Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Health care in the United States is provided by many distinct organizations. Health care facilities are largely owned and operated by private sector businesses. 58% of US community hospitals are non-profit, 21% are government owned, and 21% are for-profit. According to the World Health Organization (WHO), the United States spent more on healthcare per capita ($9,403), and more on health care as percentage of its GDP (17.1%), than any other nation in 2014. Many different datasets are needed to portray different aspects of healthcare in US like disease prevalences, pharmaceuticals and drugs, Nutritional data of different food products available in US. Such data is collected by surveys (or otherwise) conducted by Centre of Disease Control and Prevention (CDC), Foods and Drugs Administration, Center of Medicare and Medicaid Services and Agency for Healthcare Research and Quality (AHRQ). These datasets can be used to properly review demographics and diseases, determining start ratings of healthcare providers, different drugs and their compositions as well as package informations for different diseases and for food quality. We often want such information and finding and scraping such data can be a huge hurdle. So, Here an attempt is made to make available all US healthcare data at one place to download from in csv files.
Facebook
TwitterThe All CMS Data Feeds dataset is an expansive resource offering access to 118 unique report feeds, providing in-depth insights into various aspects of the U.S. healthcare system. With over 25.8 billion rows of data meticulously collected since 2007, this dataset is invaluable for healthcare professionals, analysts, researchers, and businesses seeking to understand and analyze healthcare trends, performance metrics, and demographic shifts over time. The dataset is updated monthly, ensuring that users always have access to the most current and relevant data available.
Dataset Overview:
118 Report Feeds: - The dataset includes a wide array of report feeds, each providing unique insights into different dimensions of healthcare. These topics range from Medicare and Medicaid service metrics, patient demographics, provider information, financial data, and much more. The breadth of information ensures that users can find relevant data for nearly any healthcare-related analysis. - As CMS releases new report feeds, they are automatically added to this dataset, keeping it current and expanding its utility for users.
25.8 Billion Rows of Data:
Historical Data Since 2007: - The dataset spans from 2007 to the present, offering a rich historical perspective that is essential for tracking long-term trends and changes in healthcare delivery, policy impacts, and patient outcomes. This historical data is particularly valuable for conducting longitudinal studies and evaluating the effects of various healthcare interventions over time.
Monthly Updates:
Data Sourced from CMS:
Use Cases:
Market Analysis:
Healthcare Research:
Performance Tracking:
Compliance and Regulatory Reporting:
Data Quality and Reliability:
The All CMS Data Feeds dataset is designed with a strong emphasis on data quality and reliability. Each row of data is meticulously cleaned and aligned, ensuring that it is both accurate and consistent. This attention to detail makes the dataset a trusted resource for high-stakes applications, where data quality is critical.
Integration and Usability:
Ease of Integration:
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
Big Data Spending In Healthcare Sector Market Size 2025-2029
The big data spending in healthcare sector market size is valued to increase by USD 7.78 billion, at a CAGR of 10.2% from 2024 to 2029. Need to improve business efficiency will drive the big data spending in healthcare sector market.
Market Insights
APAC dominated the market and accounted for a 31% growth during the 2025-2029.
By Service - Services segment was valued at USD 5.9 billion in 2023
By Type - Descriptive analytics segment accounted for the largest market revenue share in 2023
Market Size & Forecast
Market Opportunities: USD 108.28 million
Market Future Opportunities 2024: USD 7783.80 million
CAGR from 2024 to 2029 : 10.2%
Market Summary
The healthcare sector's adoption of big data analytics is a global trend that continues to gain momentum, driven by the need to improve business efficiency, enhance patient care, and ensure regulatory compliance. Big data in healthcare refers to the large and complex data sets generated from various sources, including Electronic Health Records, medical devices, and patient-generated data. This data holds immense potential for identifying patterns, predicting outcomes, and driving evidence-based decision-making. One real-world scenario illustrating this is supply chain optimization. Hospitals and healthcare providers can leverage big data analytics to optimize their inventory management, reduce wastage, and ensure timely availability of essential medical supplies.
For instance, predictive analytics can help anticipate demand for specific medical equipment or supplies, enabling healthcare providers to maintain optimal stock levels and minimize the risk of stockouts or overstocking. However, the adoption of big data analytics in healthcare is not without challenges. Data privacy and security concerns related to patients' medical data are a significant concern, with potential risks ranging from data breaches to unauthorized access. Ensuring robust Data security measures and adhering to regulatory guidelines, such as the Health Insurance Portability and Accountability Act (HIPAA) in the US, is essential for maintaining trust and protecting sensitive patient information.
In conclusion, the use of big data analytics in healthcare is a transformative trend that offers numerous benefits, from improved operational efficiency to enhanced patient care and regulatory compliance. However, it also presents challenges related to data privacy and security, which must be addressed to fully realize the potential of this technology.
What will be the size of the Big Data Spending In Healthcare Sector Market during the forecast period?
Get Key Insights on Market Forecast (PDF) Request Free Sample
The market continues to evolve, with recent research indicating a significant increase in investments. This growth is driven by the need for improved patient care, regulatory compliance, and cost savings. One trend shaping the market is the adoption of advanced analytics techniques to gain insights from large datasets. For instance, predictive analytics is being used to identify potential health risks and improve patient outcomes.
Additionally, data visualization software and data analytics platforms are essential tools for healthcare organizations to make data-driven decisions. Compliance is another critical area where big data is making a significant impact. With the increasing amount of patient data being generated, there is a growing need for data security and privacy. Data encryption methods and data anonymization techniques are being used to protect sensitive patient information. Budgeting is also a significant consideration for healthcare organizations investing in big data. Cost benefit analysis and statistical modeling are essential tools for evaluating the return on investment of big data initiatives.
