13 datasets found
  1. M

    India Poverty Rate

    • macrotrends.net
    Updated May 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). India Poverty Rate [Dataset]. https://www.macrotrends.net/global-metrics/countries/ind/india/poverty-rate
    Explore at:
    Dataset updated
    May 31, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description
    India poverty rate for 2022 was 82.10%, a 0.3% increase from 2021.
    <ul style='margin-top:20px;'>
    
    <li>India poverty rate for 2021 was <strong>81.80%</strong>, a <strong>1.2% decline</strong> from 2020.</li>
    <li>India poverty rate for 2020 was <strong>83.00%</strong>, a <strong>2.3% increase</strong> from 2019.</li>
    <li>India poverty rate for 2019 was <strong>80.70%</strong>, a <strong>2% decline</strong> from 2018.</li>
    </ul>Poverty headcount ratio at $5.50 a day is the percentage of the population living on less than $5.50 a day at 2011 international prices. As a result of revisions in PPP exchange rates, poverty rates for individual countries cannot be compared with poverty rates reported in earlier editions.
    
  2. e

    Poverty in India - Dataset - ENERGYDATA.INFO

    • energydata.info
    Updated Oct 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Poverty in India - Dataset - ENERGYDATA.INFO [Dataset]. https://energydata.info/dataset/poverty-india
    Explore at:
    Dataset updated
    Oct 16, 2023
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    India
    Description

    Looking back 45 years or so, progress against poverty in India has been highly uneven over time and space. It took 20 years for the national poverty rate to fall below—and stay below—its value in the early 1950s. And trend rates of poverty reduction have differed appreciably between states. This research project aimed to understand what influence economy-wide and sectoral factors have played in the evolution of poverty measures for India since the 1950s, and to draw lessons for the future. This database contains detailed statistics on a wide range of topics in India. The data are presented at the state level and at the all-India level separately. The database uses published information to construct comprehensive series in six subject blocks. Period coverage is roughly from 1950 to 1994. The database contains 30 spreadsheets and 89 text files (ASCII) that are grouped into the six subject blocks. The formats and sizes of the 30 spreadsheets vary considerably. The list of variables included: . Expenditures (distribution) . National Accounts . Prices Wages . Population . Rainfall

  3. India Proportion of People Living Below 50 Percent Of Median Income: %

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, India Proportion of People Living Below 50 Percent Of Median Income: % [Dataset]. https://www.ceicdata.com/en/india/social-poverty-and-inequality/proportion-of-people-living-below-50-percent-of-median-income-
    Explore at:
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 1987 - Dec 1, 2021
    Area covered
    India
    Description

    India Proportion of People Living Below 50 Percent Of Median Income: % data was reported at 9.800 % in 2021. This records a decrease from the previous number of 10.000 % for 2020. India Proportion of People Living Below 50 Percent Of Median Income: % data is updated yearly, averaging 6.200 % from Dec 1977 (Median) to 2021, with 14 observations. The data reached an all-time high of 10.300 % in 2019 and a record low of 5.100 % in 2004. India Proportion of People Living Below 50 Percent Of Median Income: % data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s India – Table IN.World Bank.WDI: Social: Poverty and Inequality. The percentage of people in the population who live in households whose per capita income or consumption is below half of the median income or consumption per capita. The median is measured at 2017 Purchasing Power Parity (PPP) using the Poverty and Inequality Platform (http://www.pip.worldbank.org). For some countries, medians are not reported due to grouped and/or confidential data. The reference year is the year in which the underlying household survey data was collected. In cases for which the data collection period bridged two calendar years, the first year in which data were collected is reported.;World Bank, Poverty and Inequality Platform. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are mostly from the Luxembourg Income Study database. For more information and methodology, please see http://pip.worldbank.org.;;The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than 2000 household surveys across 169 countries. See the Poverty and Inequality Platform (PIP) for details (www.pip.worldbank.org).

