Euclidean MAD (EMAD), spectral MAD (SMAD), and Bray-Curtis MAD (BCMAD). Each MAD is calculated using the same ten bands as in the geomedian. SMAD and BCMAD are normalised ratios, therefore they are unitless and their values always fall between 0 and 1. EMAD is a function of surface reflectance but is neither a ratio nor normalised, therefore its valid value range depends on the number of bands used in the geomedian calculation.Count — 1 band: The number of clear satellite measurements of a pixel for that calendar year. This is around 60 annually, but doubles at areas of overlap between scenes. “Count” is not incorporated in either the geomedian or MADs calculations. It is intended for metadata analysis and data validation.ProcessingAll clear observations for the given time period are collated from the parent dataset. Cloudy pixels are identified and excluded. The geomedian and MADs calculations are then performed by the hdstats package. Annual GeoMAD datasets for the period use hdstats version 0.2.More details on this dataset can be found here.

  13. w

    Africa - Water Bodies - Dataset - waterdata

    • wbwaterdata.org
    Updated Mar 16, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). Africa - Water Bodies - Dataset - waterdata [Dataset]. https://wbwaterdata.org/dataset/africa-water-bodies-2015
    Explore at:
    Dataset updated
    Mar 16, 2020
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Africa
    Description

    This dataset shows water bodies in Africa including lakes, reservoir, and lagoon. Data is curated from RCMRD Geoportal at http://geoportal.rcmrd.org/layers/servir%3Aafrica_water_bodies#license-m... The Regional Centre for Mapping of Resources for Development (RCMRD) was established in Nairobi – Kenya in 1975 under the auspices of the United Nations Economic Commission for Africa (UNECA) and the then Organization of African Unity (OAU), today African Union (AU). RCMRD is an inter-governmental organization and currently has 20 Contracting Member States in the Eastern and Southern Africa Regions; Botswana, Burundi, Comoros, Ethiopia, Kenya, Lesotho, Malawi, Mauritius, Namibia, Rwanda, Seychelles, Somali, South Africa, South Sudan, Sudan, Swaziland, Tanzania, Uganda, Zambia and Zimbabwe. To learn more about RCMRD, please visit http://www.rcmrd.org/

  14. Food Price Crowdsourcing Africa

    • data.europa.eu
    html
    Updated Dec 16, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Joint Research Centre (2020). Food Price Crowdsourcing Africa [Dataset]. https://data.europa.eu/data/datasets/36a2ac99-87db-4069-9426-995482100a6b?locale=bg
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Dec 16, 2020
    Dataset authored and provided by
    Joint Research Centrehttps://joint-research-centre.ec.europa.eu/index_en
    License

    http://data.europa.eu/eli/dec/2011/833/ojhttp://data.europa.eu/eli/dec/2011/833/oj

    Description

    “Food Price Crowdsourcing Africa” (FPCA) is a research project led by the European Commission - Directorate Joint Research Centre (JRC), and implemented in collaboration with the International Institute of Tropical Agriculture (IITA), Nigeria and Wageningen University and Research (WUR), The Netherlands, to understand food price changes along the food chain while strengthening agricultural & market information systems through mobile phone technology and citizens' participation. This project is a component of a broader initiative themed "Support to the AgRi-Economic analysis & modelling of agriculture & development policies impact for Africa (AREA)", which is led and funded by the JRC and implemented in collaboration with WUR.

    As society and economy rapidly transforms by the expansion of digital technologies, new data sources represent a unique opportunity to produce new and complementary statistics within collective collaborative frameworks. The goal of this project (~10 months) was to explore the potentiality of a “spontaneous crowdsourcing” (i.e. “Citizen Science”) approach by leveraging citizen involvement, smart phone technology and an adequate quality framework to produce reliable food price data with very high spatial details and temporal frequency, with the purpose to provide to consumers and farmers accurate and timely information on agricultural commodity markets, allowing them to make informed decisions about consumption and production and leading to a more efficient function of markets. Agricultural markets transparency is particularly relevant in many African countries where agriculture is still the main source of income for a big share of population as well as expenditure on food represents an important share of the total household income. At the same time market transparency can help to understand market dynamics and so to shape national and regional decisions and policies regarding food security and markets.

    The dataset is continuously updated for the whole the duration of the project. The dataset is accompanied by an interactive dashboard updated twice a day that allows users to perform a wide exploration of the data. A set of graphs and charts are displayed according to states and regions, weeks, and products selected by the user.