As healthcare organizations continue to invest in big data, they must balance the benefits against the costs to ensure they are making informed decisions. In conclusion, the market is experiencing significant growth, driven by the need for improved patient care, regulatory compliance, and cost savings. The adoption of advanced analytics techniques, data visualization software, and data analytics platforms is essential for healthcare organizations to gain insights from large datasets and make data-driven decisions. Additionally, data security and privacy are critical considerations, with data encryption methods and data anonymization techniques being used to protect sensitive patient information.
Budgeting is also a significant consideration, with cost benefit analysis and statistical modeling essential tools for evaluating the return on investment of big data initiatives.
Unpacking the Big Data Spending In Healthcare Sector Market Landscape
In the dynamic healthcare sector, the adoption of big data technologies has become a st
Facebook
Twitterhttps://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global healthcare cloud based analytics market size was valued at approximately USD 14.8 billion in 2023, and it is anticipated to reach around USD 54.3 billion by 2032, growing at a compound annual growth rate (CAGR) of 15.7% from 2024 to 2032. One of the primary growth factors influencing this market is the increasing demand for data-driven decision-making processes in healthcare settings to enhance patient outcomes and operational efficiency.
One significant growth factor for the healthcare cloud based analytics market is the rapid digital transformation within the healthcare sector. The transition from paper-based systems to electronic health records (EHRs) and the adoption of telehealth services are driving the need for sophisticated analytics solutions that can process vast amounts of healthcare data. The accessibility and scalability offered by cloud-based solutions make them particularly attractive for healthcare providers looking to leverage patient data for better diagnostic and treatment outcomes.
Moreover, the rising focus on personalized medicine and the need for population health management are propelling the demand for healthcare cloud based analytics. Personalized medicine requires the analysis of large datasets to understand individual patient profiles and predict responses to treatments. Similarly, population health management aims to improve health outcomes by analyzing data to identify trends and intervene proactively. Cloud-based analytics platforms provide the necessary computational power and flexibility to handle these complex data requirements efficiently.
The cost-efficiency of cloud based solutions compared to traditional on-premises systems is another crucial growth driver. Healthcare organizations are under constant pressure to reduce operational costs while improving patient care quality. Cloud-based analytics solutions eliminate the need for significant upfront investments in hardware and software while offering the benefits of scalable resources and reduced IT maintenance costs. This financial advantage is particularly appealing to small and medium-sized healthcare providers who may have limited budgets for technology investments.
The integration of Business Intelligence in Healthcare is transforming the way data is utilized to improve patient care and streamline operations. By employing BI tools, healthcare organizations can analyze vast datasets to uncover insights that drive better decision-making. These tools enable healthcare providers to track patient outcomes, optimize resource allocation, and enhance overall operational efficiency. The ability to visualize data through dashboards and reports allows for a deeper understanding of patient trends and organizational performance, ultimately leading to improved healthcare delivery and patient satisfaction.
From a regional perspective, North America currently holds the largest market share in the healthcare cloud based analytics market, driven by advanced healthcare infrastructure and high adoption rates of digital healthcare technologies. However, regions like Asia Pacific are expected to witness the highest growth rates during the forecast period. Factors such as increasing healthcare expenditures, growing awareness about the benefits of healthcare analytics, and supportive government initiatives are contributing to the market expansion in these regions.
The healthcare cloud based analytics market can be segmented by component into software and services. The software segment includes various analytics platforms and tools designed to process and analyze healthcare data. These software solutions are essential for enabling healthcare providers to harness the power of big data and derive actionable insights. As the volume of healthcare data continues to grow exponentially, the demand for robust and scalable analytics software solutions is expected to increase significantly. Innovations in artificial intelligence and machine learning are also enhancing the capabilities of these software solutions, making them more effective in predictive analytics and decision support.
Cloud Computing in Healthcare is revolutionizing the way healthcare data is stored, accessed, and analyzed. By leveraging cloud technology, healthcar
Facebook
TwitterUnited Healthcare Transparency in Coverage Dataset
Unlock the power of healthcare pricing transparency with our comprehensive United Healthcare Transparency in Coverage dataset. This invaluable resource provides unparalleled insights into healthcare costs, enabling data-driven decision-making for insurers, employers, researchers, and policymakers.
Key Features:
Detailed Data Points:
For each of the 76,000 employers, the dataset includes: 1. In-network negotiated rates for covered items and services 2. Historical out-of-network allowed amounts and billed charges 3. Cost-sharing information for specific items and services 4. Pricing data for medical procedures and services across providers, plans, and employers
Use Cases
For Insurers: - Benchmark your rates against competitors - Optimize network design and provider contracting - Develop more competitive and cost-effective insurance products
For Employers: - Make informed decisions about health plan offerings - Negotiate better rates with insurers and providers - Implement cost-saving strategies for employee healthcare
For Researchers: - Conduct in-depth studies on healthcare pricing variations - Analyze the impact of policy changes on healthcare costs - Investigate regional differences in healthcare pricing
For Policymakers: - Develop evidence-based healthcare policies - Monitor the effectiveness of price transparency initiatives - Identify areas for potential cost-saving interventions
Data Delivery
Our flexible data delivery options ensure you receive the information you need in the most convenient format:
Why Choose Our Dataset?
Harness the power of healthcare pricing transparency to drive your business forward. Contact us today to discuss how our United Healthcare Transparency in Coverage dataset can meet your specific needs and unlock valuable insights for your organization.
