The West Africa Coastal Vulnerability Mapping: Population Projections, 2030 and 2050 data set is based on an unreleased working version of the Gridded Population of the World (GPW), Version 4, year 2010 population count raster but at a coarser 5 arc-minute resolution. Bryan Jones of Baruch College produced country-level projections based on the Shared Socioeconomic Pathway 4 (SSP4). SSP4 reflects a divided world where cities that have relatively high standards of living, are attractive to internal and international migrants. In low income countries, rapidly growing rural populations live on shrinking areas of arable land due to both high population pressure and expansion of large-scale mechanized farming by international agricultural firms. This pressure induces large migration flow to the cities, contributing to fast urbanization, although urban areas do not provide many opportUnities for the poor and there is a massive expansion of slums and squatter settlements. This scenario may not be the most likely for the West Africa region, but it has internal coherence and is at least plausible.
https://koordinates.com/license/attribution-3-0/https://koordinates.com/license/attribution-3-0/
20 year Projected Urban Growth scenarios. Base year is 2000. Projected year in this dataset is 2020.
By 2020, most forecasters agree, California will be home to between 43 and 46 million residents-up from 35 million today. Beyond 2020 the size of California's population is less certain. Depending on the composition of the population, and future fertility and migration rates, California's 2050 population could be as little as 50 million or as much as 70 million. One hundred years from now, if present trends continue, California could conceivably have as many as 90 million residents.
Where these future residents will live and work is unclear. For most of the 20th Century, two-thirds of Californians have lived south of the Tehachapi Mountains and west of the San Jacinto Mountains-in that part of the state commonly referred to as Southern California. Yet most of coastal Southern California is already highly urbanized, and there is relatively little vacant land available for new development. More recently, slow-growth policies in Northern California and declining developable land supplies in Southern California are squeezing ever more of the state's population growth into the San Joaquin Valley.
How future Californians will occupy the landscape is also unclear. Over the last fifty years, the state's population has grown increasingly urban. Today, nearly 95 percent of Californians live in metropolitan areas, mostly at densities less than ten persons per acre. Recent growth patterns have strongly favored locations near freeways, most of which where built in the 1950s and 1960s. With few new freeways on the planning horizon, how will California's future growth organize itself in space? By national standards, California's large urban areas are already reasonably dense, and economic theory suggests that densities should increase further as California's urban regions continue to grow. In practice, densities have been rising in some urban counties, but falling in others.
These are important issues as California plans its long-term future. Will California have enough land of the appropriate types and in the right locations to accommodate its projected population growth? Will future population growth consume ever-greater amounts of irreplaceable resource lands and habitat? Will jobs continue decentralizing, pushing out the boundaries of metropolitan areas? Will development densities be sufficient to support mass transit, or will future Californians be stuck in perpetual gridlock? Will urban and resort and recreational growth in the Sierra Nevada and Trinity Mountain regions lead to the over-fragmentation of precious natural habitat? How much water will be needed by California's future industries, farms, and residents, and where will that water be stored? Where should future highway, transit, and high-speed rail facilities and rights-of-way be located? Most of all, how much will all this growth cost, both economically, and in terms of changes in California's quality of life?
Clearly, the more precise our current understanding of how and where California is likely to grow, the sooner and more inexpensively appropriate lands can be acquired for purposes of conservation, recreation, and future facility siting. Similarly, the more clearly future urbanization patterns can be anticipated, the greater our collective ability to undertake sound city, metropolitan, rural, and bioregional planning.
Consider two scenarios for the year 2100. In the first, California's population would grow to 80 million persons and would occupy the landscape at an average density of eight persons per acre, the current statewide urban average. Under this scenario, and assuming that 10% percent of California's future population growth would occur through infill-that is, on existing urban land-California's expanding urban population would consume an additional 5.06 million acres of currently undeveloped land. As an alternative, assume the share of infill development were increased to 30%, and that new population were accommodated at a density of about 12 persons per acre-which is the current average density of the City of Los Angeles. Under this second scenario, California's urban population would consume an additional 2.6 million acres of currently undeveloped land. While both scenarios accommodate the same amount of population growth and generate large increments of additional urban development-indeed, some might say even the second scenario allows far too much growth and development-the second scenario is far kinder to California's unique natural landscape.
This report presents the results of a series of baseline population and urban growth projections for California's 38 urban counties through the year 2100. Presented in map and table form, these projections are based on extrapolations of current population trends and recent urban development trends. The next section, titled Approach, outlines the methodology and data used to develop the various projections. The following section, Baseline Scenario, reviews the projections themselves. A final section, entitled Baseline Impacts, quantitatively assesses the impacts of the baseline projections on wetland, hillside, farmland and habitat loss.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
VITAL SIGNS INDICATOR Population (LU1)
FULL MEASURE NAME
Population estimates
LAST UPDATED
February 2023
DESCRIPTION
Population is a measurement of the number of residents that live in a given geographical area, be it a neighborhood, city, county or region.