    This is considered a beta version: user feedback is welcome to further improve the dashboard.

  15. w

    Research Database on Infrastructure Economic Performance 1980-2004 - Aruba,...

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Oct 26, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Antonio Estache and Ana Goicoechea (2023). Research Database on Infrastructure Economic Performance 1980-2004 - Aruba, Afghanistan, Angola...and 190 more [Dataset]. https://microdata.worldbank.org/index.php/catalog/1780
    Explore at:
    Dataset updated
    Oct 26, 2023
    Dataset authored and provided by
    Antonio Estache and Ana Goicoechea
    Time period covered
    1980 - 2004
    Area covered
    Angola
    Description

    Abstract

    Estache and Goicoechea present an infrastructure database that was assembled from multiple sources. Its main purposes are: (i) to provide a snapshot of the sector as of the end of 2004; and (ii) to facilitate quantitative analytical research on infrastructure sectors. The related working paper includes definitions, source information and the data available for 37 performance indicators that proxy access, affordability and quality of service (most recent data as of June 2005). Additionally, the database includes a snapshot of 15 reform indicators across infrastructure sectors.

    This is a first attempt, since the effort made in the World Development Report 1994, at generating a database on infrastructure sectors and it needs to be recognized as such. This database is not a state of the art output—this is being worked on by sector experts on a different time table. The effort has however generated a significant amount of new information. The database already provides enough information to launch a much more quantitative debate on the state of infrastructure. But much more is needed and by circulating this information at this stage, we hope to be able to generate feedback and fill the major knowledge gaps and inconsistencies we have identified.

    Geographic coverage

    The database covers the following countries: - Afghanistan - Albania - Algeria - American Samoa - Andorra - Angola - Antigua and Barbuda - Argentina - Armenia - Aruba - Australia - Austria - Azerbaijan - Bahamas, The - Bahrain - Bangladesh - Barbados - Belarus - Belgium - Belize - Benin - Bermuda - Bhutan - Bolivia - Bosnia and Herzegovina - Botswana - Brazil - Brunei - Bulgaria - Burkina Faso - Burundi - Cambodia - Cameroon - Canada - Cape Verde - Cayman Islands - Central African Republic - Chad - Channel Islands - Chile - China - Colombia - Comoros - Congo, Dem. Rep. - Congo, Rep. - Costa Rica - Cote d'Ivoire - Croatia - Cuba - Cyprus - Czech Republic - Denmark - Djibouti - Dominica - Dominican Republic - Ecuador - Egypt, Arab Rep. - El Salvador - Equatorial Guinea - Eritrea - Estonia - Ethiopia - Faeroe Islands - Fiji - Finland - France - French Polynesia - Gabon - Gambia, The - Georgia - Germany - Ghana - Greece - Greenland - Grenada - Guam - Guatemala - Guinea - Guinea-Bissau - Guyana - Haiti - Honduras - Hong Kong, China - Hungary - Iceland - India - Indonesia - Iran, Islamic Rep. - Iraq - Ireland - Isle of Man - Israel - Italy - Jamaica - Japan - Jordan - Kazakhstan - Kenya - Kiribati - Korea, Dem. Rep. - Korea, Rep. - Kuwait - Kyrgyz Republic - Lao PDR - Latvia - Lebanon - Lesotho - Liberia - Libya - Liechtenstein - Lithuania - Luxembourg - Macao, China - Macedonia, FYR - Madagascar - Malawi - Malaysia - Maldives - Mali - Malta - Marshall Islands - Mauritania - Mauritius - Mayotte - Mexico - Micronesia, Fed. Sts. - Moldova - Monaco - Mongolia - Morocco - Mozambique - Myanmar - Namibia - Nepal - Netherlands - Netherlands Antilles - New Caledonia - New Zealand - Nicaragua - Niger - Nigeria - Northern Mariana Islands - Norway - Oman - Pakistan - Palau - Panama - Papua New Guinea - Paraguay - Peru - Philippines - Poland - Portugal - Puerto Rico - Qatar - Romania - Russian Federation - Rwanda - Samoa - San Marino - Sao Tome and Principe - Saudi Arabia - Senegal - Seychelles - Sierra Leone - Singapore - Slovak Republic - Slovenia - Solomon Islands - Somalia - South Africa - Spain - Sri Lanka - St. Kitts and Nevis - St. Lucia - St. Vincent and the Grenadines - Sudan - Suriname - Swaziland - Sweden - Switzerland - Syrian Arab Republic - Tajikistan - Tanzania - Thailand - Togo - Tonga - Trinidad and Tobago - Tunisia - Turkey - Turkmenistan - Uganda - Ukraine - United Arab Emirates - United Kingdom - United States - Uruguay - Uzbekistan - Vanuatu - Venezuela, RB - Vietnam - Virgin Islands (U.S.) - West Bank and Gaza - Yemen, Rep. - Yugoslavia, FR (Serbia/Montenegro) - Zambia - Zimbabwe