Facebook
TwitterThis dataset provides information on the closing price, high price, low price, and volume of stocks for the top 10 companies in the healthcare sector. The dataset consists of time-series data, covering daily stock market data from 2000 to 2023.
The dataset includes the following columns:
Date: Date Company: Company name Close: Closing price of the stock High: High price of the stock Low: Low price of the stock Volume: Volume of trades The data is sourced using the Googlefinance function in Google Sheets, and the selection of the top 10 healthcare companies is based on information from the article "World's Top 10 Health Care Companies" published on Investopedia (https://www.investopedia.com/articles/markets/030916/worlds-top-10-health-care-companies-unh-mdt.asp).
This dataset can be used for various data analysis purposes, such as stock market analysis, predictive modeling, and statistical analysis. However, it is important to note that this dataset is provided for informational purposes only and should not be considered as financial advice or a recommendation for investment decisions. It is always advisable to consult with a professional financial consultant before making any investment decisions.
Facebook
Twitterhttps://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy
According to Cognitive Market Research, the global healthcare analytics market size is USD 27.4 billion in 2024 and will expand at a compound annual growth rate (CAGR) of 25.7% from 2024 to 2031. Market Dynamics of Healthcare Analytics Market
Key Drivers for Healthcare Analytics Market
Growing amount of healthcare records- A key factor propelling the healthcare analytics industry forward is the ever-increasing amount of healthcare data. Healthcare histories, treatment plans, and results are only a few pieces of data that have accumulated due to the broad use of electronic health records. Additionally, vital signs, activity levels, and other biometric data are generated continuously by the proliferation of medical equipment and wearable health apps. Healthcare analytics are required to manage, understand, and make good use of this large and varied data set. With the use of healthcare analytics, valuable insights may be retrieved from this data, which in turn helps with operational efficiencies, tailored therapy, and predictive modeling. To improve patient outcomes and maximize healthcare delivery, there is a growing need for strong healthcare analytics solutions to keep up with the exponential growth of data.
Another factor driving healthcare analytics due to improved advancements in artificial intelligence, machine learning, and big data.
Key Restraints for Healthcare Analytics Market
Healthcare analytics market demand can be hindered due to rising concerns about data security and expensive implementation.
A shortage of professionals with expertise in healthcare analytics is limiting the market’s growth.
Introduction of the Healthcare Analytics Market
Healthcare analytics describes a method for improving healthcare decision-making through the systematic application of statistical methods and data analysis. The healthcare analytics market is expected to experience significant growth in the coming years. This growth is driven by various factors, including efforts by the government to increase the adoption of electronic health records, mounting pressure to reduce healthcare spending, an increase in venture capital investments, the rise of big data in healthcare, and the increasing importance of real-world evidence. However, data security and safety concerns, as well as a shortage of qualified workers, will limit the market’s expansion. Additionally, the healthcare analytics market is growing because more people want better patient results. This is because personalized treatment plans, disease prediction models, and better use of resources are all needed. Analytics in healthcare help find trends and make solutions more effective, which results in better care for patients. In addition, a major new opportunity has opened up for the healthcare analytics industry because of the use of data to provide targeted and individualized care.
Facebook
Twitterhttps://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
According to our latest research, the global de-identified healthcare data market size reached USD 3.4 billion in 2024. The market is expanding at a robust CAGR of 15.2% and is forecasted to attain a value of USD 10.9 billion by 2033. This remarkable growth is primarily driven by the increasing demand for privacy-compliant data solutions that enable research, analytics, and innovation without compromising patient confidentiality. The adoption of stringent data privacy regulations and the rapid digitization of healthcare records are further fueling the market’s momentum.
One of the primary growth factors for the de-identified healthcare data market is the rising emphasis on patient privacy and security. The implementation of regulations such as the Health Insurance Portability and Accountability Act (HIPAA) in the United States and the General Data Protection Regulation (GDPR) in Europe has necessitated robust data de-identification processes. These regulations mandate the removal of personally identifiable information from healthcare datasets, making de-identified data a critical resource for organizations aiming to comply with legal requirements while still leveraging valuable insights for research and analytics. As healthcare organizations increasingly digitize patient records and data sharing becomes more prevalent, the demand for effective de-identification solutions continues to surge, driving market growth.
Another significant driver is the exponential growth in healthcare data volume, propelled by the widespread adoption of electronic health records (EHRs), wearable devices, and genomics. The sheer scale and diversity of healthcare data present both opportunities and challenges for healthcare stakeholders. De-identified data allows organizations to harness this vast information pool for applications such as clinical research, drug development, population health management, and artificial intelligence (AI) model training. Pharmaceutical and biotechnology companies, in particular, are leveraging de-identified datasets to accelerate drug discovery, optimize clinical trials, and identify patient cohorts, thereby shortening development timelines and reducing costs. This trend is expected to intensify as precision medicine and data-driven healthcare models gain traction globally.
Technological advancements are also playing a pivotal role in shaping the de-identified healthcare data market. The emergence of sophisticated de-identification software, advanced encryption algorithms, and secure data sharing platforms has enhanced the ability of organizations to anonymize and utilize healthcare data effectively. Artificial intelligence and machine learning tools are being increasingly deployed to automate the de-identification process, improving scalability and accuracy. Furthermore, partnerships between healthcare providers, technology vendors, and research institutions are fostering innovation and facilitating the adoption of best practices in data privacy. As these technologies continue to evolve, they are expected to lower operational barriers and expand the market’s reach across various healthcare segments.
