Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the United States population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for United States. The dataset can be utilized to understand the population distribution of United States by age. For example, using this dataset, we can identify the largest age group in United States.
Key observations
The largest age group in United States was for the group of age 25-29 years with a population of 22,854,328 (6.93%), according to the 2021 American Community Survey. At the same time, the smallest age group in United States was the 80-84 years with a population of 5,932,196 (1.80%). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for United States Population by Age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of White Earth by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for White Earth. The dataset can be utilized to understand the population distribution of White Earth by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in White Earth. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for White Earth.
Key observations
Largest age group (population): Male # 10-14 years (17) | Female # 40-44 years (13). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for White Earth Population by Gender. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the White Earth population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for White Earth. The dataset can be utilized to understand the population distribution of White Earth by age. For example, using this dataset, we can identify the largest age group in White Earth.
Key observations
The largest age group in White Earth, ND was for the group of age 10 to 14 years years with a population of 23 (27.06%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in White Earth, ND was the Under 5 years years with a population of 0 (0%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for White Earth Population by Age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Black Earth population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Black Earth. The dataset can be utilized to understand the population distribution of Black Earth by age. For example, using this dataset, we can identify the largest age group in Black Earth.
Key observations
The largest age group in Black Earth, WI was for the group of age 65 to 69 years years with a population of 340 (19.72%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in Black Earth, WI was the 80 to 84 years years with a population of 34 (1.97%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Black Earth Population by Age. You can refer the same here
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The World Bank is an international financial institution that provides loans to countries of the world for capital projects. The World Bank's stated goal is the reduction of poverty. Source: https://en.wikipedia.org/wiki/World_Bank
This dataset combines key education statistics from a variety of sources to provide a look at global literacy, spending, and access.
For more information, see the World Bank website.
Fork this kernel to get started with this dataset.
https://bigquery.cloud.google.com/dataset/bigquery-public-data:world_bank_health_population
http://data.worldbank.org/data-catalog/ed-stats
https://cloud.google.com/bigquery/public-data/world-bank-education
Citation: The World Bank: Education Statistics
Dataset Source: World Bank. This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
Banner Photo by @till_indeman from Unplash.
Of total government spending, what percentage is spent on education?
During a 2024 survey, 77 percent of respondents from Nigeria stated that they used social media as a source of news. In comparison, just 23 percent of Japanese respondents said the same. Large portions of social media users around the world admit that they do not trust social platforms either as media sources or as a way to get news, and yet they continue to access such networks on a daily basis.
Social media: trust and consumption
Despite the majority of adults surveyed in each country reporting that they used social networks to keep up to date with news and current affairs, a 2018 study showed that social media is the least trusted news source in the world. Less than 35 percent of adults in Europe considered social networks to be trustworthy in this respect, yet more than 50 percent of adults in Portugal, Poland, Romania, Hungary, Bulgaria, Slovakia and Croatia said that they got their news on social media.
What is clear is that we live in an era where social media is such an enormous part of daily life that consumers will still use it in spite of their doubts or reservations. Concerns about fake news and propaganda on social media have not stopped billions of users accessing their favorite networks on a daily basis.
Most Millennials in the United States use social media for news every day, and younger consumers in European countries are much more likely to use social networks for national political news than their older peers.
Like it or not, reading news on social is fast becoming the norm for younger generations, and this form of news consumption will likely increase further regardless of whether consumers fully trust their chosen network or not.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Real-world open datasets play a pivotal role in the development of AI models addressing radio control optimization problems. As a matter of fact, acquiring suitable datasets can be arduous. Therefore, this dataset is part of the ones identified in by (https://doi.org/10.1109/FNWF58287.2023.10520488) which pertinent to real-world open datasets representing realistic traffic pattern, network performances and demand for fixed and dynamic user terminals, enabling a variety of uses cases.
This maritime dataset comprises of two mat files for each hour. Since each grid contains 100 x100 km haversian distance area, for the sake of generality, the first mat file (Coordinates) contains the coordinates of the central point of each grid. For instance, the central coordinates correspond to the points where the numbers are written in Figure Below. Whereas the second mat file (Density_Flow) is corresponding to these numbers themselves which means the number of vessels present within this 100 x100 km area at given hour. Both .mat files are with the dimensions of 17 x 35 and each cell of one file corresponds to the same cell of other file.