    Kind of data

    Aggregate data [agg]

    Mode of data collection

    Face-to-face [f2f]

    Response rate

    Sector Performance Indicators

    Energy The energy sector is relatively well covered by the database, at least in terms of providing a relatively recent snapshot for the main policy areas. The best covered area is access where data are available for 2000 for about 61% of the 207 countries included in the database. The technical quality indicator is available for 60% of the countries, and at least one of the perceived quality indicators is available for 40% of the countries. Price information is available for about 41% of the countries, distinguishing between residential and non residential.

    Water & Sanitation Because the sector is part of the Millennium Development Goals (MDGs), it enjoys a lot of effort on data generation in terms of the access rates. The WHO is the main engine behind this effort in collaboration with the multilateral and bilateral aid agencies. The coverage is actually quite high -some national, urban and rural information is available for 75 to 85% of the countries- but there are significant concerns among the research community about the fact that access rates have been measured without much consideration to the quality of access level. The data on technical quality are only available for 27% of the countries. There are data on perceived quality for roughly 39% of the countries but it cannot be used to qualify the information provided by the raw access rates (i.e. access 3 hours a day is not equivalent to access 24 hours a day).

    Information and Communication Technology The ICT sector is probably the best covered among the infrastructure sub-sectors to a large extent thanks to the fact that the International Telecommunications Union (ITU) has taken on the responsibility to collect the data. ITU covers a wide spectrum of activity under the communications heading and its coverage ranges from 85 to 99% for all national access indicators. The information on prices needed to make assessments of affordability is also quite extensive since it covers roughly 85 to 95% of the 207 countries. With respect to quality, the coverage of technical indicators is over 88% while the information on perceived quality is only available for roughly 40% of the countries.

    Transport The transport sector is possibly the least well covered in terms of the service orientation of infrastructure indicators. Regarding access, network density is the closest approximation to access to the service and is covered at a rate close to 90% for roads but only at a rate of 50% for rail. The relevant data on prices only cover about 30% of the sample for railways. Some type of technical quality information is available for 86% of the countries. Quality perception is only available for about 40% of the countries.

    Institutional Reform Indicators

    Electricity The data on electricity policy reform were collected from the following sources: ABS Electricity Deregulation Report (2004), AEI-Brookings telecommunications and electricity regulation database (2003), Bacon (1999), Estache and Gassner (2004), Estache, Trujillo, and Tovar de la Fe (2004), Global Regulatory Network Program (2004), Henisz et al. (2003), International Porwer Finance Review (2003-04), International Power and Utilities Finance Review (2004-05), Kikukawa (2004), Wallsten et al. (2004), World Bank Caribbean Infrastructure Assessment (2004), World Bank Global Energy Sector Reform in Developing Countries (1999), World Bank staff, and country regulators. The coverage for the three types of institutional indicators is quite good for the electricity sector. For regulatory institutions and private participation in generation and distribution, the coverage is about 80% of the 207 counties. It is somewhat lower on the market structure with only 58%.

    Water & Sanitation The data on water policy reform were collected from the following sources: ABS Water and Waste Utilities of the World (2004), Asian Developing Bank (2000), Bayliss (2002), Benoit (2004), Budds and McGranahan (2003), Hall, Bayliss, and Lobina (2002), Hall and Lobina (2002), Hall, Lobina, and De La Mote (2002), Halpern (2002), Lobina (2001), World Bank Caribbean Infrastructure Assessment (2004), World Bank Sector Note on Water Supply and Sanitation for Infrastructure in EAP (2004), and World Bank staff. The coverage for institutional reforms in W&S is not as exhaustive as for the other utilities. Information on the regulatory institutions responsible for large utilities is available for about 67% of the countries. Ownership data are available for about 70% of the countries. There is no information on the market structure good enough to be reported here at this stage. In most countries small scale operators are important private actors but there is no systematic record of their existence. Most of the information available on their role and importance is only anecdotal.

