34 datasets found
  1. F

    Consumer Price Index for All Urban Consumers: Rent of Primary Residence in...

    • fred.stlouisfed.org
    json
    Updated Jun 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Consumer Price Index for All Urban Consumers: Rent of Primary Residence in U.S. City Average [Dataset]. https://fred.stlouisfed.org/series/CUUR0000SEHA
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jun 11, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    United States
    Description

    Graph and download economic data for Consumer Price Index for All Urban Consumers: Rent of Primary Residence in U.S. City Average (CUUR0000SEHA) from Dec 1914 to May 2025 about primary, rent, urban, consumer, CPI, inflation, price index, indexes, price, and USA.

  2. T

    United States Price to Rent Ratio

    • tradingeconomics.com
    • ko.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated May 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Price to Rent Ratio [Dataset]. https://tradingeconomics.com/united-states/price-to-rent-ratio
    Explore at:
    xml, json, excel, csvAvailable download formats
    Dataset updated
    May 27, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 31, 1970 - Dec 31, 2024
    Area covered
    United States
    Description

    Price to Rent Ratio in the United States increased to 134.20 in the fourth quarter of 2024 from 133.60 in the third quarter of 2024. This dataset includes a chart with historical data for the United States Price to Rent Ratio.

  3. US National Rental Data | 14M+ Records in 16,000+ ZIP Codes | Rental Data...

    • datarade.ai
    .csv, .xls, .txt
    Updated Oct 21, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Warren Group (2024). US National Rental Data | 14M+ Records in 16,000+ ZIP Codes | Rental Data Lease Terms & Pricing Trends [Dataset]. https://datarade.ai/data-products/us-national-rental-data-14m-records-in-16-000-zip-codes-the-warren-group
    Explore at:
    .csv, .xls, .txtAvailable download formats
    Dataset updated
    Oct 21, 2024
    Dataset authored and provided by
    The Warren Group
    Area covered
    United States
    Description

    What is Rental Data?

    Rental data encompasses detailed information about residential rental properties, including single-family homes, multifamily units, and large apartment complexes. This data often includes key metrics such as rental prices, occupancy rates, property amenities, and detailed property descriptions. Advanced rental datasets integrate listings directly sourced from property management software systems, ensuring real-time accuracy and eliminating reliance on outdated or scraped information.

    Additional Rental Data Details

    The rental data is sourced from over 20,000 property managers via direct feeds and property management platforms, covering over 30 percent of the national rental housing market for diverse and broad representation. Real-time updates ensure data remains current, while verified listings enhance accuracy, avoiding errors typical of survey-based or scraped datasets. The dataset includes 14+ million rental units with detailed descriptions, rich photography, and amenities, offering address-level granularity for precise market analysis. Its extensive coverage of small multifamily and single-family rentals sets it apart from competitors focused on premium multifamily properties.

    Rental Data Includes:

    • Property Types
    • Single-Family Rentals
    • Small Multi-family Units
    • Premium Apartments
    • 16,000+ ZIP Codes
    • 800+ MSAs
    • Pricing Trends
    • Lease Terms Amenities
  4. T

    United States Rent Inflation

    • tradingeconomics.com
    • it.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Nov 14, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2018). United States Rent Inflation [Dataset]. https://tradingeconomics.com/united-states/rent-inflation
    Explore at:
    json, csv, xml, excelAvailable download formats
    Dataset updated
    Nov 14, 2018
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1954 - May 31, 2025
    Area covered
    United States
    Description

    Rent Inflation in the United States decreased to 3.90 percent in May from 4 percent in April of 2025. This dataset includes a chart with historical data for the United States Rent Inflation.

  5. T

    Vital Signs: Rent Payments – by city (2022)

    • data.bayareametro.gov
    application/rdfxml +5
    Updated Feb 1, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Vital Signs: Rent Payments – by city (2022) [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Rent-Payments-by-city-2022-/wjgr-k4g6
    Explore at:
    csv, tsv, application/rdfxml, xml, json, application/rssxmlAvailable download formats
    Dataset updated
    Feb 1, 2023
    Description

    VITAL SIGNS INDICATOR
    Rent Payments (EC8)

    FULL MEASURE NAME
    Median rent payment

    LAST UPDATED
    January 2023

    DESCRIPTION
    Rent payments refer to the cost of leasing an apartment or home and serves as a measure of housing costs for individuals who do not own a home. The data reflect the median monthly rent paid by Bay Area households across apartments and homes of various sizes and various levels of quality. This differs from advertised rents for available apartments, which usually are higher. Note that rent can be presented using nominal or real (inflation-adjusted) dollar values; data are presented inflation-adjusted to reflect changes in household purchasing power over time.

