Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
About Dataset UPDATE: Source code used for collecting this data released here
Context YouTube (the world-famous video sharing website) maintains a list of the top trending videos on the platform. According to Variety magazine, “To determine the year’s top-trending videos, YouTube uses a combination of factors including measuring users interactions (number of views, shares, comments and likes). Note that they’re not the most-viewed videos overall for the calendar year”. Top performers on the YouTube trending list are music videos (such as the famously virile “Gangam Style”), celebrity and/or reality TV performances, and the random dude-with-a-camera viral videos that YouTube is well-known for.
This dataset is a daily record of the top trending YouTube videos.
Note that this dataset is a structurally improved version of this dataset.
Content This dataset includes several months (and counting) of data on daily trending YouTube videos. Data is included for the US, GB, DE, CA, and FR regions (USA, Great Britain, Germany, Canada, and France, respectively), with up to 200 listed trending videos per day.
EDIT: Now includes data from RU, MX, KR, JP and IN regions (Russia, Mexico, South Korea, Japan and India respectively) over the same time period.
Each region’s data is in a separate file. Data includes the video title, channel title, publish time, tags, views, likes and dislikes, description, and comment count.
The data also includes a category_id field, which varies between regions. To retrieve the categories for a specific video, find it in the associated JSON. One such file is included for each of the five regions in the dataset.
For more information on specific columns in the dataset refer to the column metadata.
Acknowledgements This dataset was collected using the YouTube API.
Inspiration Possible uses for this dataset could include:
Sentiment analysis in a variety of forms Categorising YouTube videos based on their comments and statistics. Training ML algorithms like RNNs to generate their own YouTube comments. Analysing what factors affect how popular a YouTube video will be. Statistical analysis over time. For further inspiration, see the kernels on this dataset!
Facebook
TwitterMore details about each file are in the individual file descriptions.
This is a dataset from the Federal Reserve hosted by the Federal Reserve Economic Database (FRED). FRED has a data platform found here and they update their information according to the frequency that the data updates. Explore the Federal Reserve using Kaggle and all of the data sources available through the Federal Reserve organization page!
This dataset is maintained using FRED's API and Kaggle's API.
Cover photo by Jonny McNee on Unsplash
Unsplash Images are distributed under a unique Unsplash License.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in Japan was last recorded at 0.50 percent. This dataset provides - Japan Interest Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
AI Training Dataset Market Size 2025-2029
The ai training dataset market size is valued to increase by USD 7.33 billion, at a CAGR of 29% from 2024 to 2029. Proliferation and increasing complexity of foundational AI models will drive the ai training dataset market.
Market Insights
North America dominated the market and accounted for a 36% growth during the 2025-2029.
By Service Type - Text segment was valued at USD 742.60 billion in 2023
By Deployment - On-premises segment accounted for the largest market revenue share in 2023
Market Size & Forecast
Market Opportunities: USD 479.81 million
Market Future Opportunities 2024: USD 7334.90 million
CAGR from 2024 to 2029 : 29%
Market Summary
The market is experiencing significant growth as businesses increasingly rely on artificial intelligence (AI) to optimize operations, enhance customer experiences, and drive innovation. The proliferation and increasing complexity of foundational AI models necessitate large, high-quality datasets for effective training and improvement. This shift from data quantity to data quality and curation is a key trend in the market. Navigating data privacy, security, and copyright complexities, however, poses a significant challenge. Businesses must ensure that their datasets are ethically sourced, anonymized, and securely stored to mitigate risks and maintain compliance. For instance, in the supply chain optimization sector, companies use AI models to predict demand, optimize inventory levels, and improve logistics. Access to accurate and up-to-date training datasets is essential for these applications to function efficiently and effectively. Despite these challenges, the benefits of AI and the need for high-quality training datasets continue to drive market growth. The potential applications of AI are vast and varied, from healthcare and finance to manufacturing and transportation. As businesses continue to explore the possibilities of AI, the demand for curated, reliable, and secure training datasets will only increase.