    Information and Communication Technology The report Trends in Telecommunications Reform from ITU (revised by World Bank staff) is the main source of information for this sector. The information on institutional reforms in the sector is however not as exhaustive as it is for its sector performance indicators. While the coverage on the regulatory institutions is 100%, it varies between 76 and 90% of the countries for more of the other indicators. Quite surprisingly also, in contrast to what is available for other sectors, it proved difficult to obtain data on the timing of reforms and of the creation of the regulatory agencies.

    Transport Information on transport institutions and reforms is not systematically generated by any agency. Even though more data are needed to have a more comprenhensive picture of the transport sector, it was possible to collect data on railways policy reform from Janes World Railways (2003-04) and complement it with

  16. Swahili : News Classification Dataset

    • zenodo.org
    • data.niaid.nih.gov
    csv
    Updated Sep 18, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Davis David; Davis David (2021). Swahili : News Classification Dataset [Dataset]. http://doi.org/10.5281/zenodo.4300294
    Explore at:
    csvAvailable download formats
    Dataset updated
    Sep 18, 2021
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Davis David; Davis David
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Swahili is spoken by 100-150 million people across East Africa. In Tanzania, it is one of two national languages (the other is English) and it is the official language of instruction in all schools. News in Swahili is an important part of the media sphere in Tanzania.

    News contributes to education, technology, and the economic growth of a country, and news in local languages plays an important cultural role in many Africa countries. In the modern age, African languages in news and other spheres are at risk of being lost as English becomes the dominant language in online spaces.

    The Swahili news dataset was created to reduce the gap of using the Swahili language to create NLP technologies and help AI practitioners in Tanzania and across the Africa continent to practice their NLP skills to solve different problems in organizations or societies related to the Swahili language. Swahili News were collected from different websites that provide news in the Swahili language. I was able to find some websites that provide news in Swahili only and others in different languages including Swahili.

    The dataset was created for a specific task of text classification, this means each news content can be categorized into six different topics (Local News, International News, Finance News, Health News, Sports News, and Entertainment news). The dataset comes with a specified train/test split. The train set contains 75% of the dataset.

    Acknowledgment: This project was supported by the AI4D language dataset fellowship through K4All and Zindi Africa.

  17. p

    South Africa Number Dataset

    • listtodata.com
    .csv, .xls, .txt
    Updated Jul 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    List to Data (2025). South Africa Number Dataset [Dataset]. https://listtodata.com/south-africa-dataset
    Explore at:
    .csv, .xls, .txtAvailable download formats
    Dataset updated
    Jul 17, 2025
    Authors
    List to Data
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2025 - Dec 31, 2025
    Area covered
    South Africa
    Variables measured
    phone numbers, Email Address, full name, Address, City, State, gender,age,income,ip address,
    Description

    South Africa number dataset is crucial for those who want their company to be successful and appealing. The database contains the contacts for important people. These people are crucial and have the power to influence major choices for their organization or business. So, if you buy the list, you can get their contact information. You may now quickly connect with them thanks to the details. South Africa number dataset is GDPR-ready and usable on all CRM platforms. Consequently, using our directory will result in an immediate return on investment (ROI). List to Data guarantees that we will support you in all circumstances and can give you the information you need to launch a successful marketing campaign. Therefore, trust us and adopt the South Africa number dataset for your marketing issues. South Africa phone data will help you find the right customers for your organization. You may now accomplish that using this directory, and we are swearing an oath to our customers to do so. Your chances of obtaining a good contract from a higher business will increase as a result. Therefore, you must take it into account for your own welfare. On the other hand, the ideal remedy for your prior marketing issues is this library. South Africa phone data is a full-featured dataset package. Everything you require or desire for telemarketing will be provided for you. Every country is experiencing a financial crisis, and the world as a whole is struggling. You can therefore conduct a successful campaign with the South Africa phone data. South Africa phone number list contains all the answers that will greatly simplify your issues. We can only state that all businesspeople who are serious about their businesses should subscribe to our list. Choose the pre-built and most accurate contact directory if you also want something remarkable from your company. Without the database, it is impossible to expand in the modern world. South Africa phone number list is now available at a low rate. No matter what the circumstance, List to Data is always here to help. You can get in touch with us for more questions. We have a strong support team that is available 24/7 hours to assist you. In short, you can get in touch with us whenever you believe your company needs South Africa phone number list.