  4. Multidimensional Poverty headcount in India 2006-2021

    • statista.com
    Updated Oct 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Multidimensional Poverty headcount in India 2006-2021 [Dataset]. https://www.statista.com/statistics/1272613/india-multidimensional-poverty-index/
    Explore at:
    Dataset updated
    Oct 11, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    India
    Description

    During 2019 to 2021, almost 15 percent of the Indian population were reportedly multidimensionally poor. This reflected a much lower percentage of multidimensionally poor population in India. India has made significant progress in multidimensional poverty over the years. The share of multidimensional poor is expected to decline to around 11 percent during 2022 to 2023.

  5. India Statistics: Population, Economy and more

    • kaggle.com
    Updated Sep 16, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Daksh Bhatnagar (2023). India Statistics: Population, Economy and more [Dataset]. https://www.kaggle.com/datasets/bhatnagardaksh/india-gdp
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 16, 2023
    Dataset provided by
    Kaggle
    Authors
    Daksh Bhatnagar
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    India
    Description

    Description:

    This comprehensive dataset provides a historical overview of India's key statistical indicators across multiple domains. The data has been sourced from https://www.macrotrends.net, which aggregates information from reputable sources like the United Nations (UN), World Bank, and other authoritative organizations.

    Contents:

    1. Population: Demographic data including population size, growth rates, and age distribution.
    2. Economy: Economic indicators such as GDP, GDP per capita, inflation rates, and employment figures.
    3. Trade: Information on imports, exports, trade balances, and international trade partnerships.
    4. Health: Health-related statistics encompassing life expectancy, disease prevalence, and healthcare infrastructure.
    5. Education: Educational metrics including literacy rates, school enrollment, and education expenditure.
    6. Development: Human development indices, poverty rates, and access to basic amenities.
    7. Labor Force: Labor market statistics comprising employment rates, workforce composition, and wage trends.
    8. Environment: Environmental data covering factors like carbon emissions, pollution, and natural resource usage.
    9. Crime: Crime rates and trends, including various types of criminal activities.
    10. Immigration: Information on immigration patterns, citizenship, and foreign-born populations.
    11. Other: Miscellaneous data on various aspects of India's socio-economic landscape.

    Disclaimer and Terms of Use:

    The historical data provided in this dataset is intended solely for informational purposes and is not meant for trading purposes or as financial advice. Neither Macrotrends LLC nor any of our information providers will be liable for any damages relating to your use of the data provided. Users are encouraged to verify the data's accuracy and refer to the original sources for any critical decisions or analyses.

  6. I

    India Poverty Headcount Ratio at Societal Poverty Lines: % of Population

    • ceicdata.com
    Updated Feb 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). India Poverty Headcount Ratio at Societal Poverty Lines: % of Population [Dataset]. https://www.ceicdata.com/en/india/social-poverty-and-inequality/poverty-headcount-ratio-at-societal-poverty-lines--of-population
    Explore at:
    Dataset updated
    Feb 28, 2025
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 1987 - Dec 1, 2021
    Area covered
    India
    Description

    India Poverty Headcount Ratio at Societal Poverty Lines: % of Population data was reported at 33.100 % in 2021. This records a decrease from the previous number of 34.800 % for 2020. India Poverty Headcount Ratio at Societal Poverty Lines: % of Population data is updated yearly, averaging 38.450 % from Dec 1977 (Median) to 2021, with 14 observations. The data reached an all-time high of 63.500 % in 1977 and a record low of 32.400 % in 2018. India Poverty Headcount Ratio at Societal Poverty Lines: % of Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s India – Table IN.World Bank.WDI: Social: Poverty and Inequality. The poverty headcount ratio at societal poverty line is the percentage of a population living in poverty according to the World Bank's Societal Poverty Line. The Societal Poverty Line is expressed in purchasing power adjusted 2017 U.S. dollars and defined as max($2.15, $1.15 + 0.5*Median). This means that when the national median is sufficiently low, the Societal Poverty line is equivalent to the extreme poverty line, $2.15. For countries with a sufficiently high national median, the Societal Poverty Line grows as countries’ median income grows.;World Bank, Poverty and Inequality Platform. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are mostly from the Luxembourg Income Study database. For more information and methodology, please see http://pip.worldbank.org.;;The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than 2000 household surveys across 169 countries. See the Poverty and Inequality Platform (PIP) for details (www.pip.worldbank.org).

