This table shows the average House Price/Earnings ratio, which is an important indicator of housing affordability. Ratios are calculated by dividing house price by the median earnings of a borough.
The Annual Survey of Hours and Earnings (ASHE) is based on a 1 per cent sample of employee jobs. Information on earnings and hours is obtained in confidence from employers. It does not cover the self-employed nor does it cover employees not paid during the reference period. Information is as at April each year. The statistics used are workplace based full-time individual earnings.
Pre-2013 Land Registry housing data are for the first half of the year only, so that they are comparable to the ASHE data which are as at April. This is no longer the case from 2013 onwards as this data uses house price data from the ONS House Price Statistics for Small Areas statistical release. Prior to 2006 data are not available for Inner and Outer London.
The lowest 25 per cent of prices are below the lower quartile; the highest 75 per cent are above the lower quartile.
The "lower quartile" property price/income is determined by ranking all property prices/incomes in ascending order.
The 'median' property price/income is determined by ranking all property prices/incomes in ascending order. The point at which one half of the values are above and one half are below is the median.
Regional data has not been published by DCLG since 2012. Data for regions has been calculated by the GLA. Data since 2014 has been calculated by the GLA using Land Registry house prices and ONS Earnings data.
Link to DCLG Live Tables
An interactive map showing the affordability ratios by local authority for 2013, 2014 and 2015 is also available.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Price to Rent Ratio in the United States increased to 134.20 in the fourth quarter of 2024 from 133.60 in the third quarter of 2024. This dataset includes a chart with historical data for the United States Price to Rent Ratio.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This is the unadjusted median house priced for residential property sales (transactions) in the area for a 12 month period with April in the middle (year-ending September). These figures have been produced by the ONS (Office for National Statistics) using the Land Registry (LR) Price Paid data on residential dwelling transactions.
The LR Price Paid data are comprehensive in that they capture changes of ownership for individual residential properties which have sold for full market value and covers both cash sales and those involving a mortgage.
The median is the value determined by putting all the house sales for a given year, area and type in order of price and then selecting the price of the house sale which falls in the middle. The median is less susceptible to distortion by the presence of extreme values than is the mean. It is the most appropriate average to use because it best takes account of the skewed distribution of house prices.
Note that a transaction occurs when a change of freeholder or leaseholder takes place regardless of the amount of money involved and a property can transact more than once in the time period.
The LR records the actual price for which the property changed hands. This will usually be an accurate reflection of the market value for the individual property, but it is not always the case. In order to generate statistics that more accurately reflect market values, the LR has excluded records of houses that were not sold at market value from the dataset. The remaining data are considered a good reflection of market values at the time of the transaction. For full details of exclusions and more information on the methodology used to produce these statistics please see http://www.ons.gov.uk/peoplepopulationandcommunity/housing/qmis/housepricestatisticsforsmallareasqmi
The LR Price Paid data are not adjusted to reflect the mix of houses in a given area. Fluctuations in the types of house that are sold in that area can cause differences between the median transactional value of houses and the overall market value of houses. Therefore these statistics differ to the new UK House Price Index (HPI) which reports mix-adjusted average house prices and house price indices.
If, for a given year, for house type and area there were fewer than 5 sales records in the LR Price Paid data, the house price statistics are not reported. Data is Powered by LG Inform Plus and automatically checked for new data on the 3rd of each month.