  18. T

    South Africa GDP Growth Rate

    • tradingeconomics.com
    • pt.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Sep 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). South Africa GDP Growth Rate [Dataset]. https://tradingeconomics.com/south-africa/gdp-growth
    Explore at:
    csv, excel, json, xmlAvailable download formats
    Dataset updated
    Sep 9, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jun 30, 1993 - Sep 30, 2025
    Area covered
    South Africa
    Description

    The Gross Domestic Product (GDP) in South Africa expanded 0.50 percent in the third quarter of 2025 over the previous quarter. This dataset provides - South Africa GDP Growth Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  19. w

    Global Financial Inclusion (Global Findex) Database 2021 - South Africa

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Dec 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Development Research Group, Finance and Private Sector Development Unit (2022). Global Financial Inclusion (Global Findex) Database 2021 - South Africa [Dataset]. https://microdata.worldbank.org/index.php/catalog/4707
    Explore at:
    Dataset updated
    Dec 16, 2022
    Dataset authored and provided by
    Development Research Group, Finance and Private Sector Development Unit
    Time period covered
    2021
    Area covered
    South Africa
    Description

    Abstract

    The fourth edition of the Global Findex offers a lens into how people accessed and used financial services during the COVID-19 pandemic, when mobility restrictions and health policies drove increased demand for digital services of all kinds.

    The Global Findex is the world's most comprehensive database on financial inclusion. It is also the only global demand-side data source allowing for global and regional cross-country analysis to provide a rigorous and multidimensional picture of how adults save, borrow, make payments, and manage financial risks. Global Findex 2021 data were collected from national representative surveys of about 128,000 adults in more than 120 economies. The latest edition follows the 2011, 2014, and 2017 editions, and it includes a number of new series measuring financial health and resilience and contains more granular data on digital payment adoption, including merchant and government payments.

    The Global Findex is an indispensable resource for financial service practitioners, policy makers, researchers, and development professionals.

    Geographic coverage

    National coverage

    Analysis unit

    Individual

    Kind of data

    Observation data/ratings [obs]

    Sampling procedure

    In most developing economies, Global Findex data have traditionally been collected through face-to-face interviews. Surveys are conducted face-to-face in economies where telephone coverage represents less than 80 percent of the population or where in-person surveying is the customary methodology. However, because of ongoing COVID-19 related mobility restrictions, face-to-face interviewing was not possible in some of these economies in 2021. Phone-based surveys were therefore conducted in 67 economies that had been surveyed face-to-face in 2017. These 67 economies were selected for inclusion based on population size, phone penetration rate, COVID-19 infection rates, and the feasibility of executing phone-based methods where Gallup would otherwise conduct face-to-face data collection, while complying with all government-issued guidance throughout the interviewing process. Gallup takes both mobile phone and landline ownership into consideration. According to Gallup World Poll 2019 data, when face-to-face surveys were last carried out in these economies, at least 80 percent of adults in almost all of them reported mobile phone ownership. All samples are probability-based and nationally representative of the resident adult population. Phone surveys were not a viable option in 17 economies that had been part of previous Global Findex surveys, however, because of low mobile phone ownership and surveying restrictions. Data for these economies will be collected in 2022 and released in 2023.

    In economies where face-to-face surveys are conducted, the first stage of sampling is the identification of primary sampling units. These units are stratified by population size, geography, or both, and clustering is achieved through one or more stages of sampling. Where population information is available, sample selection is based on probabilities proportional to population size; otherwise, simple random sampling is used. Random route procedures are used to select sampled households. Unless an outright refusal occurs, interviewers make up to three attempts to survey the sampled household. To increase the probability of contact and completion, attempts are made at different times of the day and, where possible, on different days. If an interview cannot be obtained at the initial sampled household, a simple substitution method is used. Respondents are randomly selected within the selected households. Each eligible household member is listed, and the hand-held survey device randomly selects the household member to be interviewed. For paper surveys, the Kish grid method is used to select the respondent. In economies where cultural restrictions dictate gender matching, respondents are randomly selected from among all eligible adults of the interviewer's gender.

    In traditionally phone-based economies, respondent selection follows the same procedure as in previous years, using random digit dialing or a nationally representative list of phone numbers. In most economies where mobile phone and landline penetration is high, a dual sampling frame is used.