  7. Census Data

    • catalog.data.gov
    • datadiscoverystudio.org
    • +2more
    Updated Mar 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Bureau of the Census (2024). Census Data [Dataset]. https://catalog.data.gov/dataset/census-data
    Explore at:
    Dataset updated
    Mar 1, 2024
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Description

    The Bureau of the Census has released Census 2000 Summary File 1 (SF1) 100-Percent data. The file includes the following population items: sex, age, race, Hispanic or Latino origin, household relationship, and household and family characteristics. Housing items include occupancy status and tenure (whether the unit is owner or renter occupied). SF1 does not include information on incomes, poverty status, overcrowded housing or age of housing. These topics will be covered in Summary File 3. Data are available for states, counties, county subdivisions, places, census tracts, block groups, and, where applicable, American Indian and Alaskan Native Areas and Hawaiian Home Lands. The SF1 data are available on the Bureau's web site and may be retrieved from American FactFinder as tables, lists, or maps. Users may also download a set of compressed ASCII files for each state via the Bureau's FTP server. There are over 8000 data items available for each geographic area. The full listing of these data items is available here as a downloadable compressed data base file named TABLES.ZIP. The uncompressed is in FoxPro data base file (dbf) format and may be imported to ACCESS, EXCEL, and other software formats. While all of this information is useful, the Office of Community Planning and Development has downloaded selected information for all states and areas and is making this information available on the CPD web pages. The tables and data items selected are those items used in the CDBG and HOME allocation formulas plus topics most pertinent to the Comprehensive Housing Affordability Strategy (CHAS), the Consolidated Plan, and similar overall economic and community development plans. The information is contained in five compressed (zipped) dbf tables for each state. When uncompressed the tables are ready for use with FoxPro and they can be imported into ACCESS, EXCEL, and other spreadsheet, GIS and database software. The data are at the block group summary level. The first two characters of the file name are the state abbreviation. The next two letters are BG for block group. Each record is labeled with the code and name of the city and county in which it is located so that the data can be summarized to higher-level geography. The last part of the file name describes the contents . The GEO file contains standard Census Bureau geographic identifiers for each block group, such as the metropolitan area code and congressional district code. The only data included in this table is total population and total housing units. POP1 and POP2 contain selected population variables and selected housing items are in the HU file. The MA05 table data is only for use by State CDBG grantees for the reporting of the racial composition of beneficiaries of Area Benefit activities. The complete package for a state consists of the dictionary file named TABLES, and the five data files for the state. The logical record number (LOGRECNO) links the records across tables.

  8. k

    Worldbank - Gender Statistics

    • datasource.kapsarc.org
    Updated Jun 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Worldbank - Gender Statistics [Dataset]. https://datasource.kapsarc.org/explore/dataset/worldbank-gender-statistics-gcc/
    Explore at:
    Dataset updated
    Jun 17, 2025
    Description

    Explore gender statistics data focusing on academic staff, employment, fertility rates, GDP, poverty, and more in the GCC region. Access comprehensive information on key indicators for Bahrain, China, India, Kuwait, Oman, Qatar, and Saudi Arabia.

    academic staff, Access to anti-retroviral drugs, Adjusted net enrollment rate, Administration and Law programmes, Age at first marriage, Age dependency ratio, Cause of death, Children out of school, Completeness of birth registration, consumer prices, Cost of business start-up procedures, Employers, Employment in agriculture, Employment in industry, Employment in services, employment or training, Engineering and Mathematics programmes, Female headed households, Female migrants, Fertility planning status: mistimed pregnancy, Fertility planning status: planned pregnancy, Fertility rate, Firms with female participation in ownership, Fisheries and Veterinary programmes, Forestry, GDP, GDP growth, GDP per capita, gender parity index, Gini index, GNI, GNI per capita, Government expenditure on education, Government expenditure per student, Gross graduation ratio, Households with water on the premises, Inflation, Informal employment, Labor force, Labor force with advanced education, Labor force with basic education, Labor force with intermediate education, Learning poverty, Length of paid maternity leave, Life expectancy at birth, Mandatory retirement age, Manufacturing and Construction programmes, Mathematics and Statistics programmes, Number of under-five deaths, Part time employment, Population, Poverty headcount ratio at national poverty lines, PPP, Primary completion rate, Retirement age with full benefits, Retirement age with partial benefits, Rural population, Sex ratio at birth, Unemployment, Unemployment with advanced education, Urban population