From a regional perspective, North America holds the largest share of the de-identified healthcare data market, accounting for over 42% of global revenue in 2024. This dominance is attributed to the region’s advanced healthcare infrastructure, strong regulatory framework, and high adoption of digital health technologies. Europe follows closely, driven by stringent data privacy laws and robust investments in healthcare IT. The Asia Pacific region is emerging as a high-growth market, propelled by rapid digital transformation, increasing healthcare expenditure, and growing awareness of data privacy issues. Latin America and the Middle East & Africa are also witnessing steady growth, albeit from a smaller base, as governments and healthcare organizations prioritize data-driven healthcare initiatives.
The de-identified healthcare data market by component is segmented into software, services, and platforms. Software solutions form the backbone of the market, providing automated tools for data masking, anonymization, and encryption. These solutions are in high demand due to their ability to efficiently process vast volumes of healthcare data while ensuring compliance with regulatory standards. A
Facebook
Twitterhttps://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
According to our latest research, the global synthetic data in healthcare market size reached USD 457.8 million in 2024 and is expected to grow at a robust CAGR of 34.2% during the forecast period, reaching USD 5.68 billion by 2033. This remarkable growth is driven by the escalating demand for advanced data solutions that address privacy concerns, enable improved AI model training, and facilitate seamless data sharing across the healthcare ecosystem. The increasing adoption of digital health technologies, stringent data privacy regulations, and rising investments in artificial intelligence are among the key factors fueling the expansion of the synthetic data in healthcare market.
One of the primary growth factors for the synthetic data in healthcare market is the growing need for privacy-preserving data solutions. As healthcare organizations grapple with stringent regulations such as HIPAA and GDPR, the use of real patient data for research, analytics, and AI model training has become increasingly challenging. Synthetic data, which mimics real-world patient information without exposing sensitive personal details, has emerged as a viable alternative. This approach not only ensures compliance with regulatory requirements but also mitigates the risks associated with data breaches and unauthorized access. The ability to generate diverse, high-quality synthetic datasets is empowering healthcare providers, payers, and researchers to drive innovation while maintaining patient confidentiality.
Another significant driver is the rapid advancement of artificial intelligence and machine learning applications within the healthcare sector. AI models require vast and varied datasets to achieve high accuracy and reliability, especially in complex domains such as medical imaging, drug discovery, and predictive analytics. However, access to comprehensive and representative real-world data is often limited by privacy constraints and data silos. Synthetic data bridges this gap by providing scalable, customizable, and bias-free datasets that enhance the performance of AI algorithms. This not only accelerates the development and deployment of AI-driven healthcare solutions but also fosters collaboration among stakeholders by enabling secure data sharing and benchmarking.
The synthetic data in healthcare market is further propelled by the increasing adoption of digital transformation initiatives across the industry. Hospitals, pharmaceutical companies, research institutions, and contract research organizations (CROs) are leveraging synthetic data to streamline clinical trials, improve patient data management, and optimize resource allocation. The integration of synthetic data into electronic health records (EHRs), telemedicine platforms, and health information exchanges is facilitating seamless interoperability and data-driven decision-making. Moreover, the growing emphasis on value-based care, population health management, and personalized medicine is creating new opportunities for synthetic data solutions to enhance healthcare delivery and outcomes.
From a regional perspective, North America continues to dominate the synthetic data in healthcare market, accounting for the largest revenue share in 2024. This leadership is attributed to the presence of advanced healthcare infrastructure, a strong focus on innovation, and proactive regulatory frameworks that support digital health adoption. Europe follows closely, driven by increasing investments in healthcare IT, a collaborative research environment, and robust data protection regulations. The Asia Pacific region is emerging as a high-growth market, fueled by expanding healthcare access, rising government initiatives, and the proliferation of digital health technologies. Latin America and the Middle East & Africa are also witnessing steady growth, supported by improving healthcare infrastructure and growing awareness of the benefits of synthetic data.
The synthetic data in healthcare market is segmented by component into software and services, each playing a pivotal role in the industry’s ecosystem. The software segment encompasses a wide range of solutions designed to generate, manage, and validate synthetic datasets for various healthcare applications. These software platforms leverage advanced algorithms, machine learning techniques, and data modeling tools to create high-fidelity synthetic data that mimics real-world patient
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The researcher tests the QA capability of ChatGPT in the medical field from the following aspects:1. Test their reserve capacity for medical knowledge2. Check their ability to read literature and understand medical literature3. Test their ability of auxiliary diagnosis after reading case data4. Test its error correction ability for case data5. Test its ability to standardize medical terms6. Test their evaluation ability to experts7. Check their ability to evaluate medical institutionsThe conclusion is:ChatGPT has great potential in the application of medical and health care, and may directly replace human beings or even professionals at a certain level in some fields;The researcher preliminarily believe that ChatGPT has basic medical knowledge and the ability of multiple rounds of dialogue, and its ability to understand Chinese is not weak;ChatGPT has the ability to read, understand and correct cases;ChatGPT has the ability of information extraction and terminology standardization, and is quite excellent;ChatGPT has the reasoning ability of medical knowledge;ChatGPT has the ability of continuous learning. After continuous training, its level has improved significantly;ChatGPT does not have the academic evaluation ability of Chinese medical talents, and the results are not ideal;ChatGPT does not have the academic evaluation ability of Chinese medical institutions, and the results are not ideal;ChatGPT is an epoch-making product, which can become a useful assistant for medical diagnosis and treatment, knowledge service, literature reading, review and paper writing.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Context:This synthetic healthcare dataset has been created to serve as a valuable resource for data science, machine learning, and data analysis enthusiasts. It is designed to mimic real-world healthcare data, enabling users to practice, develop, and showcase their data manipulation and analysis skills in the context of the healthcare industry.