What will be the size of the AI Training Dataset Market during the forecast period?
Get Key Insights on Market Forecast (PDF) Request Free SampleThe market continues to evolve, with businesses increasingly recognizing the importance of high-quality datasets for developing and refining artificial intelligence models. According to recent studies, the use of AI in various industries is projected to grow by over 40% in the next five years, creating a significant demand for training datasets. This trend is particularly relevant for boardrooms, as companies grapple with compliance requirements, budgeting decisions, and product strategy. Moreover, the importance of data labeling, feature selection, and imbalanced data handling in model performance cannot be overstated. For instance, a mislabeled dataset can lead to biased and inaccurate models, potentially resulting in costly errors. Similarly, effective feature selection algorithms can significantly improve model accuracy and reduce computational resources. Despite these challenges, advances in model compression methods, dataset scalability, and data lineage tracking are helping to address some of the most pressing issues in the market. For example, model compression techniques can reduce the size of models, making them more efficient and easier to deploy. Similarly, data lineage tracking can help ensure data consistency and improve model interpretability. In conclusion, the market is a critical component of the broader AI ecosystem, with significant implications for businesses across industries. By focusing on data quality, effective labeling, and advanced techniques for handling imbalanced data and improving model performance, organizations can stay ahead of the curve and unlock the full potential of AI.
Unpacking the AI Training Dataset Market Landscape
In the realm of artificial intelligence (AI), the significance of high-quality training datasets is indisputable. Businesses harnessing AI technologies invest substantially in acquiring and managing these datasets to ensure model robustness and accuracy. According to recent studies, up to 80% of machine learning projects fail due to insufficient or poor-quality data. Conversely, organizations that effectively manage their training data experience an average ROI improvement of 15% through cost reduction and enhanced model performance.
Distributed computing systems and high-performance computing facilitate the processing of vast datasets, enabling businesses to train models at scale. Data security protocols and privacy preservation techniques are crucial to protect sensitive information within these datasets. Reinforcement learning models and supervised learning models each have their unique applications, with the former demonstrating a 30% faster convergence rate in certain use cases.
Data annot
Facebook
TwitterTThe ERS International Macroeconomic Data Set provides historical and projected data for 181 countries that account for more than 99 percent of the world economy. These data and projections are assembled explicitly to serve as underlying assumptions for the annual USDA agricultural supply and demand projections, which provide a 10-year outlook on U.S. and global agriculture. The macroeconomic projections describe the long-term, 10-year scenario that is used as a benchmark for analyzing the impacts of alternative scenarios and macroeconomic shocks.
Explore the International Macroeconomic Data Set 2015 for annual growth rates, consumer price indices, real GDP per capita, exchange rates, and more. Get detailed projections and forecasts for countries worldwide.
Annual growth rates, Consumer price indices (CPI), Real GDP per capita, Real exchange rates, Population, GDP deflator, Real gross domestic product (GDP), Real GDP shares, GDP, projections, Forecast, Real Estate, Per capita, Deflator, share, Exchange Rates, CPI