    Bahrain, China, India, Kuwait, Oman, Qatar, Saudi Arabia

    Follow data.kapsarc.org for timely data to advance energy economics research.

  9. f

    Percentage of abject poor households, moderate poor households and the...

    • plos.figshare.com
    xls
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sanjay K. Mohanty (2023). Percentage of abject poor households, moderate poor households and the percentage of population living below the poverty line (consumption poverty) in the states of India, 2005–06. [Dataset]. http://doi.org/10.1371/journal.pone.0026857.t006
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Sanjay K. Mohanty
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    India
    Description

    Percentage of abject poor households, moderate poor households and the percentage of population living below the poverty line (consumption poverty) in the states of India, 2005–06.

  10. Literacy rate in India 1981-2022, by gender

    • statista.com
    • ai-chatbox.pro
    Updated Sep 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Literacy rate in India 1981-2022, by gender [Dataset]. https://www.statista.com/statistics/271335/literacy-rate-in-india/
    Explore at:
    Dataset updated
    Sep 19, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    India
    Description

    Literacy in India has been increasing as more and more people receive a better education, but it is still far from all-encompassing. In 2022, the degree of literacy in India was about 76.32 percent, with the majority of literate Indians being men. It is estimated that the global literacy rate for people aged 15 and above is about 86 percent. How to read a literacy rateIn order to identify potential for intellectual and educational progress, the literacy rate of a country covers the level of education and skills acquired by a country’s inhabitants. Literacy is an important indicator of a country’s economic progress and the standard of living – it shows how many people have access to education. However, the standards to measure literacy cannot be universally applied. Measures to identify and define illiterate and literate inhabitants vary from country to country: In some, illiteracy is equated with no schooling at all, for example. Writings on the wallGlobally speaking, more men are able to read and write than women, and this disparity is also reflected in the literacy rate in India – with scarcity of schools and education in rural areas being one factor, and poverty another. Especially in rural areas, women and girls are often not given proper access to formal education, and even if they are, many drop out. Today, India is already being surpassed in this area by other emerging economies, like Brazil, China, and even by most other countries in the Asia-Pacific region. To catch up, India now has to offer more educational programs to its rural population, not only on how to read and write, but also on traditional gender roles and rights.

  11. Geospatial Nightlight Dataset for Sub-districts of India

    • figshare.com
    7z
    Updated Oct 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Athisii Kayina (2024). Geospatial Nightlight Dataset for Sub-districts of India [Dataset]. http://doi.org/10.6084/m9.figshare.26095537.v2
    Explore at:
    7zAvailable download formats
    Dataset updated
    Oct 21, 2024
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Athisii Kayina
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    India
    Description

    Geospatial data have become a valuable asset in the 21st century with its applications in almost everyday life and an overriding scope in the field of research. One such growing spatial data is the remotely sensed nighttime lights (NTL) imagery, which simply is a depiction of human activities around the globe at night. It may be a stunning visual to many yet the valuable insights it provides in measuring a number of parameters like population, poverty, electrification, migration, disaster, health, fishing, fires, GDP, pollution, urbanization, settlement, etc. have made researchers and scientists look up to this data to validate and evaluate socio-economic and other indicators independently and concurrently. Apart from using as a proxy in many researches, NTL allows to track statistics of region where data is often not collected or is not reliable. It has potential applications for policy makers and government in the decision making processes. Nighttime lights were in used since the mid 1990's and are publicly made available from 1992 onwards through the Defense Meteorological Satellite Program (DMSP) provided by National Ocean and Atmospheric Administration (NOAA). A more advance system called Visible Infrared Imaging Radiometer Suite (VIIRS) Day Night band (DNB) replaces DMSP system. The extraction provided uses VIIRS monthly aggregates with spatial polygon units of India at sub-districts level. The monthly raw dataset is available from April 2012 onwards. This extraction cover 141 months till December 2023. The primary intent is to disseminate the dataset to a larger audience, be it researcher or policy analyst and planners. The broader objective is to keep on updating the data continuously.