Inspiration:The inspiration behind this dataset is rooted in the need for practical and diverse healthcare data for educational and research purposes. Healthcare data is often sensitive and subject to privacy regulations, making it challenging to access for learning and experimentation. To address this gap, I have leveraged Python's Faker library to generate a dataset that mirrors the structure and attributes commonly found in healthcare records. By providing this synthetic data, I hope to foster innovation, learning, and knowledge sharing in the healthcare analytics domain.
Dataset Information:Each column provides specific information about the patient, their admission, and the healthcare services provided, making this dataset suitable for various data analysis and modeling tasks in the healthcare domain. Here's a brief explanation of each column in the dataset - - Name: This column represents the name of the patient associated with the healthcare record. - Age: The age of the patient at the time of admission, expressed in years. - Gender: Indicates the gender of the patient, either "Male" or "Female." - Blood Type: The patient's blood type, which can be one of the common blood types (e.g., "A+", "O-", etc.). - Medical Condition: This column specifies the primary medical condition or diagnosis associated with the patient, such as "Diabetes," "Hypertension," "Asthma," and more. - Date of Admission: The date on which the patient was admitted to the healthcare facility. - Doctor: The name of the doctor responsible for the patient's care during their admission. - Hospital: Identifies the healthcare facility or hospital where the patient was admitted. - Insurance Provider: This column indicates the patient's insurance provider, which can be one of several options, including "Aetna," "Blue Cross," "Cigna," "UnitedHealthcare," and "Medicare." - Billing Amount: The amount of money billed for the patient's healthcare services during their admission. This is expressed as a floating-point number. - Room Number: The room number where the patient was accommodated during their admission. - Admission Type: Specifies the type of admission, which can be "Emergency," "Elective," or "Urgent," reflecting the circumstances of the admission. - Discharge Date: The date on which the patient was discharged from the healthcare facility, based on the admission date and a random number of days within a realistic range. - Medication: Identifies a medication prescribed or administered to the patient during their admission. Examples include "Aspirin," "Ibuprofen," "Penicillin," "Paracetamol," and "Lipitor." - Test Results: Describes the results of a medical test conducted during the patient's admission. Possible values include "Normal," "Abnormal," or "Inconclusive," indicating the outcome of the test.
Usage Scenarios:This dataset can be utilized for a wide range of purposes, including: - Developing and testing healthcare predictive models. - Practicing data cleaning, transformation, and analysis techniques. - Creating data visualizations to gain insights into healthcare trends. - Learning and teaching data science and machine learning concepts in a healthcare context. - You can treat it as a Multi-Class Classification Problem and solve it for Test Results which contains 3 categories(Normal, Abnormal, and Inconclusive).
Acknowledgments:Image Credit:Image by BC Y from Pixabay
Facebook
Twitterhttps://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/
Real World Evidence Solutions Market size was valued at USD 1.30 Billion in 2024 and is projected to reach USD 3.71 Billion by 2032, growing at a CAGR of 13.92% during the forecast period 2026-2032.Global Real World Evidence Solutions Market DriversThe market drivers for the Real World Evidence Solutions Market can be influenced by various factors. These may include:Growing Need for Evidence-Based Healthcare: Real-world evidence (RWE) is becoming more and more important in healthcare decision-making, according to stakeholders such as payers, providers, and regulators. In addition to traditional clinical trial data, RWE solutions offer important insights into the efficacy, safety, and value of healthcare interventions in real-world situations.Growing Use of RWE by Pharmaceutical Companies: RWE solutions are being used by pharmaceutical companies to assist with market entry, post-marketing surveillance, and drug development initiatives. Pharmaceutical businesses can find new indications for their current medications, improve clinical trial designs, and convince payers and providers of the worth of their products with the use of RWE.Increasing Priority for Value-Based Healthcare: The emphasis on proving the cost- and benefit-effectiveness of healthcare interventions in real-world settings is growing as value-based healthcare models gain traction. To assist value-based decision-making, RWE solutions are essential in evaluating the economic effect and real-world consequences of healthcare interventions.Technological and Data Analytics Advancements: RWE solutions are becoming more capable due to advances in machine learning, artificial intelligence, and big data analytics. With the use of these technologies, healthcare stakeholders can obtain actionable insights from the analysis of vast and varied datasets, including patient-generated data, claims data, and electronic health records.Regulatory Support for RWE Integration: RWE is being progressively integrated into regulatory decision-making processes by regulatory organisations including the European Medicines Agency (EMA) and the U.S. Food and Drug Administration (FDA). The FDA's Real-World Evidence Programme and the EMA's Adaptive Pathways and PRIority MEdicines (PRIME) programme are two examples of initiatives that are making it easier to incorporate RWE into regulatory submissions and drug development.Increasing Emphasis on Patient-Centric Healthcare: The value of patient-reported outcomes and real-world experiences in healthcare decision-making is becoming more widely acknowledged. RWE technologies facilitate the collection and examination of patient-centered data, offering valuable insights into treatment efficacy, patient inclinations, and quality of life consequences.Extension of RWE Use Cases: RWE solutions are being used in medication development, post-market surveillance, health economics and outcomes research (HEOR), comparative effectiveness research, and market access, among other healthcare fields. The necessity for a variety of RWE solutions catered to the needs of different stakeholders is being driven by the expansion of RWE use cases.