DATA SOURCE
California Department of Finance: Population and Housing Estimates - http://www.dof.ca.gov/Forecasting/Demographics/Estimates/
Table E-6: County Population Estimates (1960-1970)
Table E-4: Population Estimates for Counties and State (1970-2021)
Table E-8: Historical Population and Housing Estimates (1990-2010)
Table E-5: Population and Housing Estimates (2010-2021)
Bay Area Jurisdiction Centroids (2020) - https://data.bayareametro.gov/Boundaries/Bay-Area-Jurisdiction-Centroids-2020-/56ar-t6bs
Computed using 2020 US Census TIGER boundaries
U.S. Census Bureau: Decennial Census Population Estimates - http://www.s4.brown.edu/us2010/index.htm- via Longitudinal Tract Database Spatial Structures in the Social Sciences, Brown University
1970-2020
U.S. Census Bureau: American Community Survey (5-year rolling average; tract) - https://data.census.gov/
2011-2021
Form B01003
Priority Development Areas (Plan Bay Area 2050) - https://opendata.mtc.ca.gov/datasets/MTC::priority-development-areas-plan-bay-area-2050/about
CONTACT INFORMATION
vitalsigns.info@bayareametro.gov
METHODOLOGY NOTES (across all datasets for this indicator)
All historical data reported for Census geographies (metropolitan areas, county, city and tract) use current legal boundaries and names. A Priority Development Area (PDA) is a locally-designated area with frequent transit service, where a jurisdiction has decided to concentrate most of its housing and jobs growth for development in the foreseeable future. PDA boundaries are current as of December 2022.
Population estimates for Bay Area counties and cities are from the California Department of Finance, which are as of January 1st of each year. Population estimates for non-Bay Area regions are from the U.S. Census Bureau. Decennial Census years reflect population as of April 1st of each year whereas population estimates for intercensal estimates are as of July 1st of each year. Population estimates for Bay Area tracts are from the decennial Census (1970-2020) and the American Community Survey (2011-2021 5-year rolling average). Estimates of population density for tracts use gross acres as the denominator.
Population estimates for Bay Area tracts and PDAs are from the decennial Census (1970-2020) and the American Community Survey (2011-2021 5-year rolling average). Population estimates for PDAs are allocated from tract-level Census population counts using an area ratio. For example, if a quarter of a Census tract lies with in a PDA, a quarter of its population will be allocated to that PDA. Estimates of population density for PDAs use gross acres as the denominator. Note that the population densities between PDAs reported in previous iterations of Vital Signs are mostly not comparable due to minor differences and an updated set of PDAs (previous iterations reported Plan Bay Area 2040 PDAs, whereas current iterations report Plan Bay Area 2050 PDAs).
The following is a list of cities and towns by geographical area:
Big Three: San Jose, San Francisco, Oakland
Bayside: Alameda, Albany, Atherton, Belmont, Belvedere, Berkeley, Brisbane, Burlingame, Campbell, Colma, Corte Madera, Cupertino, Daly City, East Palo Alto, El Cerrito, Emeryville, Fairfax, Foster City, Fremont, Hayward, Hercules, Hillsborough, Larkspur, Los Altos, Los Altos Hills, Los Gatos, Menlo Park, Mill Valley, Millbrae, Milpitas, Monte Sereno, Mountain View, Newark, Pacifica, Palo Alto, Piedmont, Pinole, Portola Valley, Redwood City, Richmond, Ross, San Anselmo, San Bruno, San Carlos, San Leandro, San Mateo, San Pablo, San Rafael, Santa Clara, Saratoga, Sausalito, South San Francisco, Sunnyvale, Tiburon, Union City, Vallejo, Woodside
Inland, Delta and Coastal: American Canyon, Antioch, Benicia, Brentwood, Calistoga, Clayton, Cloverdale, Concord, Cotati, Danville, Dixon, Dublin, Fairfield, Gilroy, Half Moon Bay, Healdsburg, Lafayette, Livermore, Martinez, Moraga, Morgan Hill, Napa, Novato, Oakley, Orinda, Petaluma, Pittsburg, Pleasant Hill, Pleasanton, Rio Vista, Rohnert Park, San Ramon, Santa Rosa, Sebastopol, Sonoma, St. Helena, Suisun City, Vacaville, Walnut Creek, Windsor, Yountville
Unincorporated: all unincorporated towns
Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
In this research, we quantify combined point-source inputs of nutrients, microplastics, a chemical (triclosan) and a pathogen (Cryptosporidium) to 10,226 rivers in 2010, 2050 and 2100, and show how pollutants are related. In the future, 80% of the global population could be living in urbanized areas where waters are polluted with multiple pollutants. We could formulate scenarios where future water pollution from growing cities is avoided by advanced waste water treatment in many world regions, but not in Africa. Date Submitted: 2020-11-27
In this research, we quantify combined point-source inputs of nutrients, microplastics, a chemical (triclosan) and a pathogen (Cryptosporidium) to 10,226 rivers in 2010, 2050 and 2100, and show how pollutants are related. In the future, 80% of the global population could be living in urbanized areas where waters are polluted with multiple pollutants. We could formulate scenarios where future water pollution from growing cities is avoided by advanced waste water treatment in many world regions, but not in Africa.