  12. w

    Study on Global Ageing and Adult Health-2007, Wave 1 - India

    • apps.who.int
    • catalog.ihsn.org
    • +3more
    Updated Oct 24, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Professor P. Arokiasamy (2013). Study on Global Ageing and Adult Health-2007, Wave 1 - India [Dataset]. https://apps.who.int/healthinfo/systems/surveydata/index.php/catalog/65
    Explore at:
    Dataset updated
    Oct 24, 2013
    Dataset authored and provided by
    Professor P. Arokiasamy
    Time period covered
    2007
    Area covered
    India
    Description

    Abstract

    Purpose: The multi-country Study on Global Ageing and Adult Health (SAGE) is run by the World Health Organization's Multi-Country Studies unit in the Innovation, Information, Evidence and Research Cluster. SAGE is part of the unit's Longitudinal Study Programme which is compiling longitudinal data on the health and well-being of adult populations, and the ageing process, through primary data collection and secondary data analysis. SAGE baseline data (Wave 0, 2002/3) was collected as part of WHO's World Health Survey http://www.who.int/healthinfo/survey/en/index.html (WHS). SAGE Wave 1 (2007/10) provides a comprehensive data set on the health and well-being of adults in six low and middle-income countries: China, Ghana, India, Mexico, Russian Federation and South Africa. Objectives: To obtain reliable, valid and comparable health, health-related and well-being data over a range of key domains for adult and older adult populations in nationally representative samples To examine patterns and dynamics of age-related changes in health and well-being using longitudinal follow-up of a cohort as they age, and to investigate socio-economic consequences of these health changes To supplement and cross-validate self-reported measures of health and the anchoring vignette approach to improving comparability of self-reported measures, through measured performance tests for selected health domains To collect health examination and biomarker data that improves reliability of morbidity and risk factor data and to objectively monitor the effect of interventions

    Additional Objectives: To generate large cohorts of older adult populations and comparison cohorts of younger populations for following-up intermediate outcomes, monitoring trends, examining transitions and life events, and addressing relationships between determinants and health, well-being and health-related outcomes To develop a mechanism to link survey data to demographic surveillance site data To build linkages with other national and multi-country ageing studies To improve the methodologies to enhance the reliability and validity of health outcomes and determinants data To provide a public-access information base to engage all stakeholders, including national policy makers and health systems planners, in planning and decision-making processes about the health and well-being of older adults

    Methods: SAGE's first full round of data collection included both follow-up and new respondents in most participating countries. The goal of the sampling design was to obtain a nationally representative cohort of persons aged 50 years and older, with a smaller cohort of persons aged 18 to 49 for comparison purposes. In the older households, all persons aged 50+ years (for example, spouses and siblings) were invited to participate. Proxy respondents were identified for respondents who were unable to respond for themselves. Standardized SAGE survey instruments were used in all countries consisting of five main parts: 1) household questionnaire; 2) individual questionnaire; 3) proxy questionnaire; 4) verbal autopsy questionnaire; and, 5) appendices including showcards. A VAQ was completed for deaths in the household over the last 24 months. The procedures for including country-specific adaptations to the standardized questionnaire and translations into local languages from English follow those developed by and used for the World Health Survey.