Facebook
TwitterThis statistic shows a ranking of the estimated per capita consumer spending on healthcare in 2020 in Latin America and the Caribbean, differentiated by country. Consumer spending here refers to the domestic demand of private households and non-profit institutions serving households (NPISHs) in the selected region. Spending by corporations or the state is not included. Consumer spending is the biggest component of the gross domestic product as computed on an expenditure basis in the context of national accounts. The other components in this approach are consumption expenditure of the state, gross domestic investment as well as the net exports of goods and services. Consumer spending is broken down according to the United Nations' Classification of Individual Consumption By Purpose (COICOP). The shown data adheres broadly to group 06. As not all countries and regions report data in a harmonized way, all data shown here has been processed by Statista to allow the greatest level of comparability possible. The underlying input data are usually household budget surveys conducted by government agencies that track spending of selected households over a given period.The data is shown in nominal terms which means that monetary data is valued at prices of the respective year and has not been adjusted for inflation. For future years the price level has been projected as well. The data has been converted from local currencies to US$ using the average exchange rate of the respective year. For forecast years, the exchange rate has been projected as well. The timelines therefore incorporate currency effects.The shown forecast is adjusted for the expected impact of the COVID-19 pandemic on the local economy. The impact has been estimated by considering both direct (e.g. because of restrictions on personal movement) and indirect (e.g. because of weakened purchasing power) effects. The impact assessment is subject to periodic review as more data becomes available.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in more than 150 countries and regions worldwide. All input data are sourced from international institutions, national statistical offices, and trade associations. All data has been are processed to generate comparable datasets (see supplementary notes under details for more information).
Facebook
Twitterhttps://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement
Introducing the Bahasa Scripted Monologue Speech Dataset for the Healthcare Domain, a voice dataset built to accelerate the development and deployment of Bahasa language automatic speech recognition (ASR) systems, with a sharp focus on real-world healthcare interactions.
This dataset includes over 6,000 high-quality scripted audio prompts recorded in Bahasa, representing typical voice interactions found in the healthcare industry. The data is tailored for use in voice technology systems that power virtual assistants, patient-facing AI tools, and intelligent customer service platforms.
The prompts span a broad range of healthcare-specific interactions, such as:
To maximize authenticity, the prompts integrate linguistic elements and healthcare-specific terms such as:
These elements make the dataset exceptionally suited for training AI systems to understand and respond to natural healthcare-related speech patterns.
Every audio recording is accompanied by a verbatim, manually verified transcription.
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
AI Training Dataset Market Size 2025-2029
The ai training dataset market size is valued to increase by USD 7.33 billion, at a CAGR of 29% from 2024 to 2029. Proliferation and increasing complexity of foundational AI models will drive the ai training dataset market.
Market Insights
North America dominated the market and accounted for a 36% growth during the 2025-2029.
By Service Type - Text segment was valued at USD 742.60 billion in 2023
By Deployment - On-premises segment accounted for the largest market revenue share in 2023
Market Size & Forecast
Market Opportunities: USD 479.81 million
Market Future Opportunities 2024: USD 7334.90 million
CAGR from 2024 to 2029 : 29%
Market Summary
The market is experiencing significant growth as businesses increasingly rely on artificial intelligence (AI) to optimize operations, enhance customer experiences, and drive innovation. The proliferation and increasing complexity of foundational AI models necessitate large, high-quality datasets for effective training and improvement. This shift from data quantity to data quality and curation is a key trend in the market. Navigating data privacy, security, and copyright complexities, however, poses a significant challenge. Businesses must ensure that their datasets are ethically sourced, anonymized, and securely stored to mitigate risks and maintain compliance. For instance, in the supply chain optimization sector, companies use AI models to predict demand, optimize inventory levels, and improve logistics. Access to accurate and up-to-date training datasets is essential for these applications to function efficiently and effectively. Despite these challenges, the benefits of AI and the need for high-quality training datasets continue to drive market growth. The potential applications of AI are vast and varied, from healthcare and finance to manufacturing and transportation. As businesses continue to explore the possibilities of AI, the demand for curated, reliable, and secure training datasets will only increase.
What will be the size of the AI Training Dataset Market during the forecast period?
Get Key Insights on Market Forecast (PDF) Request Free SampleThe market continues to evolve, with businesses increasingly recognizing the importance of high-quality datasets for developing and refining artificial intelligence models. According to recent studies, the use of AI in various industries is projected to grow by over 40% in the next five years, creating a significant demand for training datasets. This trend is particularly relevant for boardrooms, as companies grapple with compliance requirements, budgeting decisions, and product strategy. Moreover, the importance of data labeling, feature selection, and imbalanced data handling in model performance cannot be overstated. For instance, a mislabeled dataset can lead to biased and inaccurate models, potentially resulting in costly errors. Similarly, effective feature selection algorithms can significantly improve model accuracy and reduce computational resources. Despite these challenges, advances in model compression methods, dataset scalability, and data lineage tracking are helping to address some of the most pressing issues in the market. For example, model compression techniques can reduce the size of models, making them more efficient and easier to deploy. Similarly, data lineage tracking can help ensure data consistency and improve model interpretability. In conclusion, the market is a critical component of the broader AI ecosystem, with significant implications for businesses across industries. By focusing on data quality, effective labeling, and advanced techniques for handling imbalanced data and improving model performance, organizations can stay ahead of the curve and unlock the full potential of AI.
Unpacking the AI Training Dataset Market Landscape
In the realm of artificial intelligence (AI), the significance of high-quality training datasets is indisputable. Businesses harnessing AI technologies invest substantially in acquiring and managing these datasets to ensure model robustness and accuracy. According to recent studies, up to 80% of machine learning projects fail due to insufficient or poor-quality data. Conversely, organizations that effectively manage their training data experience an average ROI improvement of 15% through cost reduction and enhanced model performance.