This collection contains two datasets: one, data used in TI-City model to predict future urban expansion in Accra, Ghana; and two, residential electricity consumption data used to map intra-urban living standards in Karachi, Pakistan. The TI-City model data are ASCII files of infrastructure and amenities that affect location decisions of households and developers. The residential electricity consumption data consist of average kilowatt hours (kw/h) of electricity consumed per month by ~ 2 million households in Karachi. The electricity consumption data is aggregated into 30m grid cells (count = 193050), with centroids and consumption values provided. The values of the points (centroids), captured under the field "Avg_Avg_Cs", represents the median of average monthly consumption of households within the 30m grid cells.Our project addresses a critical gap in social research methodology that has important implications for combating urban poverty and promoting sustainable development in low and middle-income countries. Simply put, we're creating a low-cost tool for gathering critical information about urban population dynamics in cities experiencing rapid spatial-demographic and socioeconomic change. Such information is vital to the success of urban planning and development initiatives, as well as disaster relief efforts. By improving the information base of the actors involved in such activities we aim to improve the lives of urban dwellers across the developing world, particularly the poorest and most vulnerable. The key output for the project will be a freely available 'City Sampling Toolkit' that provides detailed instructions and opensource software tools for replicating the approach at various spatial scales. Our research is motivated by the growing recognition that cities are critical arenas for action in global efforts to tackle poverty and transition towards more environmentally sustainable economic growth. Between now and 2050 the global urban population is projected to grow by over 2 billion, with the overwhelming majority of this growth taking place in low and middle-income countries in Africa and Asia. Developing evidence-based policies for managing this growth is an urgent task. As UN Secretary General Ban Ki Moon has observed: "Cities are increasingly the home of humanity. They are central to climate action, global prosperity, peace and human rights...To transform our world, we must transform its cities." Unfortunately, even basic data about urban populations are lacking in many of the fastest growing cities of the world. Existing methods for gathering vital information, including censuses and sample surveys, have critical limitations in urban areas experiencing rapid change. And 'big data' approaches are not an adequate substitute for representative population data when it comes to urban planning and policymaking. We will overcome these limitations through a combination of conceptual innovation and creative integration of novel tools and techniques that have been developed for sampling, surveying and estimating the characteristics of populations that are difficult to enumerate. This, in turn, will help us capture the large (and sometimes uniquely vulnerable) 'hidden populations' in cities missed by traditional approaches. By using freely available satellite imagery, we can get an idea of the current shape of a rapidly changing city and create a 'sampling frame' from which we then identify respondents for our survey. Importantly, and in contrast with previous approaches, we aren't simply going to count official city residents. We are interested in understanding the characteristics of the actually present population, including recent migrants, temporary residents, and those living in informal or illegal settlements, who are often not considered formal residents in official enumeration exercises. In other words, our 'inclusion criterion' for the survey exercise is presence not residence. By adopting this approach, we hope to capture a more accurate picture of city populations. We will also limit the length of our survey questionnaire to maximise responses and then use novel statistical techniques to reconstruct a rich statistical portrait that reflects a wide range of demographic and socioeconomic information. We will pilot our methodology in a city in Pakistan, which recently completed a national census exercise that has generated some controversy with regard to the accuracy of urban population counts. To our knowledge this would be the first project ever to pilot and validate a new sampling and survey methodology at the city scale in a developing country. The TI-City data was accessed from institutions responsible for land use and planning in Ghana as well as secondary sources (See the the underlying paper for more https://doi.org/10.1177/23998083211068843). The residential electricity consumption data was provided by K-Electric (KE), the monopoly provider of electricity in Karachi. The data pertains to ~2 million households aggregated into 30m grid cells (see the underlying paper for more https://dx.doi.org/10.2139/ssrn.4154318).