    DATA SOURCE
    U.S. Census Bureau: Decennial Census - https://nhgis.org
    Count 2 (1970)
    Form STF1 (1980-1990)
    Form SF3a (2000)

    U.S. Census Bureau: American Community Survey - https://data.census.gov/
    Form B25058 (2005-2021; median contract rent)

    Bureau of Labor Statistics: Consumer Price Index - https://www.bls.gov/data/
    1970-2021

    CONTACT INFORMATION
    vitalsigns.info@mtc.ca.gov

    METHODOLOGY NOTES (across all datasets for this indicator)
    Rent data reflects median rent payments rather than list rents (refer to measure definition above). American Community Survey 1-year data is used for larger geographies – Bay counties and most metropolitan area counties – while smaller geographies rely upon 5-year rolling average data due to their smaller sample sizes. Note that 2020 data uses the 5-year estimates because the ACS did not collect 1-year data for 2020.

    1970 Census data for median rent payments has been imputed from quintiles using methodology from California Department of Finance as the source data only provided the mean, rather than the median, monthly rent. Metro area boundaries reflects today’s metro area definitions by county for consistency, rather than historical metro area boundaries.

    Inflation-adjusted data are presented to illustrate how rent payments have grown relative to overall price increases; that said, the use of the Consumer Price Index (CPI) does create some challenges given the fact that housing represents a major chunk of consumer goods bundle used to calculate CPI. This reflects a methodological tradeoff between precision and accuracy and is a common concern when working with any commodity that is a major component of CPI itself.

  6. d

    Live Rental Listing Data | US Rental | National Coverage | Bulk | 970k...

    • datarade.ai
    .json, .csv, .xls
    Updated Mar 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CompCurve (2025). Live Rental Listing Data | US Rental | National Coverage | Bulk | 970k Properties Daily | Rental Data Real Estate Data [Dataset]. https://datarade.ai/data-products/live-rental-listing-data-us-rental-national-coverage-bu-compcurve
    Explore at:
    .json, .csv, .xlsAvailable download formats
    Dataset updated
    Mar 11, 2025
    Dataset authored and provided by
    CompCurve
    Area covered
    United States of America
    Description

    Our extensive database contains approximately 800,000 active rental property listings from across the United States. Updated daily, this comprehensive collection provides real estate professionals, investors, and property managers with valuable market intelligence and business opportunities. Database Contents

    Property Addresses: Complete location data including street address, city, state, ZIP code Listing Dates: Original listing date and most recent update date Availability Status: Currently available, pending, or recently rented properties Geographic Coverage: Properties spanning all 50 states and major metropolitan areas

    Applications & Uses

    Market Analysis: Track rental pricing trends across different regions and property types Investment Research: Identify high-opportunity markets with favorable rental conditions Lead Generation: Connect with property owners potentially needing management services Competitive Intelligence: Monitor listing volumes, vacancy rates, and market saturation Business Development: Target specific neighborhoods or property categories for expansion

    File Format & Delivery

    Organized in easy-to-use CSV format for seamless integration with data analysis tools Accessible through secure download portal or API connection Daily updates ensure you're working with the most current market information Custom filtering options available to narrow results by location, date range, or other criteria

    Data Quality

    Rigorous validation processes to ensure address accuracy Duplicate listing detection and removal Regular verification of active status Standardized format for consistent analysis

    Subscription Benefits

    Access to historical listing archives for trend analysis Advanced search capabilities to target specific property characteristics Regular market reports summarizing key trends and opportunities Custom data exports tailored to your specific business needs

    AK ~ 1,342 listings AL ~ 6,636 listings AR ~ 4,024 listings AZ ~ 25,782 listings CA ~ 102,833 listings CO ~ 14,333 listings CT ~ 10,515 listings DC ~ 1,988 listings DE ~ 1,528 listings FL ~ 152,258 listings GA ~ 28,248 listings HI ~ 3,447 listings IA ~ 4,557 listings ID ~ 3,426 listings IL ~ 42,642 listings IN ~ 8,634 listings KS ~ 3,263 listings KY ~ 5,166 listings LA ~ 11,522 listings MA ~ 53,624 listings MD ~ 12,124 listings ME ~ 1,754 listings MI ~ 12,040 listings MN ~ 7,242 listings MO ~ 10,766 listings MS ~ 2,633 listings MT ~ 1,953 listings NC ~ 22,708 listings ND ~ 1,268 listings NE ~ 1,847 listings NH ~ 2,672 listings NJ ~ 31,286 listings NM ~ 2,084 listings NV ~ 13,111 listings NY ~ 94,790 listings OH ~ 15,843 listings OK ~ 5,676 listings OR ~ 8,086 listings PA ~ 37,701 listings RI ~ 4,345 listings SC ~ 8,018 listings SD ~ 1,018 listings TN ~ 15,983 listings TX ~ 132,620 listings UT ~ 3,798 listings VA ~ 14,087 listings VT ~ 946 listings WA ~ 15,039 listings WI ~ 7,393 listings WV ~ 1,681 listings WY ~ 730 listings

    Grand Total ~ 977,010 listings

  7. d

    EnviroAtlas - Farm Service Land Rental Rates by County for the United States...