Distributed computing systems and high-performance computing facilitate the processing of vast datasets, enabling businesses to train models at scale. Data security protocols and privacy preservation techniques are crucial to protect sensitive information within these datasets. Reinforcement learning models and supervised learning models each have their unique applications, with the former demonstrating a 30% faster convergence rate in certain use cases.
Data annot
Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
📌 Context of the Dataset
The Healthcare Ransomware Dataset was created to simulate real-world cyberattacks in the healthcare industry. Hospitals, clinics, and research labs have become prime targets for ransomware due to their reliance on real-time patient data and legacy IT infrastructure. This dataset provides insight into attack patterns, recovery times, and cybersecurity practices across different healthcare organizations.
Why is this important?
Ransomware attacks on healthcare organizations can shut down entire hospitals, delay treatments, and put lives at risk. Understanding how different healthcare organizations respond to attacks can help develop better security strategies. The dataset allows cybersecurity analysts, data scientists, and researchers to study patterns in ransomware incidents and explore predictive modeling for risk mitigation.
📌 Sources and Research Inspiration This simulated dataset was inspired by real-world cybersecurity reports and built using insights from official sources, including:
1️⃣ IBM Cost of a Data Breach Report (2024)
The healthcare sector had the highest average cost of data breaches ($10.93 million per incident). On average, organizations recovered only 64.8% of their data after paying ransom. Healthcare breaches took 277 days on average to detect and contain.
2️⃣ Sophos State of Ransomware in Healthcare (2024)
67% of healthcare organizations were hit by ransomware in 2024, an increase from 60% in 2023. 66% of backup compromise attempts succeeded, making data recovery significantly more difficult. The most common attack vectors included exploited vulnerabilities (34%) and compromised credentials (34%).
3️⃣ Health & Human Services (HHS) Cybersecurity Reports
Ransomware incidents in healthcare have doubled since 2016. Organizations that fail to monitor threats frequently experience higher infection rates.
4️⃣ Cybersecurity & Infrastructure Security Agency (CISA) Alerts
Identified phishing, unpatched software, and exposed RDP ports as top ransomware entry points. Only 13% of healthcare organizations monitor cyber threats more than once per day, increasing the risk of undetected attacks.
5️⃣ Emsisoft 2020 Report on Ransomware in Healthcare
The number of ransomware attacks in healthcare increased by 278% between 2018 and 2023. 560 healthcare facilities were affected in a single year, disrupting patient care and emergency services.
📌 Why is This a Simulated Dataset?
This dataset does not contain real patient data or actual ransomware cases. Instead, it was built using probabilistic modeling and structured randomness based on industry benchmarks and cybersecurity reports.
How It Was Created:
1️⃣ Defining the Dataset Structure
The dataset was designed to simulate realistic attack patterns in healthcare, using actual ransomware case studies as inspiration.
Columns were selected based on what real-world cybersecurity teams track, such as: Attack methods (phishing, RDP exploits, credential theft). Infection rates, recovery time, and backup compromise rates. Organization type (hospitals, clinics, research labs) and monitoring frequency.
2️⃣ Generating Realistic Data Using ChatGPT & Python
ChatGPT assisted in defining relationships between attack factors, ensuring that key cybersecurity concepts were accurately reflected. Python’s NumPy and Pandas libraries were used to introduce randomized attack simulations based on real-world statistics. Data was validated against industry research to ensure it aligns with actual ransomware attack trends.
3️⃣ Ensuring Logical Relationships Between Data Points
Hospitals take longer to recover due to larger infrastructure and compliance requirements. Organizations that track more cyber threats recover faster because they detect attacks earlier. Backup security significantly impacts recovery time, reflecting the real-world risk of backup encryption attacks.
Facebook
TwitterThe number of hospitals in the United States was forecast to continuously decrease between 2024 and 2029 by in total 13 hospitals (-0.23 percent). According to this forecast, in 2029, the number of hospitals will have decreased for the twelfth consecutive year to 5,548 hospitals. Depicted is the number of hospitals in the country or region at hand. As the OECD states, the rules according to which an institution can be registered as a hospital vary across countries.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of hospitals in countries like Canada and Mexico.
Facebook
Twitterhttps://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
According to our latest research, the global Dataset Licensing for AI Training market size reached USD 2.1 billion in 2024, with a robust CAGR of 22.4% projected through the forecast period. By 2033, the market is expected to achieve a value of USD 15.2 billion. This remarkable growth is primarily fueled by the exponential rise in demand for high-quality, diverse, and ethically sourced datasets required to train increasingly sophisticated artificial intelligence (AI) models across industries. As organizations continue to scale their AI initiatives, the need for compliant, scalable, and customizable licensing solutions has never been more critical, driving significant investments and innovation in the dataset licensing ecosystem.
A primary growth factor for the Dataset Licensing for AI Training market is the proliferation of AI applications across sectors such as healthcare, finance, automotive, and government. As AI models become more complex, their hunger for diverse and representative datasets intensifies, making data acquisition and licensing a strategic priority for enterprises. The increasing adoption of machine learning, deep learning, and generative AI technologies further amplifies the need for specialized datasets, pushing both data providers and consumers to seek flexible and secure licensing arrangements. Additionally, regulatory developments such as GDPR in Europe and similar data privacy frameworks worldwide are compelling organizations to prioritize licensed, compliant datasets over ad hoc or unlicensed data sources, further accelerating market growth.