This dataset is created via OECD datasource which is consisted of 2000 between 2020. https://data.oecd.org/price/housing-prices.htm
The housing prices indicator shows indices of residential property prices over time. Included are rent prices, real and nominal house prices, and ratios of price to rent and price to income; the main elements of housing costs. In most cases, the nominal house price covers the sale of newly-built and existing dwellings, following the recommendations from RPPI (Residential Property Prices Indices) manual. The real house price is given by the ratio of nominal price to the consumers’ expenditure deflator in each country, both seasonally adjusted, from the OECD national accounts database. The price to income ratio is the nominal house price divided by the nominal disposable income per head and can be considered as a measure of affordability. The price to rent ratio is the nominal house price divided by the rent price and can be considered as a measure of the profitability of house ownership. This indicator is an index with base year 2015.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This dataset contains the ratio of lower quartile/median house price to lower quartile/median earnings in England
This dataset uses the median/lower quartile house price data sourced from ONS House Price Statistics for Small Areas (HPSSA) statistical release for years 2013-2015 and house price data sourced directly from Land Registry prior to 2013. This leads to slight differences in the distribution of affordability ratios before and after 2013 which should be noted if the dataset is used as a time series. It is planned to update the ratios with the HPSSA dataset for all years in the future.
The house price data is then compared to the median/lower quartile income data of full time workers from the Annual Survey of Hours and Earnings (ASHE) produced by the ONS.
This data was derived from Table 576 and 577, available for download as an Excel spreadsheet from the Live tables page (https://www.gov.uk/government/statistical-data-sets/live-tables-on-housing-market-and-house-prices). More details about the data sources are also available in the link provided.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This is the unadjusted lower quartile house priced for residential property sales (transactions) in the area for a 12 month period with April in the middle (year-ending September). These figures have been produced by the ONS (Office for National Statistics) using the Land Registry (LR) Price Paid data on residential dwelling transactions.
The LR Price Paid data are comprehensive in that they capture changes of ownership for individual residential properties which have sold for full market value and covers both cash sales and those involving a mortgage.
The lower quartile is the value determined by putting all the house sales for a given year, area and type in order of price and then selecting the price of the house sale which falls three quarters of the way down the list, such that 75Percentage of transactions lie above and 25Percentage lie below that value. These are particularly useful for assessing housing affordability when viewed alongside average and lower quartile income for given areas.
Note that a transaction occurs when a change of freeholder or leaseholder takes place regardless of the amount of money involved and a property can transact more than once in the time period.
The LR records the actual price for which the property changed hands. This will usually be an accurate reflection of the market value for the individual property, but it is not always the case. In order to generate statistics that more accurately reflect market values, the LR has excluded records of houses that were not sold at market value from the dataset. The remaining data are considered a good reflection of market values at the time of the transaction. For full details of exclusions and more information on the methodology used to produce these statistics please see http://www.ons.gov.uk/peoplepopulationandcommunity/housing/qmis/housepricestatisticsforsmallareasqmi
The LR Price Paid data are not adjusted to reflect the mix of houses in a given area. Fluctuations in the types of house that are sold in that area can cause differences between the lower quartile transactional value of houses and the overall market value of houses.
If, for a given year, for house type and area there were fewer than 5 sales records in the LR Price Paid data, the house price statistics are not reported." Data is Powered by LG Inform Plus and automatically checked for new data on the 3rd of each month.
Portugal, Canada, and the United States were the countries with the highest house price to income ratio in 2024. In all three countries, the index exceeded 130 index points, while the average for all OECD countries stood at 116.2 index points. The index measures the development of housing affordability and is calculated by dividing nominal house price by nominal disposable income per head, with 2015 set as a base year when the index amounted to 100. An index value of 120, for example, would mean that house price growth has outpaced income growth by 20 percent since 2015. How have house prices worldwide changed since the COVID-19 pandemic? House prices started to rise gradually after the global financial crisis (2007–2008), but this trend accelerated with the pandemic. The countries with advanced economies, which usually have mature housing markets, experienced stronger growth than countries with emerging economies. Real house price growth (accounting for inflation) peaked in 2022 and has since lost some of the gain. Although, many countries experienced a decline in house prices, the global house price index shows that property prices in 2023 were still substantially higher than before COVID-19. Renting vs. buying In the past, house prices have grown faster than rents. However, the home affordability has been declining notably, with a direct impact on rental prices. As people struggle to buy a property of their own, they often turn to rental accommodation. This has resulted in a growing demand for rental apartments and soaring rental prices.