Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Money Supply M0 in India decreased to 48334.84 INR Billion in October from 48719.55 INR Billion in September of 2025. This dataset includes a chart with historical data for India Money Supply M0.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Money Supply M2 in India increased to 70702.28 INR Billion in August from 70460.97 INR Billion in July of 2025. This dataset provides - India Money Supply M2 - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Dataset extracted from the post Retire Comfortably in India – How Much Money Do You Really Need in 2025? on Smart Investello.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset contains insights into a collection of credit card transactions made in India, offering a comprehensive look at the spending habits of Indians across the nation. From the Gender and Card type used to carry out each transaction, to which city saw the highest amount of spending and even what kind of expenses were made, this dataset paints an overall picture about how money is being spent in India today. With its variety in variables, researchers have an opportunity to uncover deeper trends in customer spending as well as interesting correlations between data points that can serve as invaluable business intelligence. Whether you're interested in learning more about customer preferences or simply exploring unbiased data analysis techniques, this data is sure to provide insight beyond what one could anticipate
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Money Supply M1 in India increased to 68578.97 INR Billion in August from 68337.66 INR Billion in July of 2025. This dataset provides - India Money Supply M1 - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Shark Tank India - Season 1 to season 4 information, with 80 fields/columns and 630+ records.
All seasons/episodes of 🦈 SHARKTANK INDIA 🇮🇳 were broadcasted on SonyLiv OTT/Sony TV.
Here is the data dictionary for (Indian) Shark Tank season's dataset.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
India Reserve Money: Currency in Circulation data was reported at 38,407,811.323 INR mn in 09 May 2025. This records an increase from the previous number of 38,108,920.323 INR mn for 02 May 2025. India Reserve Money: Currency in Circulation data is updated daily, averaging 9,268,169.600 INR mn from Oct 1996 (Median) to 09 May 2025, with 1491 observations. The data reached an all-time high of 38,407,811.323 INR mn in 09 May 2025 and a record low of 1,273,747.200 INR mn in 01 Nov 1996. India Reserve Money: Currency in Circulation data remains active status in CEIC and is reported by Reserve Bank of India. The data is categorized under High Frequency Database’s Monetary – Table IN.KAB001: Reserve Money.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
India Rupee 10 is a dataset for object detection tasks - it contains Money annotations for 200 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about books. It has 3 rows and is filtered where the book subjects is Money-India. It features 9 columns including author, publication date, language, and book publisher.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Money Supply M3 in India increased to 289951 INR Billion in the week ending October 31 from 287145.32 INR Billion two weeks before. This dataset provides - India Money Supply M3 - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
India Rupee 5 is a dataset for object detection tasks - it contains Money annotations for 200 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
India Rupee 500 is a dataset for object detection tasks - it contains Money annotations for 200 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
India Rupee 20 is a dataset for object detection tasks - it contains Money annotations for 200 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Facebook
TwitterFinancial inclusion is critical in reducing poverty and achieving inclusive economic growth. When people can participate in the financial system, they are better able to start and expand businesses, invest in their children’s education, and absorb financial shocks. Yet prior to 2011, little was known about the extent of financial inclusion and the degree to which such groups as the poor, women, and rural residents were excluded from formal financial systems.
By collecting detailed indicators about how adults around the world manage their day-to-day finances, the Global Findex allows policy makers, researchers, businesses, and development practitioners to track how the use of financial services has changed over time. The database can also be used to identify gaps in access to the formal financial system and design policies to expand financial inclusion.
National Coverage. Sample excludes Northeast states and remote islands. In addition, some districts in Assam, Bihar, Jammu and Kashmir, Jharkhand, and Uttar Pradesh were replaced because of security concerns. The excluded areas represent less than 10% of the population.
Individual
The target population is the civilian, non-institutionalized population 15 years and above.