Afghanistan, Albania, Algeria, Angola, Antigua and Barbuda, Argentina, Armenia, Australia, Austria, Azerbaijan, Bahamas, Bahrain, Bangladesh, Barbados, Belarus, Belgium, Belize, Benin, Bhutan, Bolivia, Bosnia and Herzegovina, Botswana, Brazil, Brunei, Bulgaria, Burkina Faso, Burundi, Côte d'Ivoire, Cabo Verde, Cambodia, Cameroon, Canada, Central African Republic, Chad, Chile, China, Colombia, Congo, Costa Rica, Croatia, Cuba, Cyprus, Denmark, Djibouti, Dominica, Dominican Republic, Ecuador, Egypt, El Salvador, Equatorial Guinea, Eritrea, Estonia, Eswatini, Ethiopia, Fiji, Finland, France, Gabon, Gambia, Georgia, Germany, Ghana, Greece, Grenada, Guatemala, Guinea, Guinea-Bissau, Guyana, Haiti, Honduras, Hungary, Iceland, India, Indonesia, Iran, Iraq, Ireland, Israel, Italy, Jamaica, Japan, Jordan, Kazakhstan, Kenya, Kuwait, Kyrgyzstan, Laos, Latvia, Lebanon, Lesotho, Liberia, Libya, Lithuania, Luxembourg, Madagascar, Malawi, Malaysia, Maldives, Mali, Malta, Mauritania, Mauritius, Mexico, Moldova, Mongolia, Morocco, Mozambique, Myanmar, Namibia, Nepal, Netherlands, New Zealand, Nicaragua, Niger, Nigeria, Norway, Oman, Pakistan, Panama, Papua New Guinea, Paraguay, Peru, Philippines, Poland, Portugal, Qatar, Romania, Russia, Rwanda, Samoa, Saudi Arabia, Senegal, Serbia, Seychelles, Sierra Leone, Singapore, Slovakia, Slovenia, Solomon Islands, South Africa, Spain, Sri Lanka, Sudan, Suriname, Sweden, Switzerland, Syria, Tajikistan, Tanzania, Thailand, Togo, Tonga, Trinidad and Tobago, Tunisia, Turkey, Turkmenistan, Uganda, Ukraine, United Arab Emirates, United Kingdom, Uruguay, Uzbekistan, Vanuatu, Venezuela, Vietnam, Yemen, Zambia, Zimbabwe, WORLD Follow data.kapsarc.org for timely data to advance energy economics research. Notes:
Developed countries/1 Australia, New Zealand, Japan, Other Western Europe, European Union 27, North America
Developed countries less USA/2 Australia, New Zealand, Japan, Other Western Europe, European Union 27, Canada
Developing countries/3 Africa, Middle East, Other Oceania, Asia less Japan, Latin America;
Low-income developing countries/4 Haiti, Afghanistan, Nepal, Benin, Burkina Faso, Burundi, Central African Republic, Chad, Democratic Republic of Congo, Eritrea, Ethiopia, Gambia, Guinea, Guinea-Bissau, Liberia, Madagascar, Malawi, Mali, Mozambique, Niger, Rwanda, Senegal, Sierra Leone, Somalia, Tanzania, Togo, Uganda, Zimbabwe;
Emerging markets/5 Mexico, Brazil, Chile, Czech Republic, Hungary, Poland, Slovakia, Russia, China, India, Korea, Taiwan, Indonesia, Malaysia, Philippines, Thailand, Vietnam, Singapore
BRIICs/5 Brazil, Russia, India, Indonesia, China; Former Centrally Planned Economies
Former centrally planned economies/7 Cyprus, Malta, Recently acceded countries, Other Central Europe, Former Soviet Union
USMCA/8 Canada, Mexico, United States
Europe and Central Asia/9 Europe, Former Soviet Union
Middle East and North Africa/10 Middle East and North Africa
Other Southeast Asia outlook/11 Malaysia, Philippines, Thailand, Vietnam
Other South America outlook/12 Chile, Colombia, Peru, Bolivia, Paraguay, Uruguay
Indicator Source
Real gross domestic product (GDP) World Bank World Development Indicators, IHS Global Insight, Oxford Economics Forecasting, as well as estimated and projected values developed by the Economic Research Service all converted to a 2015 base year.
Real GDP per capita U.S. Department of Agriculture, Economic Research Service, Macroeconomic Data Set, GDP table and Population table.
GDP deflator World Bank World Development Indicators, IHS Global Insight, Oxford Economics Forecasting, as well as estimated and projected values developed by the Economic Research Service, all converted to a 2015 base year.
Real GDP shares U.S. Department of Agriculture, Economic Research Service, Macroeconomic Data Set, GDP table.
Real exchange rates U.S. Department of Agriculture, Economic Research Service, Macroeconomic Data Set, CPI table, and Nominal XR and Trade Weights tables developed by the Economic Research Service.
Consumer price indices (CPI) International Financial Statistics International Monetary Fund, IHS Global Insight, Oxford Economics Forecasting, as well as estimated and projected values developed by the Economic Research Service, all converted to a 2015 base year.