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Price to Income Ratio: sa data was reported at 130.892 2015=100 in 2024. This records an increase from the previous number of 129.315 2015=100 for 2023. United States US: Price to Income Ratio: sa data is updated yearly, averaging 113.539 2015=100 from Dec 1970 (Median) to 2024, with 55 observations. The data reached an all-time high of 132.929 2015=100 in 1979 and a record low of 90.287 2015=100 in 2012. United States US: Price to Income Ratio: sa data remains active status in CEIC and is reported by Organisation for Economic Co-operation and Development. The data is categorized under Global Database’s United States – Table US.OECD.AHPI: House Price Index: Seasonally Adjusted: OECD Member: Annual. Nominal house prices divided by nominal disposable income per head. Net household disposable income is used. The population data come from the OECD national accounts database.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
House Price Index YoY in the United States decreased to 3 percent in April from 3.90 percent in March of 2025. This dataset includes a chart with historical data for the United States FHFA House Price Index YoY.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Key information about House Prices Growth
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
The housing affordability measure illustrates the relationship between income and housing costs. A household that spends 30% or more of its collective monthly income to cover housing costs is considered to be “housing cost-burden[ed].”[1] Those spending between 30% and 49.9% of their monthly income are categorized as “moderately housing cost-burden[ed],” while those spending more than 50% are categorized as “severely housing cost-burden[ed].”[2]
How much a household spends on housing costs affects the household’s overall financial situation. More money spent on housing leaves less in the household budget for other needs, such as food, clothing, transportation, and medical care, as well as for incidental purchases and saving for the future.
The estimated housing costs as a percentage of household income are categorized by tenure: all households, those that own their housing unit, and those that rent their housing unit.
Throughout the period of analysis, the percentage of housing cost-burdened renter households in Champaign County was higher than the percentage of housing cost-burdened homeowner households in Champaign County. All three categories saw year-to-year fluctuations between 2005 and 2023, and none of the three show a consistent trend. However, all three categories were estimated to have a lower percentage of housing cost-burdened households in 2023 than in 2005.
Data on estimated housing costs as a percentage of monthly income was sourced from the U.S. Census Bureau’s American Community Survey (ACS) 1-Year Estimates, which are released annually.
As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.
Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.
For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Housing Tenure.
[1] Schwarz, M. and E. Watson. (2008). Who can afford to live in a home?: A look at data from the 2006 American Community Survey. U.S. Census Bureau.
[2] Ibid.
Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (17 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (22 September 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (30 September 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (10 June 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (10 June 2021).;U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (14 September 2017).; U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (19 September 2016).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; 16 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).
Housing costs can represent a substantial financial burden to households, especially low-income households. The median of the ratio of housing costs over income gives an indication of the financial pressure that households face from housing costs. Another common measure of housing affordability presented in this indicator is the housing cost overburden rate, which measures the proportion of households or population that spend more than 40% of their disposable income on housing costs (in line with Eurostat methodology). For a discussion of different measures of housing affordability and their advantages and limits, please see indicator HC1.5 Overview of affordable housing indicators in the OECD Affordable Housing Database. For policy measures aiming to support households with housing costs, please see indicators in the PH2, PH3 and PH4 series. Housing costs can refer to: (1) a narrow definition based on rent and mortgage costs (principal repayment and mortgage interest); or (2) a wider definition that also includes the costs of mandatory services and charges, regular maintenance and repairs, taxes and utilities, which are referred to as “total housing costs” below. Housing costs are considered as a share of household disposable income, which includes social transfers (such as housing allowances) and excludes taxes. Income is equivalised for household size based on a common equivalence elasticity (the square root of household size) which implies that a household’s economic needs increase less than proportionally with its size. Housing costs refer to the primary residence. The data presented here are based on household survey microdata and concern national household or population level data.