    • catalog.data.gov
    • gimi9.com
    • +1more
    Updated Apr 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Environmental Protection Agency, Office of Research and Development-Sustainable and Healthy Communities Research Program, EnviroAtlas (Point of Contact) (2025). EnviroAtlas - Farm Service Land Rental Rates by County for the United States [Dataset]. https://catalog.data.gov/dataset/enviroatlas-farm-service-land-rental-rates-by-county-for-the-united-states4
    Explore at:
    Dataset updated
    Apr 20, 2025
    Dataset provided by
    U.S. Environmental Protection Agency, Office of Research and Development-Sustainable and Healthy Communities Research Program, EnviroAtlas (Point of Contact)
    Area covered
    United States
    Description

    This EnviroAtlas data set depicts estimates for mean cash rent paid for land by farmers, sorted by county for irrigated cropland, non-irrigated cropland, and pasture by for most of the conterminous US. This data comes from national surveys which includes approximately 240,000 farms and applies to all crops. According to the USDA (U.S. Department of Agriculture) National Agricultural Statistics Service (NASS), these surveys do not include land rented for a share of the crop, on a fee per head, per pound of gain, by animal unit month (AUM), rented free of charge, or land that includes buildings such as barns. For each land use category with positive acres, respondents are given the option of reporting rent per acre or total dollars paid. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  8. Apartments for Rent Classified

    • kaggle.com
    Updated Aug 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Plutoze (2023). Apartments for Rent Classified [Dataset]. https://www.kaggle.com/datasets/adithyaawati/apartments-for-rent-classified
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 12, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Plutoze
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is a dataset of classified for apartments for rent in USA from various rental listing agency platforms. The dataset contains both 10,000 or 100,000 rental entries and 22 columns. The data contains missing values but has been cleaned in the way that column price and square_feet never is empty but the dataset is saved as it was created.

    Potential Machine Learning and Data Science Applications: 1. Clustering: To discover new features. 2. Classification: Based on the category of classified rentals 3. Regression: for the squares feet or price column. 4. Recommendation System 5. Geo Data Analysis

    Provide information id = unique identifier of apartment category = category of classified title = title text of apartment body = body text of apartment amenities = like AC, basketball,cable, gym, internet access, pool, refrigerator etc. bathrooms = number of bathrooms bedrooms = number of bedrooms currency = price in current fee = fee has_photo = photo of apartment pets_allowed = what pets are allowed dogs/cats etc. price = rental price of an apartment price_display = price converted into a display for the reader price_type = price in USD square_feet = size of the apartment address = where the apartment is located cityname = where the apartment is located state = where the apartment is located latitude = where the apartment is located longitude = where the apartment is located source = origin of classified time = when classified was created bout each attribute in your data set.

  9. Fair Market Rents lookup tool

    • catalog.data.gov
    Updated Mar 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Housing and Urban Development (2024). Fair Market Rents lookup tool [Dataset]. https://catalog.data.gov/dataset/fair-market-rents-for-the-section-8-housing-assistance-payments-program
    Explore at:
    Dataset updated
    Mar 1, 2024
    Dataset provided by
    United States Department of Housing and Urban Developmenthttp://www.hud.gov/
    Description

    Fair Market Rents (FMRs) are used to determine payment standard amounts for the Housing Choice Voucher program, to determine initial renewal rents for some expiring project-based Section 8 contracts, to determine initial rents for housing assistance payment (HAP) contracts in the Moderate Rehabilitation Single Room Occupancy program (Mod Rehab), rent ceilings for rental units in both the HOME Investment Partnerships program and the Emergency Solution Grants program, calculation of maximum award amounts for Continuum of Care recipients and the maximum amount of rent a recipient may pay for property leased with Continuum of Care funds, and calculation of flat rents in Public Housing units. The U.S. Department of Housing and Urban Development (HUD) annually estimates FMRs for Office of Management and Budget (OMB) defined metropolitan areas, some HUD defined subdivisions of OMB metropolitan areas and each nonmetropolitan county. 42 USC 1437f requires FMRs be posted at least 30 days before they are effective and that they are effective at the start of the federal fiscal year (generally October 1).

  10. Property Owners and Managers Survey - Single Family Microdata

    • catalog.data.gov
    • s.cnmilf.com
    Updated Mar 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Housing and Urban Development (2024). Property Owners and Managers Survey - Single Family Microdata [Dataset]. https://catalog.data.gov/dataset/property-owners-and-managers-survey-single-family-microdata
    Explore at:
    Dataset updated
    Mar 1, 2024
    Dataset provided by
    United States Department of Housing and Urban Developmenthttp://www.hud.gov/
    Description

    The Property Owners and Managers Survey (POMS) wasa one-time survey designed to learn more about rental housing and the providers of rental housing. The purpose of the survey was to gain a better understanding of the property owners and managers on whom the nation depends to provide affordable rental housing, and of what motivates and shapes their rental and maintenance policies. This dataset contains the single family macrodata.