    Content Household questionnaire 0000 Coversheet 0100 Sampling Information 0200 Geocoding and GPS Information 0300 Recontact Information 0350 Contact Record 0400 Household Roster 0450 Kish Tables and Household Consent 0500 Housing 0600 Household and Family Support Networks and Transfers 0700 Assets and Household Income 0800 Household Expenditures 0900 Interviewer Observations

    Individual questionnaire 1000 Socio-Demographic Characteristics 1500 Work History and Benefits 2000 Health State Descriptions and Vignettes 2500 Anthropometrics, Performance Tests and Biomarkers 3000 Risk Factors and Preventive Health Behaviours 4000 Chronic Conditions and Health Services Coverage 5000 Health Care Utilization 6000 Social Cohesion 7000 Subjective Well-Being and Quality of Life (WHOQoL-8 and Day Reconstruction Method) 8000 Impact of Caregiving 9000 Interviewer Assessment

    Geographic coverage

    National coverage

    Analysis unit

    households and individuals

    Universe

    The household section of the survey covered all households in 19 of the 28 states in India which covers 96% of the population. Institutionalised populations are excluded. The individual section covered all persons aged 18 years and older residing within individual households.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    World Health Survey Sampling India has 28 states and seven union territories. 19 of the 28 states were included in the design representing 96% of the population. India used a stratified multistage cluster sample design. Six states were selected in accordance with their geographic location and level of development. Strata were defined by the 6 states:(Assam, Karnataka, Maharashtra, Rajasthan, Uttar Pradesh and West Bengal), and locality (urban or rural). There are 12 strata in total. The 2000 Census demarcation was used as the sampling frame. Two stage and three stage sampling was adopted in rural and urban areas, respectively. In rural areas PSUs(villages) were selected probability proportional to size. The measure of size being the 2001 Census population in the village. SSUs (households) were selected using systematic sampling. TSUs (individuals) were selected using Kish tables. In urban areas, PSUs(city wards) were selected probability proportional to size. SSUs(census enumeration blocks), two were randomly selected from each PSU. TSU (households) were selected using systematic sampling. QSU (individuals) were selected as in rural areas. A sample of 379 EAs was selected as the primary sampling units(PSU).

    SAGE Sampling The SAGE sample was pre-determined as all PSUs and households selected for the WHS/SAGE Wave 0 survey were included. Exceptions are three PSUs in Assam which were replaced as they were inaccessible due to flooding. And a further six PSUs were omitted for which the household roster information was not available. In each selected EA, a listing of the households was conducted to classify each household into the following mutually exclusive categories: 1)Households with a WHS/SAGE Wave 0 respondent aged 50-plus: all members aged 50-plus including the WHS/SAGE Wave 0 respondent were eligible for the individual interview. 2)Households with a WHS/SAGE Wave 0 respondent aged 47-49: all members aged 50-plus including the WHS/SAGE Wave 0 respondent aged 47-49 was eligible for the individual interview. 3)Households with a WHS/SAGE Wave 0 female respondent aged 18-46: all females members aged 18-49 including the WHS/SAGE Wave 0 female respondent aged 18-46 were eligible for the individual interview. 4)Households with a WHS/SAGE Wave 0 male respondent aged 18-46: three households were selected using systematic sampling and one male aged 18-49 was eligible for the individual interview. In the households not selected, all members aged 50-plus were eligible for the individual interview.

    Stages of selection Strata: State, Locality=12 PSU: EAs=375 surveyed SSU: Households=10424 surveyed TSU: Individual=12198 surveyed

    Mode of data collection

    Face-to-face [f2f] PAPI

    Research instrument

    The questionnaires were based on the WHS Model Questionnaire with some modification and many new additions. A household questionnaire was administered to all households eligible for the study. A Verbal Autopsy questionnaire was administered to households that had a death in the last 24 months. An Individual questionniare was administered to eligible respondents identified from the household roster. A Proxy questionnaire was administered to individual respondents who had cognitive limitations. A Womans Questionnaire was administered to all females aged 18-49 years identified from the household roster. The questionnaires were developed in English and were piloted as part of the SAGE pretest in 2005. All documents were translated into Hindi, Assamese, Kanada and Marathi. SAGE generic questionnaires are available as external resources.