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Japan JP: Standardised Price-Income Ratio: sa data was reported at 87.536 Ratio in 2024. This records a decrease from the previous number of 89.289 Ratio for 2023. Japan JP: Standardised Price-Income Ratio: sa data is updated yearly, averaging 113.262 Ratio from Dec 1960 (Median) to 2024, with 65 observations. The data reached an all-time high of 163.202 Ratio in 1973 and a record low of 73.471 Ratio in 2009. Japan JP: Standardised Price-Income Ratio: sa data remains active status in CEIC and is reported by Organisation for Economic Co-operation and Development. The data is categorized under Global Database’s Japan – Table JP.OECD.AHPI: House Price Index: Seasonally Adjusted: OECD Member: Annual. Nominal house prices divided by nominal disposable income per head. Net household disposable income is used. The population data come from the OECD national accounts database. The long-term average is calculated over the whole period available when the indicator begins after 1980 or after 1980 if the indicator is longer. This value is used as a reference value. The ratio is calculated by dividing the indicator source on this long-term average, and indexed to a reference value equal to 100.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Price to Rent Ratio: sa data was reported at 134.118 2015=100 in 2024. This records an increase from the previous number of 133.710 2015=100 for 2023. United States US: Price to Rent Ratio: sa data is updated yearly, averaging 99.069 2015=100 from Dec 1970 (Median) to 2024, with 55 observations. The data reached an all-time high of 137.672 2015=100 in 2022 and a record low of 89.669 2015=100 in 1997. United States US: Price to Rent Ratio: sa data remains active status in CEIC and is reported by Organisation for Economic Co-operation and Development. The data is categorized under Global Database’s United States – Table US.OECD.AHPI: House Price Index: Seasonally Adjusted: OECD Member: Annual. Nominal house prices divided by rent price indices
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Australia Standardised Price-Income Ratio: sa data was reported at 149.268 Ratio in Dec 2024. This records a decrease from the previous number of 152.371 Ratio for Sep 2024. Australia Standardised Price-Income Ratio: sa data is updated quarterly, averaging 82.643 Ratio from Mar 1970 (Median) to Dec 2024, with 220 observations. The data reached an all-time high of 153.422 Ratio in Jun 2024 and a record low of 62.554 Ratio in Sep 1983. Australia Standardised Price-Income Ratio: sa data remains active status in CEIC and is reported by Organisation for Economic Co-operation and Development. The data is categorized under Global Database’s Australia – Table AU.OECD.AHPI: House Price Index: Seasonally Adjusted: OECD Member: Quarterly. Nominal house prices divided by nominal disposable income per head. Net household disposable income is used. The population data come from the OECD national accounts database. The long-term average is calculated over the whole period available when the indicator begins after 1980 or after 1980 if the indicator is longer. This value is used as a reference value. The ratio is calculated by dividing the indicator source on this long-term average, and indexed to a reference value equal to 100.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Average House Prices in Canada decreased to 688600 CAD in June from 690200 CAD in May of 2025. This dataset includes a chart with historical data for Canada Average House Prices.
This service shows the proportion of average total income of households which is spent on shelter costs by census subdivision. The data is from the Census Profile, Statistics Canada Catalogue no. 98-316-X2016001. Shelter-cost-to-income ratio is calculated for private households living in owned or rented dwellings who reported a total household income greater than zero. Private households living in band housing, located on an agricultural operation that is operated by a member of the household, and households who reported a zero or negative total household income are excluded. The relatively high shelter-costs-to-household income ratios for some households may have resulted from the difference in the reference period for shelter costs and household total income data. The reference period for shelter cost data is 2016, while household total income is reported for the year 2015. As well, for some households, the 2015 household total income may represent income for only part of a year. For additional information refer to the 2016 Census Dictionary for 'Total income' and 'Shelter cost'. To have a cartographic representation of the ecumene with this socio-economic indicator, it is recommended to add as the first layer, the “NRCan - 2016 population ecumene by census subdivision” web service, accessible in the data resources section below.