  11. o

    Zillow Properties Listing Information Dataset

    • opendatabay.com
    .undefined
    Updated Jun 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2025). Zillow Properties Listing Information Dataset [Dataset]. https://www.opendatabay.com/data/premium/0bdd01d7-1b5b-4005-bb73-345bc710c694
    Explore at:
    .undefinedAvailable download formats
    Dataset updated
    Jun 26, 2025
    Dataset authored and provided by
    Bright Data
    Area covered
    Urban Planning & Infrastructure
    Description

    Zillow Properties Listing dataset to access detailed real estate listings, including property prices, locations, and features. Popular use cases include market analysis, property valuation, and investment decision-making in the real estate sector.

    Use our Zillow Properties Listing Information dataset to access detailed real estate listings, including property features, pricing trends, and location insights. This dataset is perfect for real estate agents, investors, market analysts, and property developers looking to analyze housing markets, identify investment opportunities, and assess property values.

    Leverage this dataset to track pricing patterns, compare property features, and forecast market trends across different regions. Whether you're evaluating investment prospects or optimizing property listings, the Zillow Properties dataset offers essential information for making data-driven real estate decisions.

    Dataset Features

    • zpid: Unique property identifier assigned by Zillow.
    • city: The name of the city where the property is located.
    • state: The state in which the property is located.
    • homeStatus: Indicates the current status of the property
    • address: The full address of the property, including street, city, and state.
    • isListingClaimedByCurrentSignedInUser: This field shows if the current Zillow user has claimed ownership of the listing.
    • isCurrentSignedInAgentResponsible: This field indicates whether the currently signed-in real estate agent is responsible for the listing.
    • bedrooms: Number of bedrooms in the property.
    • bathrooms: Number of bathrooms in the property.
    • price: Current asking price of the property.
    • yearBuilt: The year the home was originally constructed.
    • streetAddress: Specific street address (usually excludes city/state/zip).
    • zipcode: The postal ZIP code of the property.
    • isCurrentSignedInUserVerifiedOwner: This field indicates if the signed-in user has verified ownership of the property on Zillow.
    • isVerifiedClaimedByCurrentSignedInUser: Indicates whether the user has claimed and verified the listing as the current owner.
    • listingDataSource: The original source of the listing. Important for data lineage and trustworthiness.
    • longitude: The longitudinal geographic coordinate of the property.
    • latitude: The latitudinal geographic coordinate of the property.
    • hasBadGeocode: This indicates whether the geolocation data is incorrect or problematic.
    • streetViewMetadataUrlMediaWallLatLong: A URL or reference to the Street View media wall based on latitude and longitude.
    • streetViewMetadataUrlMediaWallAddress: A similar URL reference to the Street View, but based on the property’s address.
    • streetViewServiceUrl: The base URL to Google Street View or similar services. Enables interactive visuals of the property’s surroundings.
    • livingArea: Total internal living area of the home, typically in square feet.
    • homeType: The category/type of the home.
    • lotSize: The size of the entire lot or land the home is situated on.
    • lotAreaValue: The numerical value representing the lot area is usually tied to a measurement unit.
    • lotAreaUnits: Units in which the lot area is measured (e.g., sqft, acres).
    • livingAreaValue: The numeric value of the property's interior living space.
    • livingAreaUnitsShort: Abbreviated unit for living area (e.g., sqft), useful for compact displays.
    • isUndisclosedAddress: Boolean indicating if the full property address is hidden, typically used for privacy reasons.
    • zestimate: Zillow’s estimated market value of the home, generated via its proprietary model.
    • rentZestimate: Zillow’s estimated rental price per month, is helpful for rental market analysis.
    • currency: Currency used for price, Zestimate, and rent estimate (e.g., USD).
    • hideZestimate: Indicates whether the Zestimate is hidden from public view.
    • dateSoldString: The date when the property was last sold, in string format (e.g., 2022-06-15).
    • taxAssessedValue: The most recent assessed value of the property for tax purposes.
    • taxAssessedYear: The year in which the property was last assessed.
    • country: The country where the property is located.
    • propertyTaxRate: The most recent tax rate.
    • photocount: This column provides a photo count of the property.
    • isPremierBuilder: Boolean indicating whether the builder is listed as a premier (trusted) builder on Zillow.
    • isZillowOwned: Indicates whether the property is owned or managed directly by Zillow.
    • ssid: A unique internal Zillow identifier for the listing (not to be confused with network SSID).
    • hdpUrl: URL to the home’s detail page on Zillow (Home Details Page).
    • tourViewCount: Number of times users have viewed the property tour.
    • hasPublicVideo: This
  12. US Gross Rent ACS Statistics

    • kaggle.com
    Updated Aug 23, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Golden Oak Research Group (2017). US Gross Rent ACS Statistics [Dataset]. https://www.kaggle.com/datasets/goldenoakresearch/acs-gross-rent-us-statistics/versions/3
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 23, 2017
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Golden Oak Research Group
    Area covered
    United States
    Description

    What you get:

    Upvote! The database contains +40,000 records on US Gross Rent & Geo Locations. The field description of the database is documented in the attached pdf file. To access, all 325,272 records on a scale roughly equivalent to a neighborhood (census tract) see link below and make sure to upvote. Upvote right now, please. Enjoy!