Population Department of Commerce, Bureau of the Census, U.S. Department of Agriculture, Economic Research Service, International Data Base.
Facebook
TwitterValidation Data for the KaTid-Child-Japan
The dataset comprises data collected for the purpose of validating the Japanese version of the KaTid-Child assessment tool. The dataset comprises information utilized to assess the test-retest reliability, inter-rater reliability, and other psychometric properties of the tool. The data were subjected to statistical analysis using a range of techniques, including Spearman's rank correlation, the kappa statistic, and intraclass correlation coefficients (ICC). Furthermore, bootstrap resampling was employed to calculate confidence intervals.
The objective of this study is to validate the Japanese version of KaTid-Child for use in pediatric occupational therapy. The data set includes both raw and processed data used for reliability analyses. The variables included in the data set are those that are relevant to test-retest and inter-rater reliability.
The data set is intended for use in research. In the event of reuse, the original study must be appropriately cited and the authors acknowledged. Prior to utilizing the dataset, it is requisite that the authors be contacted to obtain permission. For a detailed account of the methodology and context, please refer to the associated publication.
Should you require further information or clarification regarding this dataset, please do not hesitate to contact us at tasaka-shota@spu.ac.jp.
Facebook
Twitterhttps://choosealicense.com/licenses/other/https://choosealicense.com/licenses/other/
Video-to-Video Dataset
This is a dataset for video-to-video. You have not to worry about this copyright if you read the outline of license.
Outline of License
This is under Unity-Chan License. The outline is as follow:
You can use this for commercial purpose. You must display "Song/Motion: © Unity Technologies Japan/UCL." in your work.
The official guideline is here. Please read it.
Copyrights
3D Model
This model is CC-0. More
Song
Unity… See the full description on the dataset page: https://huggingface.co/datasets/alfredplpl/video-to-video-dataset.
Facebook
TwitterDerived from over 150 years of lexical research, these comprehensive textual and audio data, focused on American English, provide linguistically annotated data. Ideal for NLP applications, LLM training and/or fine-tuning, as well as educational and game apps.
One of our flagship datasets, the American English data is expertly curated and linguistically annotated by professionals, with annual updates to ensure accuracy and relevance. The below datasets in American English are available for license:
Key Features (approximate numbers):
Our American English Monolingual Dictionary Data is the foremost authority on American English, including detailed tagging and labelling covering parts of speech (POS), grammar, region, register, and subject, providing rich linguistic information. Additionally, all grammar and usage information is present to ensure relevance and accuracy.
The American English Synonyms and Antonyms Dataset is a leading resource offering comprehensive, up-to-date coverage of word relationships in contemporary American English. It includes rich linguistic details such as precise definitions and part-of-speech (POS) tags, making it an essential asset for developing AI systems and language technologies that require deep semantic understanding.
This dataset provides IPA transcriptions and clean audio data in contemporary American English. It includes syllabified transcriptions, variant spellings, POS tags, and pronunciation group identifiers. The audio files are supplied separately and linked where available for seamless integration - perfect for teams building TTS systems, ASR models, and pronunciation engines.
Use Cases:
We consistently work with our clients on new use cases as language technology continues to evolve. These include NLP applications, TTS, dictionary display tools, games, translation machine, AI training and fine-tuning, word embedding, and word sense disambiguation (WSD).
If you have a specific use case in mind that isn't listed here, we’d be happy to explore it with you. Don’t hesitate to get in touch with us at Growth.OL@oup.com to start the conversation.
Pricing:
Oxford Languages offers flexible pricing based on use case and delivery format. Our datasets are licensed via term-based IP agreements and tiered pricing for API-delivered data. Whether you’re integrating into a product, training an LLM, or building custom NLP solutions, we tailor licensing to your specific needs.
Contact our team or email us at Growth.OL@oup.com to explore pricing options and discover how our language data can support your goals. Please note that some datasets may have rights restrictions. Contact us for more information.