House prices capture the financial burden of purchasing a dwelling, and their development over time is measured by a (real) house price index. The evolution of rental prices can be monitored over time by the (real) rent price index. Alternatively, house prices can be compared to income (price-to-income ratio) as a measure of the affordability of owning a dwelling. If the price-to-income ratio is above (below) their long-term average, house prices are considered to be overvalued (undervalued). Meanwhile, the OECD database on regional house price indices shows how house price developments vary across regions and cities within countries (for further discussion, see the OECD National and Regional House Price Indices Database, as well as OECD, 2020a).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Property Prices Index By City 2009 to 2021’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/jolenech/property-prices-index-by-city-2009-to-2021 on 13 February 2022.
--- Dataset description provided by original source is as follows ---
I wanted to see how affordable housing is across countries and wanted to compare the price of housing. But I could not find a properly documented and easily downloaded dataset hence I created one with the help of web-scraping with Python and Pandas.
I spent a lot of time searching for a source for the information I wanted in order to compare affordability. I stumbled upon a great website which was exactly what I was looking for Numbeo The website has a lot of details like affordability index, prime to income ratio, price to rent ratios in and out of city centre and more!
Now I had the data, I needed to download it. Since I couldn't get the raw form of the data, I did web scraping in order to get details in the table for 2009 to 2021 using a for loop to go through all links and create csv files for every year.
Details of columns Note: There are a few null values in the 2009 dataset (mortgage and Affordability Index columns.
Check out the code I used on Github.
I couldn't have gotten the data without Numbeo!
I was working on a project trying to see if Price of Housing in Singapore can be justified and wanted more data that's global instead of just from Singapore. Let me know if you have any questions!
--- Original source retains full ownership of the source dataset ---
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Germany DE: Standardised Price-Income Ratio: sa data was reported at 88.538 Ratio in 2024. This records a decrease from the previous number of 93.578 Ratio for 2023. Germany DE: Standardised Price-Income Ratio: sa data is updated yearly, averaging 95.901 Ratio from Dec 1980 (Median) to 2024, with 45 observations. The data reached an all-time high of 146.141 Ratio in 1981 and a record low of 76.343 Ratio in 2010. Germany DE: Standardised Price-Income Ratio: sa data remains active status in CEIC and is reported by Organisation for Economic Co-operation and Development. The data is categorized under Global Database’s Germany – Table DE.OECD.AHPI: House Price Index: Seasonally Adjusted: OECD Member: Annual. Nominal house prices divided by nominal disposable income per head. Net household disposable income is used. The population data come from the OECD national accounts database. The long-term average is calculated over the whole period available when the indicator begins after 1980 or after 1980 if the indicator is longer. This value is used as a reference value. The ratio is calculated by dividing the indicator source on this long-term average, and indexed to a reference value equal to 100.
This table shows the average House Price/Earnings ratio, which is an important indicator of housing affordability. Ratios are calculated by dividing house price by the median earnings of a borough.
The Annual Survey of Hours and Earnings (ASHE) is based on a 1 per cent sample of employee jobs. Information on earnings and hours is obtained in confidence from employers. It does not cover the self-employed nor does it cover employees not paid during the reference period. Information is as at April each year. The statistics used are workplace based full-time individual earnings.
Pre-2013 Land Registry housing data are for the first half of the year only, so that they are comparable to the ASHE data which are as at April. This is no longer the case from 2013 onwards as this data uses house price data from the ONS House Price Statistics for Small Areas statistical release. Prior to 2006 data are not available for Inner and Outer London.
The lowest 25 per cent of prices are below the lower quartile; the highest 75 per cent are above the lower quartile.
The "lower quartile" property price/income is determined by ranking all property prices/incomes in ascending order.
The 'median' property price/income is determined by ranking all property prices/incomes in ascending order. The point at which one half of the values are above and one half are below is the median.
Regional data has not been published by DCLG since 2012. Data for regions has been calculated by the GLA. Data since 2014 has been calculated by the GLA using Land Registry house prices and ONS Earnings data.
Link to DCLG Live Tables
An interactive map showing the affordability ratios by local authority for 2013, 2014 and 2015 is also available.