    Get the full free database with coupon code: FreeDatabase, See directions at the bottom of the description... And make sure to upvote :) coupon ends at 2:00 pm 8-23-2017

    Gross Rent & Geographic Statistics:

    • Mean Gross Rent (double)
    • Median Gross Rent (double)
    • Standard Deviation of Gross Rent (double)
    • Number of Samples (double)
    • Square area of land at location (double)
    • Square area of water at location (double)

    Geographic Location:

    • Longitude (double)
    • Latitude (double)
    • State Name (character)
    • State abbreviated (character)
    • State_Code (character)
    • County Name (character)
    • City Name (character)
    • Name of city, town, village or CPD (character)
    • Primary, Defines if the location is a track and block group.
    • Zip Code (character)
    • Area Code (character)

    Abstract

    The data set originally developed for real estate and business investment research. Income is a vital element when determining both quality and socioeconomic features of a given geographic location. The following data was derived from over +36,000 files and covers 348,893 location records.

    License

    Only proper citing is required please see the documentation for details. Have Fun!!!

    Golden Oak Research Group, LLC. “U.S. Income Database Kaggle”. Publication: 5, August 2017. Accessed, day, month year.

    For any questions, you may reach us at research_development@goldenoakresearch.com. For immediate assistance, you may reach me on at 585-626-2965

    please note: it is my personal number and email is preferred

    Check our data's accuracy: Census Fact Checker

    Access all 325,272 location for Free Database Coupon Code:

    Don't settle. Go big and win big. Optimize your potential**. Access all gross rent records and more on a scale roughly equivalent to a neighborhood, see link below:

    A small startup with big dreams, giving the every day, up and coming data scientist professional grade data at affordable prices It's what we do.

  13. 50th Percentile Rent Estimates

    • catalog.data.gov
    • datadiscoverystudio.org
    • +2more
    Updated Mar 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Housing and Urban Development (2024). 50th Percentile Rent Estimates [Dataset]. https://catalog.data.gov/dataset/50th-percentile-rent-estimates
    Explore at:
    Dataset updated
    Mar 1, 2024
    Dataset provided by
    United States Department of Housing and Urban Developmenthttp://www.hud.gov/
    Description

    Rent estimates at the 50th percentile (or median) are calculated for all Fair Market Rent areas. Fair Market Rents (FMRs) are primarily used to determine payment standard amounts for the Housing Choice Voucher program, to determine initial renewal rents for some expiring project-based Section 8 contracts, to determine initial rents for housing assistance payment (HAP) contracts in the Moderate Rehabilitation Single Room Occupancy program (Mod Rehab), and to serve as a rent ceiling in the HOME rental assistance program. FMRs are gross rent estimates. They include the shelter rent plus the cost of all tenant-paid utilities, except telephones, cable or satellite television service, and internet service. The U.S. Department of Housing and Urban Development (HUD) annually estimates FMRs for 530 metropolitan areas and 2,045 nonmetropolitan county FMR areas. Under certain conditions, as set forth in the Interim Rule (Federal Register Vol. 65, No. 191, Monday October 2, 2000, pages 58870-58875), these 50th percentile rents can be used to set success rate payment standards.

  14. A

    The Australian Rental Housing Conditions Dataset

    • dataverse.ada.edu.au
    application/x-sas +5
    Updated Feb 3, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Emma Baker; Andrew Beer; Michelle Baddeley; Kerry London; Rebecca Bentley; Wendy Stone; Steven Rowley; Lyrian Daniel; Andi Nygaard; Kath Hulse; Tony Lockwood; Emma Baker; Andrew Beer; Michelle Baddeley; Kerry London; Rebecca Bentley; Wendy Stone; Steven Rowley; Lyrian Daniel; Andi Nygaard; Kath Hulse; Tony Lockwood (2022). The Australian Rental Housing Conditions Dataset [Dataset]. http://doi.org/10.26193/IBL7PZ
    Explore at:
    application/x-stata(211836634), application/x-sas(25022), pdf(448547), application/x-spss-sav(22029642), pdf(425356), application/x-stata(211655767), application/x-spss-sav(21917402), application/x-sas-data(153693184), application/x-sas(24936), docx(37473), docx(37425)Available download formats
    Dataset updated
    Feb 3, 2022
    Dataset provided by
    ADA Dataverse
    Authors
    Emma Baker; Andrew Beer; Michelle Baddeley; Kerry London; Rebecca Bentley; Wendy Stone; Steven Rowley; Lyrian Daniel; Andi Nygaard; Kath Hulse; Tony Lockwood; Emma Baker; Andrew Beer; Michelle Baddeley; Kerry London; Rebecca Bentley; Wendy Stone; Steven Rowley; Lyrian Daniel; Andi Nygaard; Kath Hulse; Tony Lockwood
    License

    https://dataverse.ada.edu.au/api/datasets/:persistentId/versions/3.5/customlicense?persistentId=doi:10.26193/IBL7PZhttps://dataverse.ada.edu.au/api/datasets/:persistentId/versions/3.5/customlicense?persistentId=doi:10.26193/IBL7PZ