About the sample:
To help you explore the structure and features of our dataset on this platform, we provide a sample in CSV and/or JSON formats for one of the presented datasets, for preview purposes only, as shown on this page. This sample offers a quick and accessible overview of the data's contents and organization.
Our full datasets are available in various formats, depending on the language and type of data you require. These may include XML, JSON, TXT, XLSX, CSV, WAV, MP3, and other file types. Please contact us (Growth.OL@oup.com) if you would like to receive the original sample with full details.
Facebook
TwitterBy Andy Bramwell [source]
The elements covered in this well-curated dataset include: The ranking of the game based on global sales under the column 'Rank'. This metric provides perspective on how popular or successful a particular game has been across countries in comparison to others during its time. Noting that video games' popularity could vary greatly from one geography to another due to factors like cultural nuances, gamer preferences, etc., regional sales have been marked separately for North America (North America), Europe (Europe), Japan (Japan) as well as for other parts of the World excluding these three regions under the column 'Rest of World'.
For easy identification among massive chunks of data, we've included each game's title (Game Title) along with additional categorization based on their genre (Genre). From action-packed adventures to strategic board-like scenarios or enchanted magic realms - classifications cover it all! In addition, detailed information about publishers can be found under 'Publisher', which grants insights about leading companies dominating market shares.
Further details expand into mentioning platforms such as PS4, Xbox, PC where these games can be played under 'Platform'. A unique attribute covered in this database is ‘Review’. Given that critique ratings play an influential role in engaging new players into trying out a particular video game or boosting existing user morale regarding their choice; this numeric representation ranging typically from 1-10 vividly captures public opinion about them.
Lastly, just for keeping tabs on ever-evolving gaming technology standards where newer versions often outshine predecessors irrespective of actual gameplay quality itself; having release years mentioned ('Year') proves beneficial for categorizing them chronologically. This helps correlate whether higher sales figures can sometimes merely be indicative of more people having access to necessary high-end gaming hardware during later periods.
In essence, this dataset titled ‘Video Games Sales.csv’ holds immense potential for informative deep-dives into the Video Game industry's trends and paradigms, forming a solid foundation for market research, academic purposes or personal projects
This dataset provides extensive information about various video game titles, their sales performance across multiple regions, publisher details and game reviews. Follow the steps outlined below to make the most out of this remarkable dataset!
1. Game Research & Evaluation:
With columns such as 'Game Title', 'Genre' and 'Review', you can research on particular games or genres that interest you. You can evaluate a game based on its review scores, delving into what makes a top-rated game.
2. Publisher Analysis:
The 'Publisher' column lets you track which publishers are behind the most successful games in terms of sales and reviews. This analysis could be useful for people interested in business trends in gaming industry or trying to identify potential innovative publishers.
3. Regional Market Trend Identification:
You can use data from columns like ‘North America’, ‘Europe’, ‘Japan’ and ‘Rest of World’ to study regional market trends for certain genres or platforms; it might enable one to recognize patterns over time or cultural preferences with regard to video games.
4. Global Sales Analysis:
Using the 'Global' column, you could observe which games have been globally successful, going beyond regional preferences by genre or platform.
5. Platform Insight:
The platform on which a particular game is available is another significant factor (e.g., PC, PS4, Xbox). By utilizing the data contained in this dataset regarding platforms, one may learn how platform choice impacts global sales as well as discern any correlation between preferred platform types among specific regions.
Remember that every statistical analysis begins with knowing your data - dive deep into each variable; explore patterns within variables before looking at correlations between different fields.
Don't forget - when engaged with comprehensive datasets like these - creativity is your only limit! Happy analyzing!
- Trend Analysis: This dataset can be used to analyze the trends in video game preferences over the years based on genre, publisher, platform and region. It can provide interesting insights into how consumer tastes have evolved with time and which game genres are becoming more popular.
- Sales Forecasting: U...