    The same respondent selection procedure is applied to the new phone-based economies. Dual frame (landline and mobile phone) random digital dialing is used where landline presence and use are 20 percent or higher based on historical Gallup estimates. Mobile phone random digital dialing is used in economies with limited to no landline presence (less than 20 percent).

    For landline respondents in economies where mobile phone or landline penetration is 80 percent or higher, random selection of respondents is achieved by using either the latest birthday or household enumeration method. For mobile phone respondents in these economies or in economies where mobile phone or landline penetration is less than 80 percent, no further selection is performed. At least three attempts are made to reach a person in each household, spread over different days and times of day.

    Sample size for South Africa is 1014.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Questionnaires are available on the website.

    Sampling error estimates

    Estimates of standard errors (which account for sampling error) vary by country and indicator. For country-specific margins of error, please refer to the Methodology section and corresponding table in Demirgüç-Kunt, Asli, Leora Klapper, Dorothe Singer, Saniya Ansar. 2022. The Global Findex Database 2021: Financial Inclusion, Digital Payments, and Resilience in the Age of COVID-19. Washington, DC: World Bank.

  20. BENEFIT-REALISE Legacy Soil Profile Dataset

    • data.moa.gov.et
    html
    Updated Dec 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ethiopian Institute of Agricultural Research (EIAR) (2023). BENEFIT-REALISE Legacy Soil Profile Dataset [Dataset]. http://doi.org/10.20372/eiar-rdm/HE7KTW
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Dec 30, 2023
    Dataset provided by
    Ethiopian Institute of Agricultural Research
    Description

    Although soil and agronomy data collection in Ethiopia has begun over 60 years ago, the data are hardly accessible as they are scattered across different organizations, mostly held in the hands of individuals (Ashenafi et al.,2020; Tamene et al.,2022), which makes them vulnerable to permanent loss. Cognizant of the problem, the Coalition of the Willing (CoW) for data sharing and access was created in 2018 with joint support and coordination of the Alliance Bioversity-CIAT and GIZ (https://www.ethioagridata.com/index.html). Mobilizing its members, the CoW has embarked on data rescue operations including data ecosystem mapping, collation, and curation of the legacy data, which was put into the central data repository for its members and the wider data user’s community according to the guideline developed based on the FAIR data principles and approved by the CoW. So far, CoW managed to collate and rescue about 20,000 legacy soil profile data and over 38,000 crop responses to fertilizer data (Tamene et al.,2022). The legacy soil profile dataset (consisting of Profiles Site = 1,776 observations with 37 variables; Profiles Layer Field = 1,493 observations with 64 variables; Profiles Layer Lab= 1,386 observations with 76 variables) is extracted, transformed, and uploaded into a harmonized template (adapted from Batjes 2022; Leenaars et al, 2014) from the below source: Bilateral Ethiopian-Netherlands Effort for Food, Income and Trade (BENEFIT) Partnership which is a portfolio of five programs (ISSD, Cascape, ENTAG, SBN, and REALISE) and is funded by the government of the Kingdom of Netherlands through its embassy in Addis Ababa. The BENEFIT-REALISE program implements its interventions in 60 PSNP weredas in four regions (Tigray, Amhara, Oromia, and SNNPR).Accordingly, in 2019, BENEFIT-REALISE along with the MoA initiated a wereda-wide soil resource characterization and mapping task at1:50,000 scale in 15 BENEFIT-REALISE intervention weredas: 3 of Tigray, 6 of Amhara, 3 of Oromia, and 3 of SNNPR. Reference: Ashenafi, A., Tamene, L., and Erkossa, T. 2020. Identifying, Cataloguing, and Mapping Soil and Agronomic Data in Ethiopia. CIAT Publication No. 506. International Center for Tropical Agriculture (CIAT). Addis Ababa, Ethiopia. 42 p. 10.13140/RG.2.2.31759.41123. Ashenafi, A., Erkossa, T., Gudeta, K., Abera, W., Mesfin, E., Mekete, T., Haile, M., Haile, W., Abegaz, A., Tafesse, D. and Belay, G., 2022. Reference Soil Groups Map of Ethiopia Based on Legacy Data and Machine Learning Technique: EthioSoilGrids 1.0. EGUsphere, pp.1-40. https://doi.org/10.5194/egusphere-2022-301 Tamene L; Erkossa T; Tafesse T; Abera W; Schultz S. 2021. A coalition of the Willing - Powering data-driven solutions for Ethiopian Agriculture. CIAT Publication No. 518. International Center for Tropical Agriculture (CIAT). Addis Ababa, Ethiopia. 34 p. https://www.ethioagridata.com/Resources/Powering%20Data-Driven%20Solutions%20for%20Ethiopian%20Agriculture.pdf. The Coalition of the Willing (CoW) website: https://www.ethioagridata.com/index.html. Batjes, N.H., 2022. Basic principles for compiling a profile dataset for consideration in WoSIS. CoP report, ISRIC–World Soil Information, Wageningen. Contents Summary, 4(1), p.3. Carvalho Ribeiro, E.D. and Batjes, N.H., 2020. World Soil Information Service (WoSIS)-Towards the standardization and harmonization of world soil data: Procedures Manual 2020. Elias, E.: Soils of the Ethiopian Highlands: Geomorphology and Properties, CASCAPE Project, 648 ALTERRA, Wageningen UR, the Netherlands, library.wur.nl/WebQuery/isric/2259099, 649 2016. Leenaars, J. G. B., van Oostrum, A.J.M., and Ruiperez ,G.M.: Africa Soil Profiles Database, Version 1.2. A compilation of georeferenced and standardised legacy soil profile data for Sub Saharan Africa (with dataset), ISRIC Report 2014/01, Africa Soil Information Service (AfSIS) project and ISRIC – World Soil Information, Wageningen, library.wur.nl/WebQuery/isric/2259472, 2014. Leenaars, J. G. B., Eyasu, E., Wösten, H., Ruiperez González, M., Kempen, B.,Ashenafi, A., and Brouwer, F.: Major soil-landscape resources of the cascape intervention woredas, Ethiopia: Soil information in support to scaling up of evidence-based best practices in agricultural production (with dataset), CASCAPE working paper series No. OT_CP_2016_1, Cascape. https://edepot.wur.nl/428596, 2016. Leenaars, J. G. B., Elias, E., Wösten, J. H. M., Ruiperez-González, M., and Kempen, B.: Mapping the major soil-landscape resources of the Ethiopian Highlands using random forest, Geoderma, 361, https://doi.org/10.1016/j.geoderma.2019.114067, 2020a. 740 . Leenaars, J. G. B., Ruiperez, M., González, M., Kempen, B., and Mantel, S.: Semi-detailed soil resource survey and mapping of REALISE woredas in Ethiopia, Project report to the BENEFIT-REALISE programme, December, ISRIC-World Soil Information, Wageningen, 2020b.