    Area covered
    Australia
    Dataset funded by
    Australian Research Council
    The Australian Housing and Urban Research Institute
    Description

    Rental is Australia’s emerging tenure. Each year the proportion of Australians who rent increases, many of us will rent for life, and for the first time in generations there are now more renters than home owners. Though the rental sector is home to almost one-third of all Australians, researchers and policy-makers know little about conditions in this growing market because there is currently no systematic or reliable data. This project provides researchers and policy stakeholders with an essential database on Australia’s rental housing conditions. This data infrastructure will provide the knowledge base for national and international research and allow better urban, economic and social policy development. Building on The 2016 Australian Housing Conditions Dataset, in 2020 we collected data on the housing conditions of 15,000 rental households, covering all Australian states and territories. The project is funded by the Australian Research Council and The University of Adelaide, in partnership with the University of South Australia, the University of Melbourne, Swinburne University of Technology, Curtin University and Western Sydney University and is led by Professor Emma Baker at the University of Adelaide. The Australian Housing and Urban Research Institute provided funding for the focussed COVID-19 Module.

  15. U

    United States US: Price to Rent Ratio: sa

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, United States US: Price to Rent Ratio: sa [Dataset]. https://www.ceicdata.com/en/united-states/house-price-index-seasonally-adjusted-oecd-member-annual/us-price-to-rent-ratio-sa
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2013 - Dec 1, 2024
    Area covered
    United States
    Description

    United States US: Price to Rent Ratio: sa data was reported at 134.118 2015=100 in 2024. This records an increase from the previous number of 133.710 2015=100 for 2023. United States US: Price to Rent Ratio: sa data is updated yearly, averaging 99.069 2015=100 from Dec 1970 (Median) to 2024, with 55 observations. The data reached an all-time high of 137.672 2015=100 in 2022 and a record low of 89.669 2015=100 in 1997. United States US: Price to Rent Ratio: sa data remains active status in CEIC and is reported by Organisation for Economic Co-operation and Development. The data is categorized under Global Database’s United States – Table US.OECD.AHPI: House Price Index: Seasonally Adjusted: OECD Member: Annual. Nominal house prices divided by rent price indices

  16. Fair Market Rents

    • data.lojic.org
    • hub.arcgis.com
    Updated Dec 6, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Housing and Urban Development (2023). Fair Market Rents [Dataset]. https://data.lojic.org/datasets/12d2516901f947b5bb4da4e780e35f07
    Explore at:
    Dataset updated
    Dec 6, 2023
    Dataset provided by
    United States Department of Housing and Urban Developmenthttp://www.hud.gov/
    Authors
    Department of Housing and Urban Development
    Area covered
    Description

    Fair Market Rents (FMRs) represent the estimated amount (base rent + essential utilities) that a property in a given area typically rents for. The data is primarily used to determine payment standard amounts for the Housing Choice Voucher program; however, FMRs are also used to:

    Determine initial renewal rents for expiring project-based Section 8 contracts;

    Determine initial rents for housing assistance payment (HAP) contracts in the Moderate Rehabilitation Single Room Occupancy program (Mod Rehab), rent ceilings for rental units in both the HOME Investment Partnerships program and the Emergency Solution Grants (ESG) program;

    Calculate of maximum award amounts for Continuum of Care recipients and the maximum amount of rent a recipient may pay for property leased with Continuum of Care funds, and;

    Calculate flat rent amounts in Public Housing Units.

    Data is updated annualy in accordance with 42 USC 1437f which requires FMRs be posted at least 30 days before they are effective and that they are effective at the start of the federal fiscal year, October 1st.In order to calculate rents for units with more than four bedrooms, an extra 15% cost is added to the four bedroom unit value. The formula is to multiply the four bedroom rent by 1.15. For example, in FY21 the rent for a four bedroom unit in the El Centro, California Micropolitan Statistical Area is $1,444. The rent for a five bedroom unit would be $1,444 * 1.15 or $1,661. Each subsequent bedroom is an additional 15%. A six bedroom unit would be $1,444 * 1.3 or $1,877. These values are not included in the feature service.