Sample survey data [ssd]
Triennial
As in the first edition, the indicators in the 2014 Global Findex are drawn from survey data covering almost 150,000 people in more than 140 economies-representing more than 97 percent of the world's population. The survey was carried out over the 2014 calendar year by Gallup, Inc. as part of its Gallup World Poll, which since 2005 has continually conducted surveys of approximately 1,000 people in each of more than 160 economies and in over 140 languages, using randomly selected, nationally representative samples. The target population is the entire civilian, noninstitutionalized population age 15 and above. The set of indicators will be collected again in 2017.
Surveys are conducted face to face in economies where telephone coverage represents less than 80 percent of the population or is the customary methodology. In most economies the fieldwork is completed in two to four weeks. In economies where face-to-face surveys are conducted, the first stage of sampling is the identification of primary sampling units. These units are stratified by population size, geography, or both, and clustering is achieved through one or more stages of sampling. Where population information is available, sample selection is based on probabilities proportional to population size; otherwise, simple random sampling is used. Random route procedures are used to select sampled households. Unless an outright refusal occurs, interviewers make up to three attempts to survey the sampled household. To increase the probability of contact and completion, attempts are made at different times of the day and, where possible, on different days. If an interview cannot be obtained at the initial sampled household, a simple substitution method is used. Respondents are randomly selected within the selected households by means of the Kish grid. In economies where cultural restrictions dictate gender matching, respondents are randomly selected through the Kish grid from among all eligible adults of the interviewer's gender.
In economies where telephone interviewing is employed, random digit dialing or a nationally representative list of phone numbers is used. In most economies where cell phone penetration is high, a dual sampling frame is used. Random selection of respondents is achieved by using either the latest birthday or Kish grid method. At least three attempts are made to reach a person in each household, spread over different days and times of day.
The sample size in India was 3,000 individuals.
Computer Assisted Personal Interview [capi]
The questionnaire was designed by the World Bank, in conjunction with a Technical Advisory Board composed of leading academics, practitioners, and policy makers in the field of financial inclusion. The Bill and Melinda Gates Foundation and Gallup Inc. also provided valuable input. The questionnaire was piloted in multiple countries, using focus groups, cognitive interviews, and field testing. The questionnaire is available in 142 languages upon request.
Questions on cash withdrawals, saving using an informal savings club or person outside the family, domestic remittances, school fees, and agricultural payments are only asked in developing economies and few other selected countries. The question on mobile money accounts was only asked in economies that were part of the Mobile Money for the Unbanked (MMU) database of the GSMA at the time the interviews were being held.
Estimates of standard errors (which account for sampling error) vary by country and indicator. For country-specific margins of error, please refer to the Methodology section and corresponding table in Asli Demirguc-Kunt, Leora Klapper, Dorothe Singer, and Peter Van Oudheusden, “The Global Findex Database 2014: Measuring Financial Inclusion around the World.” Policy Research Working Paper 7255, World Bank, Washington, D.C.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
India Rupee 50 is a dataset for object detection tasks - it contains Money annotations for 200 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Government Spending in India decreased to 4495.11 INR Billion in the second quarter of 2025 from 5084.19 INR Billion in the first quarter of 2025. This dataset provides - India Government Spending - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Indian Rupee 1000 is a dataset for object detection tasks - it contains Money annotations for 200 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Facebook
Twitterhttps://dataful.in/terms-and-conditionshttps://dataful.in/terms-and-conditions
The dataset contains All India Daily Turnover in Financial Markets like Call Money,Notice Money,Term Money,Triparty Repo, Market Repo, Repo in Corporate Bond, Forex, Government of India Dated Securities, State Government Securities, Treasury Bills, Government Securities
Note: 1. Turnover is twice the single leg volumes in case of call/ notice/ term money, CBLO; but four times in case of market repo and Repo in corporate bond. 2. Collateralised Borrowing and Lending Obligation (CBLO) segment of the money market has been discontinued and replaced with Triparty Repo with effect from November 05, 2018.