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundThe world is rapidly becoming urban with the global population living in cities projected to double by 2050. This increase in urbanization poses new challenges for the spread and control of communicable diseases such as malaria. In particular, urban environments create highly heterogeneous socio-economic and environmental conditions that can affect the transmission of vector-borne diseases dependent on human water storage and waste water management. Interestingly India, as opposed to Africa, harbors a mosquito vector, Anopheles stephensi, which thrives in the man-made environments of cities and acts as the vector for both Plasmodium vivax and Plasmodium falciparum, making the malaria problem a truly urban phenomenon. Here we address the role and determinants of within-city spatial heterogeneity in the incidence patterns of vivax malaria, and then draw comparisons with results for falciparum malaria.Methodology/principal findingsStatistical analyses and a phenomenological transmission model are applied to an extensive spatio-temporal dataset on cases of Plasmodium vivax in the city of Ahmedabad (Gujarat, India) that spans 12 years monthly at the level of wards. A spatial pattern in malaria incidence is described that is largely stationary in time for this parasite. Malaria risk is then shown to be associated with socioeconomic indicators and environmental parameters, temperature and humidity. In a more dynamical perspective, an Inhomogeneous Markov Chain Model is used to predict vivax malaria risk. Models that account for climate factors, socioeconomic level and population size show the highest predictive skill. A comparison to the transmission dynamics of falciparum malaria reinforces the conclusion that the spatio-temporal patterns of risk are strongly driven by extrinsic factors.Conclusion/significanceClimate forcing and socio-economic heterogeneity act synergistically at local scales on the population dynamics of urban malaria in this city. The stationarity of malaria risk patterns provides a basis for more targeted intervention, such as vector control, based on transmission ‘hotspots’. This is especially relevant for P. vivax, a more resilient parasite than P. falciparum, due to its ability to relapse and the operational shortcomings of delivering a “radical cure”.
The U.S. Census defines Asian Americans as individuals having origins in any of the original peoples of the Far East, Southeast Asia, or the Indian subcontinent (U.S. Office of Management and Budget, 1997). As a broad racial category, Asian Americans are the fastest-growing minority group in the United States (U.S. Census Bureau, 2012). The growth rate of 42.9% in Asian Americans between 2000 and 2010 is phenomenal given that the corresponding figure for the U.S. total population is only 9.3% (see Figure 1). Currently, Asian Americans make up 5.6% of the total U.S. population and are projected to reach 10% by 2050. It is particularly notable that Asians have recently overtaken Hispanics as the largest group of new immigrants to the U.S. (Pew Research Center, 2015). The rapid growth rate and unique challenges as a new immigrant group call for a better understanding of the social and health needs of the Asian American population.
Heat-related mortality in US cities is expected to more than double by the mid-to-late 21st century. Rising heat exposure in cities is projected to result from: 1) climate forcings from changing global atmospheric composition; and 2) local land surface characteristics responsible for the urban heat island effect. The extent to which heat management strategies designed to lessen the urban heat island effect could offset future heat-related mortality remains unexplored in the literature. Using coupled global and regional climate models with a human health effects model, we estimate changes in the number of heat-related deaths in 2050 resulting from modifications to vegetative cover and surface albedo across three climatically and demographically diverse US metropolitan areas: Atlanta, Georgia, Philadelphia, Pennsylvania, and Phoenix, Arizona. Employing separate health impact functions for average warm season and heat wave conditions in 2050, we find combinations of vegetation and albedo enhancement to offset projected increases in heat-related mortality by 40 to 99% across the three metropolitan regions. These results demonstrate the potential for extensive land surface changes in cities to provide adaptive benefits to urban populations at risk for rising heat exposure with climate change. CULE_pop2050 population projections for Atlanta, Philadelphia, and PhoenixWRF scenario outputWRF model output for each scenario, metropolitan area, and temperature metric combination.PLOSone_files.zip
Not seeing a result you expected?
Learn how you can add new datasets to our index.
The West Africa Coastal Vulnerability Mapping: Population Projections, 2030 and 2050 data set is based on an unreleased working version of the Gridded Population of the World (GPW), Version 4, year 2010 population count raster but at a coarser 5 arc-minute resolution. Bryan Jones of Baruch College produced country-level projections based on the Shared Socioeconomic Pathway 4 (SSP4). SSP4 reflects a divided world where cities that have relatively high standards of living, are attractive to internal and international migrants. In low income countries, rapidly growing rural populations live on shrinking areas of arable land due to both high population pressure and expansion of large-scale mechanized farming by international agricultural firms. This pressure induces large migration flow to the cities, contributing to fast urbanization, although urban areas do not provide many opportUnities for the poor and there is a massive expansion of slums and squatter settlements. This scenario may not be the most likely for the West Africa region, but it has internal coherence and is at least plausible.