    To learn more about Fair Market Rents visit: https://www.huduser.gov/portal/datasets/fmr.html/, for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov. Data Dictionary: DD_Fair Market Rents

    Date of Coverage: FY2024 : Oct. 1 - Sept. 30

  17. i

    Rent Cost Burden Levels - Dataset - The Indiana Data Hub

    • hub.mph.in.gov
    Updated Jun 29, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). Rent Cost Burden Levels - Dataset - The Indiana Data Hub [Dataset]. https://hub.mph.in.gov/dataset/rent-cost-burden-levels
    Explore at:
    Dataset updated
    Jun 29, 2018
    Description

    This U.S. Census Bureau American Community Survey (ACS) five-year estimates data set includes information about rent cost burden levels, calculated as gross rent as a percentage of household income in the past 12 months, in a number of geographic areas ranging from statewide to census tract. The data set includes median gross rent data from 2009-2016.

  18. f

    Housing Rent (by US Congress) 2019

    • gisdata.fultoncountyga.gov
    • opendata.atlantaregional.com
    Updated Mar 1, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2021). Housing Rent (by US Congress) 2019 [Dataset]. https://gisdata.fultoncountyga.gov/datasets/GARC::housing-rent-by-us-congress-2019/about
    Explore at:
    Dataset updated
    Mar 1, 2021
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau.For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.Naming conventions:Prefixes: None Countp Percentr Ratem Mediana Mean (average)t Aggregate (total)ch Change in absolute terms (value in t2 - value in t1)pch Percent change ((value in t2 - value in t1) / value in t1)chp Change in percent (percent in t2 - percent in t1)s Significance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computed Suffixes: _e19 Estimate from 2014-19 ACS_m19 Margin of Error from 2014-19 ACS_00_v19 Decennial 2000, re-estimated to 2019 geography_00_19 Change, 2000-19_e10_v19 2006-10 ACS, re-estimated to 2019 geography_m10_v19 Margin of Error from 2006-10 ACS, re-estimated to 2019 geography_e10_19 Change, 2010-19The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2015-2019). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2015-2019Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the manifest: https://www.arcgis.com/sharing/rest/content/items/3d489c725bb24f52a987b302147c46ee/data

  19. T

    Vital Signs: Rent Payments – by county (2022)

    • data.bayareametro.gov
    application/rdfxml +5
    Updated Feb 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Vital Signs: Rent Payments – by county (2022) [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Rent-Payments-by-county-2022-/kmev-u6e5
    Explore at:
    tsv, application/rssxml, json, csv, xml, application/rdfxmlAvailable download formats
    Dataset updated
    Feb 1, 2023
    Description

    VITAL SIGNS INDICATOR
    Rent Payments (EC8)

    FULL MEASURE NAME
    Median rent payment

    LAST UPDATED
    January 2023

    DESCRIPTION
    Rent payments refer to the cost of leasing an apartment or home and serves as a measure of housing costs for individuals who do not own a home. The data reflect the median monthly rent paid by Bay Area households across apartments and homes of various sizes and various levels of quality. This differs from advertised rents for available apartments, which usually are higher. Note that rent can be presented using nominal or real (inflation-adjusted) dollar values; data are presented inflation-adjusted to reflect changes in household purchasing power over time.

    DATA SOURCE
    U.S. Census Bureau: Decennial Census - https://nhgis.org
    Count 2 (1970)
    Form STF1 (1980-1990)
    Form SF3a (2000)

    U.S. Census Bureau: American Community Survey - https://data.census.gov/
    Form B25058 (2005-2021; median contract rent)

    Bureau of Labor Statistics: Consumer Price Index - https://www.bls.gov/data/
    1970-2021

    CONTACT INFORMATION
    vitalsigns.info@mtc.ca.gov

    METHODOLOGY NOTES (across all datasets for this indicator)
    Rent data reflects median rent payments rather than list rents (refer to measure definition above). American Community Survey 1-year data is used for larger geographies – Bay counties and most metropolitan area counties – while smaller geographies rely upon 5-year rolling average data due to their smaller sample sizes. Note that 2020 data uses the 5-year estimates because the ACS did not collect 1-year data for 2020.

    1970 Census data for median rent payments has been imputed from quintiles using methodology from California Department of Finance as the source data only provided the mean, rather than the median, monthly rent. Metro area boundaries reflects today’s metro area definitions by county for consistency, rather than historical metro area boundaries.

    Inflation-adjusted data are presented to illustrate how rent payments have grown relative to overall price increases; that said, the use of the Consumer Price Index (CPI) does create some challenges given the fact that housing represents a major chunk of consumer goods bundle used to calculate CPI. This reflects a methodological tradeoff between precision and accuracy and is a common concern when working with any commodity that is a major component of CPI itself.

  20. d

    US Consumer Demographics | Homeowners & Renters | Email & Mobile Phone |...