Facebook
Twitterhttps://www.gnu.org/licenses/gpl-3.0.htmlhttps://www.gnu.org/licenses/gpl-3.0.html
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F15126770%2Fb5be9743b224eed4a579ad0566c6cfa6%2Fheader.jpg?generation=1706017258113980&alt=media" alt="">
Data obtained using a program from the site vgchartz.com.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F15126770%2Fe7672b2b6da2ed0212f6023bc969097c%2Fdata_1.jpg?generation=1706017300688615&alt=media" alt="">
"Founded in 2005 by Brett Walton, VGChartz (Video Game Charts) is a business intelligence and research firm and publisher of the VGChartz.com websites. As an industry research firm, VGChartz publishes video game hardware estimates every week and hosts an ever-expanding game database with over 55,000 titles listed, featuring up-to-date shipment information and legacy sales data. The VGChartz.com website provides consumers with a range of content from news and sales features, to reviews and articles, to social networking and a community forum." - from the site vgchartz.com.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F15126770%2Fa099c58fc8cb25b8e26989f05fe58488%2Fdata_2.jpg?generation=1706017370390411&alt=media" alt="">
"Since the end of 2018 VGChartz no longer produces estimates for software sales. This is because the high digital market share for software was making it both more difficult to produce reliable retail estimates and also making those estimates increasingly unrepresentative of the wider performance of the games in question. As a result, on the software front we now only record official shipment/sales data, where such data is made available by developers and publishers. The legacy data remains on the site for those who are interested in browsing through it." - from the site vgchartz.com.
If you are new to data analytics, try answering the following questions: - in what year did the active growth in the number of video games produced begin? What year was the most successful from this point of view? What can you conclude if you look at the number of video games released by country? - on what day and month were the largest number of video games released? What could be the reason for this pattern? - is there a dependence of the number of copies sold on the ratings of critics or users? - which gaming platforms, publishers and developers are the most common (the largest number of video games have been released over time)? - which gaming platforms, publishers and developers have the largest number of video game copies sold (over all time, the total number of copies sold was the largest)?
If you have enough experience, try solving a regression problem. Train a model that can predict the number of copies sold of video games: - what signs can be used to prevent leakage of the target variable? - how do outliers affect the quality of the model? - which metric should be chosen to evaluate the model? - can adding new data improve the predictive ability of the model? - does the trained model have signs of heteroscedasticity of the residuals? How does this affect the predictive ability of the model? What can you do?
The data contains the following fields: 1. name – name of the video game. 2. date - release date of the video game. 3. platform - gaming platform (All – all gaming platforms, Series – all video game series). 4. publisher – publisher. 5. developers - developer. 6. shipped - the number of copies sent (relevant for records with the values All and Series in the platform field). 7. total - total number of copies sold (millions of copies). 8. america - number of copies sold in America (millions of copies). 9. europe - number of copies sold in Europe (millions of copies). 10. japan - number of copies sold in Japan (millions of copies). 11. other - other sales in the world. 12. vgc - rating VGChartz.com. 13. critic - critics' assessment. 14. user - user rating.
This dataset is the result of painstaking work. After collection and systematization, the data is checked for integrity and correctness. If you notice an error or inaccuracy in the data, or have a suggestion on how to improve the data set, please let me know.
You can look at working with data in my github repository.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The figures are based on GDP (Nominal) and sector composition ratios provided by the CIA World Fact Book. Agriculture includes farming, fishing, and forestry. Industry includes mining, manufacturing, energy production, and construction. Services cover government activities, communications, transportation, finance, and all other private economic activities that do not produce material goods.
Agriculture Sector : Agriculture Sector contributes 6.4 percent of total world's economic production. Total production of sector is $5,084,800 million. China is the largest contributer followed by India. China and India accounts for 19.49 and 7.39 percent of total global agricultural output. World's largest economy United States is at third place. Next in line come Brazil and Indonesia
**Industry Sector : **With GDP of $23,835 billion, Industry Sector holds a share of 30% of total GDP nominal. China is the largest contributor followed by US. Japan is at 3rd and Germany is at 4th place. These four countries contributes 45.84 of total global industrial output.