    Cleaning operations

    Data editing took place at a number of stages including: (1) office editing and coding (2) during data entry (3) structural checking of the CSPro files (4) range and consistency secondary edits in Stata

    Response rate

    Household Response rate=88% Cooperation rate=92%

    Individual: Response rate=68% Cooperation rate=92%

  13. f

    Population Density, Climate Variables and Poverty Synergistically Structure...

    • plos.figshare.com
    tiff
    Updated Jun 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mauricio Santos-Vega; Menno J Bouma; Vijay Kohli; Mercedes Pascual (2023). Population Density, Climate Variables and Poverty Synergistically Structure Spatial Risk in Urban Malaria in India [Dataset]. http://doi.org/10.1371/journal.pntd.0005155
    Explore at:
    tiffAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    PLOS Neglected Tropical Diseases
    Authors
    Mauricio Santos-Vega; Menno J Bouma; Vijay Kohli; Mercedes Pascual
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    India
    Description

    BackgroundThe world is rapidly becoming urban with the global population living in cities projected to double by 2050. This increase in urbanization poses new challenges for the spread and control of communicable diseases such as malaria. In particular, urban environments create highly heterogeneous socio-economic and environmental conditions that can affect the transmission of vector-borne diseases dependent on human water storage and waste water management. Interestingly India, as opposed to Africa, harbors a mosquito vector, Anopheles stephensi, which thrives in the man-made environments of cities and acts as the vector for both Plasmodium vivax and Plasmodium falciparum, making the malaria problem a truly urban phenomenon. Here we address the role and determinants of within-city spatial heterogeneity in the incidence patterns of vivax malaria, and then draw comparisons with results for falciparum malaria.Methodology/principal findingsStatistical analyses and a phenomenological transmission model are applied to an extensive spatio-temporal dataset on cases of Plasmodium vivax in the city of Ahmedabad (Gujarat, India) that spans 12 years monthly at the level of wards. A spatial pattern in malaria incidence is described that is largely stationary in time for this parasite. Malaria risk is then shown to be associated with socioeconomic indicators and environmental parameters, temperature and humidity. In a more dynamical perspective, an Inhomogeneous Markov Chain Model is used to predict vivax malaria risk. Models that account for climate factors, socioeconomic level and population size show the highest predictive skill. A comparison to the transmission dynamics of falciparum malaria reinforces the conclusion that the spatio-temporal patterns of risk are strongly driven by extrinsic factors.Conclusion/significanceClimate forcing and socio-economic heterogeneity act synergistically at local scales on the population dynamics of urban malaria in this city. The stationarity of malaria risk patterns provides a basis for more targeted intervention, such as vector control, based on transmission ‘hotspots’. This is especially relevant for P. vivax, a more resilient parasite than P. falciparum, due to its ability to relapse and the operational shortcomings of delivering a “radical cure”.

  14. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
MACROTRENDS (2025). India Poverty Rate [Dataset]. https://www.macrotrends.net/global-metrics/countries/ind/india/poverty-rate

India Poverty Rate

India Poverty Rate

Explore at:
Dataset updated
May 31, 2025
Dataset authored and provided by
MACROTRENDS
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description
India poverty rate for 2022 was 82.10%, a 0.3% increase from 2021.
<ul style='margin-top:20px;'>

<li>India poverty rate for 2021 was <strong>81.80%</strong>, a <strong>1.2% decline</strong> from 2020.</li>
<li>India poverty rate for 2020 was <strong>83.00%</strong>, a <strong>2.3% increase</strong> from 2019.</li>
<li>India poverty rate for 2019 was <strong>80.70%</strong>, a <strong>2% decline</strong> from 2018.</li>
</ul>Poverty headcount ratio at $5.50 a day is the percentage of the population living on less than $5.50 a day at 2011 international prices. As a result of revisions in PPP exchange rates, poverty rates for individual countries cannot be compared with poverty rates reported in earlier editions.
Search
Clear search
Close search
Google apps
Main menu