    • datarade.ai
    .json, .csv, .xls
    Updated Oct 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CompCurve (2024). US Consumer Demographics | Homeowners & Renters | Email & Mobile Phone | Bulk & Custom | 255M People [Dataset]. https://datarade.ai/data-products/compcurve-us-consumer-demographics-homeowners-renters-compcurve
    Explore at:
    .json, .csv, .xlsAvailable download formats
    Dataset updated
    Oct 18, 2024
    Dataset authored and provided by
    CompCurve
    Area covered
    United States
    Description

    Knowing who your consumers are is essential for businesses, marketers, and researchers. This detailed demographic file offers an in-depth look at American consumers, packed with insights about personal details, household information, financial status, and lifestyle choices. Let's take a closer look at the data:

    Personal Identifiers and Basic Demographics At the heart of this dataset are the key details that make up a consumer profile:

    Unique IDs (PID, HHID) for individuals and households Full names (First, Middle, Last) and suffixes Gender and age Date of birth Complete location details (address, city, state, ZIP) These identifiers are critical for accurate marketing and form the base for deeper analysis.

    Geospatial Intelligence This file goes beyond just listing addresses by including rich geospatial data like:

    Latitude and longitude Census tract and block details Codes for Metropolitan Statistical Areas (MSA) and Core-Based Statistical Areas (CBSA) County size codes Geocoding accuracy This allows for precise geographic segmentation and localized marketing.

    Housing and Property Data The dataset covers a lot of ground when it comes to housing, providing valuable insights for real estate professionals, lenders, and home service providers:

    Homeownership status Dwelling type (single-family, multi-family, etc.) Property values (market, assessed, and appraised) Year built and square footage Room count, amenities like fireplaces or pools, and building quality This data is crucial for targeting homeowners with products and services like refinancing or home improvement offers.

    Wealth and Financial Data For a deeper dive into consumer wealth, the file includes:

    Estimated household income Wealth scores Credit card usage Mortgage info (loan amounts, rates, terms) Home equity estimates and investment property ownership These indicators are invaluable for financial services, luxury brands, and fundraising organizations looking to reach affluent individuals.

    Lifestyle and Interests One of the most useful features of the dataset is its extensive lifestyle segmentation:

    Hobbies and interests (e.g., gardening, travel, sports) Book preferences, magazine subscriptions Outdoor activities (camping, fishing, hunting) Pet ownership, tech usage, political views, and religious affiliations This data is perfect for crafting personalized marketing campaigns and developing products that align with specific consumer preferences.

    Consumer Behavior and Purchase Habits The file also sheds light on how consumers behave and shop:

    Online and catalog shopping preferences Gift-giving tendencies, presence of children, vehicle ownership Media consumption (TV, radio, internet) Retailers and e-commerce businesses will find this behavioral data especially useful for tailoring their outreach.

    Demographic Clusters and Segmentation Pre-built segments like:

    Household, neighborhood, family, and digital clusters Generational and lifestage groups make it easier to quickly target specific demographics, streamlining the process for market analysis and campaign planning.

    Ethnicity and Language Preferences In today's multicultural market, knowing your audience's cultural background is key. The file includes:

    Ethnicity codes and language preferences Flags for Hispanic/Spanish-speaking households This helps ensure culturally relevant and sensitive communication.

    Education and Occupation Data The dataset also tracks education and career info:

    Education level and occupation codes Home-based business indicators This data is essential for B2B marketers, recruitment agencies, and education-focused campaigns.

    Digital and Social Media Habits With everyone online, digital behavior insights are a must:

    Internet, TV, radio, and magazine usage Social media platform engagement (Facebook, Instagram, LinkedIn) Streaming subscriptions (Netflix, Hulu) This data helps marketers, app developers, and social media managers connect with their audience in the digital space.

    Political and Charitable Tendencies For political campaigns or non-profits, this dataset offers:

    Political affiliations and outlook Charitable donation history Volunteer activities These insights are perfect for cause-related marketing and targeted political outreach.

    Neighborhood Characteristics By incorporating census data, the file provides a bigger picture of the consumer's environment:

    Population density, racial composition, and age distribution Housing occupancy and ownership rates This offers important context for understanding the demographic landscape.

    Predictive Consumer Indexes The dataset includes forward-looking indicators in categories like:

    Fashion, automotive, and beauty products Health, home decor, pet products, sports, and travel These predictive insights help businesses anticipate consumer trends and needs.

    Contact Information Finally, the file includes ke...

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2025). Consumer Price Index for All Urban Consumers: Rent of Primary Residence in U.S. City Average [Dataset]. https://fred.stlouisfed.org/series/CUUR0000SEHA

Consumer Price Index for All Urban Consumers: Rent of Primary Residence in U.S. City Average

CUUR0000SEHA

Explore at:
26 scholarly articles cite this dataset (View in Google Scholar)
jsonAvailable download formats
Dataset updated
Jun 11, 2025
License

https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

Area covered
United States
Description

Graph and download economic data for Consumer Price Index for All Urban Consumers: Rent of Primary Residence in U.S. City Average (CUUR0000SEHA) from Dec 1914 to May 2025 about primary, rent, urban, consumer, CPI, inflation, price index, indexes, price, and USA.

Search
Clear search
Close search
Google apps
Main menu