Facebook
TwitterFinancial inclusion is critical in reducing poverty and achieving inclusive economic growth. When people can participate in the financial system, they are better able to start and expand businesses, invest in their children’s education, and absorb financial shocks. Yet prior to 2011, little was known about the extent of financial inclusion and the degree to which such groups as the poor, women, and rural residents were excluded from formal financial systems.
By collecting detailed indicators about how adults around the world manage their day-to-day finances, the Global Findex allows policy makers, researchers, businesses, and development practitioners to track how the use of financial services has changed over time. The database can also be used to identify gaps in access to the formal financial system and design policies to expand financial inclusion.
Sample excludes Northeast states and remote islands, representing less than 10% of the population.
Individuals
The target population is the civilian, non-institutionalized population 15 years and above.
Observation data/ratings [obs]
The indicators in the 2017 Global Findex database are drawn from survey data covering almost 150,000 people in 144 economies-representing more than 97 percent of the world’s population (see table A.1 of the Global Findex Database 2017 Report for a list of the economies included). The survey was carried out over the 2017 calendar year by Gallup, Inc., as part of its Gallup World Poll, which since 2005 has annually conducted surveys of approximately 1,000 people in each of more than 160 economies and in over 150 languages, using randomly selected, nationally representative samples. The target population is the entire civilian, noninstitutionalized population age 15 and above. Interview procedure Surveys are conducted face to face in economies where telephone coverage represents less than 80 percent of the population or where this is the customary methodology. In most economies the fieldwork is completed in two to four weeks.
In economies where face-to-face surveys are conducted, the first stage of sampling is the identification of primary sampling units. These units are stratified by population size, geography, or both, and clustering is achieved through one or more stages of sampling. Where population information is available, sample selection is based on probabilities proportional to population size; otherwise, simple random sampling is used. Random route procedures are used to select sampled households. Unless an outright refusal occurs, interviewers make up to three attempts to survey the sampled household. To increase the probability of contact and completion, attempts are made at different times of the day and, where possible, on different days. If an interview cannot be obtained at the initial sampled household, a simple substitution method is used.
Respondents are randomly selected within the selected households. Each eligible household member is listed and the handheld survey device randomly selects the household member to be interviewed. For paper surveys, the Kish grid method is used to select the respondent. In economies where cultural restrictions dictate gender matching, respondents are randomly selected from among all eligible adults of the interviewer’s gender.
In economies where telephone interviewing is employed, random digit dialing or a nationally representative list of phone numbers is used. In most economies where cell phone penetration is high, a dual sampling frame is used. Random selection of respondents is achieved by using either the latest birthday or household enumeration method. At least three attempts are made to reach a person in each household, spread over different days and times of day.
The sample size was 3000.
Computer Assisted Personal Interview [capi]
The questionnaire was designed by the World Bank, in conjunction with a Technical Advisory Board composed of leading academics, practitioners, and policy makers in the field of financial inclusion. The Bill and Melinda Gates Foundation and Gallup Inc. also provided valuable input. The questionnaire was piloted in multiple countries, using focus groups, cognitive interviews, and field testing. The questionnaire is available in more than 140 languages upon request.
Questions on cash on delivery, saving using an informal savings club or person outside the family, domestic remittances, and agricultural payments are only asked in developing economies and few other selected countries. The question on mobile money accounts was only asked in economies that were part of the Mobile Money for the Unbanked (MMU) database of the GSMA at the time the interviews were being held.
Estimates of standard errors (which account for sampling error) vary by country and indicator. For country-specific margins of error, please refer to the Methodology section and corresponding table in Demirgüç-Kunt, Asli, Leora Klapper, Dorothe Singer, Saniya Ansar, and Jake Hess. 2018. The Global Findex Database 2017: Measuring Financial Inclusion and the Fintech Revolution. Washington, DC: World Bank
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
India Rupee 2000 is a dataset for object detection tasks - it contains Money annotations for 200 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Money Supply M0 in India decreased to 48334.84 INR Billion in October from 48719.55 INR Billion in September of 2025. This dataset includes a chart with historical data for India Money Supply M0.