    TERMS: Access to the data is limited to the CoW members until the national soil and agronomy data-sharing directive of MoA is registered by the Ministry of Justice and released for implementation. DISCLAIMER: The dataset populated in the harmonized template consisting of 76 variables is extracted, transformed, and uploaded from the source document by the CoW. Hence, if any irregularities are observed, the data users have referred to the source document uploaded along with the dataset. Use of the dataset and any consequences arising from using it is the user’s sole responsibility.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Lyle Begbie (2023). South African Reserve Bank Dataset [Dataset]. https://www.kaggle.com/datasets/lylebegbie/south-african-reserve-bank-dataset
Organization logo

South African Reserve Bank Dataset

The most extensive economic dataset for any African country

Explore at:
zip(1803770 bytes)Available download formats
Dataset updated
Jul 16, 2023
Authors
Lyle Begbie
License

https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

Area covered
South Africa
Description

This dataset contains 2395 timeseries variables in multiple frequencies. This includes South African data on: 1. Money and Banking 2. Capital Markets and Flow of Funds 3. Public Finance 4. Balance of Payments 5. National Accounts 6. Business Cycle and Labour Analysis 7. Integrated Economic Accounts

This is probably the most extensive economic dataset for any African country. The original dataset can be obtained from the South African Reserve Bank (SARB) website.

The first column is reserved for the date. For the yearly and monthly data, the first day of the period is used. While the last day of the period is used for quarterly data.

The other column headers relate to each of the alpha-numeric codes that are used by the SARB. The description of each of the SARB codes is provided in the sarb_description file.

The original SARB description file with more detailed explanations can be obtained from the SARB website.The condensed descriptions file has resulted in some information for the suffix symbols being lost. Some suffix symbols explanations include: - J-Yearly - K-Quarterly - M-Monthly

Some other symbols include those that specify percentages, an index or accounting for inflation.

Search
Clear search
Close search
Google apps
Main menu