Services Sector : Services sector is the largest sector of the world as 63 percent of total global wealth comes from services sector. United States is the largest producer of services sector with around 15.53 trillion USD. Services sector is the leading sector in 201 countries/economies. 30 countries receive more than 80 percent of their GDP from services sector. Chad has lowest 27% contribution by services sector in its economy.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Gross Domestic Product (GDP) in Japan was worth 4026.21 billion US dollars in 2024, according to official data from the World Bank. The GDP value of Japan represents 3.79 percent of the world economy. This dataset provides - Japan GDP - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Gross Domestic Product per capita in Japan was last recorded at 37144.91 US dollars in 2024. The GDP per Capita in Japan is equivalent to 294 percent of the world's average. This dataset provides - Japan GDP per capita - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Government Spending in Japan increased to 120025.80 JPY Billion in the third quarter of 2025 from 119409.20 JPY Billion in the second quarter of 2025. This dataset provides - Japan Government Spending - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Japan Imports from United States was US$84.95 Billion during 2024, according to the United Nations COMTRADE database on international trade. Japan Imports from United States - data, historical chart and statistics - was last updated on December of 2025.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Japan's main stock market index, the JP225, rose to 49553 points on December 2, 2025, gaining 0.51% from the previous session. Over the past month, the index has declined 3.78%, though it remains 26.25% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from Japan. Japan Stock Market Index (JP225) - values, historical data, forecasts and news - updated on December of 2025.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Inflation Rate in Japan increased to 3 percent in October from 2.90 percent in September of 2025. This dataset provides the latest reported value for - Japan Inflation Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The USD/JPY exchange rate rose to 155.6000 on December 2, 2025, up 0.09% from the previous session. Over the past month, the Japanese Yen has weakened 0.90%, and is down by 4.00% over the last 12 months. Japanese Yen - values, historical data, forecasts and news - updated on December of 2025.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Japan Exports to United States was US$141.52 Billion during 2024, according to the United Nations COMTRADE database on international trade. Japan Exports to United States - data, historical chart and statistics - was last updated on December of 2025.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Foreign Exchange Reserves in Japan increased to 1347400 USD Million in October from 1341300 USD Million in September of 2025. This dataset provides the latest reported value for - Japan Foreign Exchange Reserves - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
About Dataset UPDATE: Source code used for collecting this data released here
Context YouTube (the world-famous video sharing website) maintains a list of the top trending videos on the platform. According to Variety magazine, “To determine the year’s top-trending videos, YouTube uses a combination of factors including measuring users interactions (number of views, shares, comments and likes). Note that they’re not the most-viewed videos overall for the calendar year”. Top performers on the YouTube trending list are music videos (such as the famously virile “Gangam Style”), celebrity and/or reality TV performances, and the random dude-with-a-camera viral videos that YouTube is well-known for.
This dataset is a daily record of the top trending YouTube videos.
Note that this dataset is a structurally improved version of this dataset.
Content This dataset includes several months (and counting) of data on daily trending YouTube videos. Data is included for the US, GB, DE, CA, and FR regions (USA, Great Britain, Germany, Canada, and France, respectively), with up to 200 listed trending videos per day.
EDIT: Now includes data from RU, MX, KR, JP and IN regions (Russia, Mexico, South Korea, Japan and India respectively) over the same time period.
Each region’s data is in a separate file. Data includes the video title, channel title, publish time, tags, views, likes and dislikes, description, and comment count.
The data also includes a category_id field, which varies between regions. To retrieve the categories for a specific video, find it in the associated JSON. One such file is included for each of the five regions in the dataset.
For more information on specific columns in the dataset refer to the column metadata.
Acknowledgements This dataset was collected using the YouTube API.
Inspiration Possible uses for this dataset could include:
Sentiment analysis in a variety of forms Categorising YouTube videos based on their comments and statistics. Training ML algorithms like RNNs to generate their own YouTube comments. Analysing what factors affect how popular a YouTube video will be. Statistical analysis over time. For further inspiration, see the kernels on this dataset!