Another significant driver is the growing sophistication of dataset licensing models themselves. Vendors are moving beyond traditional open-source or proprietary licenses, introducing hybrid, creative commons, and custom-negotiated agreements tailored to specific use cases and industries. This evolution is enabling AI developers to access a broader variety of data types—text, image, audio, video, and multimodal—while ensuring legal clarity and minimizing risk. Moreover, the rise of data marketplaces and third-party platforms is streamlining the process of dataset discovery, negotiation, and compliance monitoring, making it easier for organizations of all sizes to source and license the data they need for AI training at scale.
The surging demand for high-quality annotated datasets is also fostering partnerships between data providers, annotation service vendors, and AI developers. These collaborations are leading to the creation of bespoke datasets that cater to niche applications, such as autonomous driving, medical diagnostics, and advanced robotics. At the same time, advances in synthetic data generation and data augmentation are expanding the universe of licensable datasets, offering new avenues for licensing and monetization. As the market matures, we expect to see increased standardization, transparency, and interoperability in licensing frameworks, further lowering barriers to entry and accelerating innovation in AI model development.
Regionally, North America continues to dominate the Dataset Licensing for AI Training market, accounting for the largest share in 2024, driven by the presence of leading technology companies, robust regulatory frameworks, and a mature AI ecosystem. Europe follows closely, with significant investments in ethical AI and data governance initiatives. Asia Pacific is emerging as a high-growth region, fueled by rapid digital transformation, government-backed AI strategies, and a burgeoning startup landscape. Latin America and the Middle East & Africa are also witnessing increased adoption of licensed datasets, particularly in sectors such as healthcare and public administration, although their market shares remain comparatively smaller. This global momentum underscores the universal need for high-quality, licensed datasets as the foundation of responsible and effective AI training.
The License Type segment in the Dataset Licensing for AI Training market is characterized by a diverse range of options, including Open Source, Proprietary, Creative Commons, and Custom/Negotiated licenses. Open source licenses have long been favored by academic and research communities due to their accessibility and collaborative ethos. However, their adoption in commercial AI projects is often tempered by concerns over data provenance, usage restrictions, a
Facebook
Twitterhttps://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement
Introducing the US English Scripted Monologue Speech Dataset for the Healthcare Domain, a voice dataset built to accelerate the development and deployment of English language automatic speech recognition (ASR) systems, with a sharp focus on real-world healthcare interactions.
This dataset includes over 6,000 high-quality scripted audio prompts recorded in US English, representing typical voice interactions found in the healthcare industry. The data is tailored for use in voice technology systems that power virtual assistants, patient-facing AI tools, and intelligent customer service platforms.
The prompts span a broad range of healthcare-specific interactions, such as:
To maximize authenticity, the prompts integrate linguistic elements and healthcare-specific terms such as:
These elements make the dataset exceptionally suited for training AI systems to understand and respond to natural healthcare-related speech patterns.
Every audio recording is accompanied by a verbatim, manually verified transcription.
Facebook
TwitterThis dataset provides data for new prescription drugs introduced to market in California with a Wholesale Acquisition Cost (WAC) that exceeds the Medicare Part D specialty drug cost threshold. Prescription drug manufacturers submit information to HCAI within a specified time period after a drug is introduced to market. Key data elements include the National Drug Code (NDC) administered by the FDA, a narrative description of marketing and pricing plans, and WAC, among other information. Manufacturers may withhold information that is not in the public domain. Note that prescription drug manufacturers are able to submit new drug reports for a prior quarter at any time. Therefore, the data set may include additional new drug report(s) from previous quarter(s).
There are two types of New Drug data sets: Monthly and Annual. The Monthly data sets include the data in completed reports submitted by manufacturers for calendar year 2025, as of November 7, 2025. The Annual data sets include data in completed reports submitted by manufacturers for the specified year. The data sets may include reports that do not meet the specified minimum thresholds for reporting.
The program regulations are available here: https://hcai.ca.gov/wp-content/uploads/2024/03/CTRx-Regulations-Text.pdf
The data format and file specifications are available here: https://hcai.ca.gov/wp-content/uploads/2024/03/Format-and-File-Specifications-version-2.0-ada.pdf
DATA NOTES: Due to recent changes in Excel capabilities, it is not recommended that you save these files to .csv format. If you do, when importing back into Excel the leading zeros in the NDC number column will be dropped. If you need to save it into a different format other than .xlsx it must be .txt
Submitted reports that are still under review by HCAI are not included in these files.
DATA UPDATES: Drug manufacturers may submit New Drug reports to HCAI for prescription drugs which were not initially reported when they were introduced to market. CTRx staff update the posted datasets monthly for current year data and as needed for previous years. Please check the 'Data last updated' date on each dataset page to ensure you are viewing the most current data.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Health care in the United States is provided by many distinct organizations. Health care facilities are largely owned and operated by private sector businesses. 58% of US community hospitals are non-profit, 21% are government owned, and 21% are for-profit. According to the World Health Organization (WHO), the United States spent more on healthcare per capita ($9,403), and more on health care as percentage of its GDP (17.1%), than any other nation in 2014. Many different datasets are needed to portray different aspects of healthcare in US like disease prevalences, pharmaceuticals and drugs, Nutritional data of different food products available in US. Such data is collected by surveys (or otherwise) conducted by Centre of Disease Control and Prevention (CDC), Foods and Drugs Administration, Center of Medicare and Medicaid Services and Agency for Healthcare Research and Quality (AHRQ). These datasets can be used to properly review demographics and diseases, determining start ratings of healthcare providers, different drugs and their compositions as well as package informations for different diseases and for food quality. We often want such information and finding and scraping such data can be a huge hurdle. So, Here an attempt is made to make available all US healthcare data at one place to download from in csv files.