The name of the files means
xxx_Day_1_time_start_to_time_end_UTC.
time_start_to_time _end means that the file contain data from start hour to end hour
For Example
xxx_Day_1_00_to_01_UTC
means
this file belongs to day 1 (since we have 1 week data) from 12 am to 01 am in UTC time. Each day contains 24 files with 24 hours.
As of April 2024, around 16.5 percent of global active Instagram users were men between the ages of 18 and 24 years. More than half of the global Instagram population worldwide was aged 34 years or younger.
Teens and social media
As one of the biggest social networks worldwide, Instagram is especially popular with teenagers. As of fall 2020, the photo-sharing app ranked third in terms of preferred social network among teenagers in the United States, second to Snapchat and TikTok. Instagram was one of the most influential advertising channels among female Gen Z users when making purchasing decisions. Teens report feeling more confident, popular, and better about themselves when using social media, and less lonely, depressed and anxious.
Social media can have negative effects on teens, which is also much more pronounced on those with low emotional well-being. It was found that 35 percent of teenagers with low social-emotional well-being reported to have experienced cyber bullying when using social media, while in comparison only five percent of teenagers with high social-emotional well-being stated the same. As such, social media can have a big impact on already fragile states of mind.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
IntroductionStunting is still a major public health problem all over the world, it affecting more than one-third of under-five children in the world that leads to growth retardation, life-threatening complication and accelerate mortality and morbidity. The evidence is scarce on prevalence and associated factors of stunting among under-five children in Sub-Saharan Africa for incorporated intervention. Therefore this study aimed to investigate the prevalence and determinants of stunting among under-five children in Sub-Saharan Africa using recent demographic and health surveys of each country.MethodsThis study was based on the most recent Demographic and Health Survey data of 36 sub-Saharan African countries. A total of 203,852(weighted sample) under-five children were included in the analysis. The multi-level ordinal logistic regression was fitted to identify determinants of stunting. Parallel line (proportional odds) assumption was cheeked by Brant test and it is satisfied (p-value = 0.68) which is greater than 0.05. Due to the nested nature of the dataset deviance was used model comparison rather than AIC and BIC. Finally the adjusted odds ratio (AOR) with 95% CI was reported identify statistical significant determinants of stunting among under-five children.ResultsIn this study, the prevalence of stunting among under-five children in Sub-Saharan Africa 34.04% (95% CI: 33.83%, 34.24%) with a large difference between specific countries which ranges from 16.14% in Gabon to 56.17% in Burundi. In the multi-level ordinal logistic regression good maternal education, born from mothers aged above 35 years, high household wealth status, small family size, being female child, being female household head, having media exposure and having consecutive ANC visit were significantly associated with lower odds of stunting. Whereas, living from rural residence, being 24–59 month children age, single or divorced marital status, higher birth order and having diarrhea in the last two weeks were significantly associated with higher odds of stunting.ConclusionStunting among under-five children is still public health problem in Sub-Saharan Africa. Therefore designing interventions to address diarrhea and other infectious disease, improving the literacy level of the area and increase the economic level of the family to reduce the prevalence of stunting in the study area.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BI: Labour Force Participation Rate: Modeled ILO Estimate: Male: % of Male Population Aged 15+ data was reported at 77.312 % in 2024. This records a decrease from the previous number of 77.643 % for 2023. BI: Labour Force Participation Rate: Modeled ILO Estimate: Male: % of Male Population Aged 15+ data is updated yearly, averaging 78.847 % from Dec 1990 (Median) to 2024, with 35 observations. The data reached an all-time high of 89.713 % in 1990 and a record low of 77.312 % in 2024. BI: Labour Force Participation Rate: Modeled ILO Estimate: Male: % of Male Population Aged 15+ data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Burundi – Table BI.World Bank.WDI: Labour Force. Labor force participation rate is the proportion of the population ages 15 and older that is economically active: all people who supply labor for the production of goods and services during a specified period.;International Labour Organization. “ILO Modelled Estimates and Projections database (ILOEST)” ILOSTAT. Accessed January 07, 2025. https://ilostat.ilo.org/data/.;Weighted average;National estimates are also available in the WDI database. Caution should be used when comparing ILO estimates with national estimates.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Black Earth town population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Black Earth town. The dataset can be utilized to understand the population distribution of Black Earth town by age. For example, using this dataset, we can identify the largest age group in Black Earth town.
Key observations
The largest age group in Black Earth Town, Wisconsin was for the group of age 50 to 54 years years with a population of 63 (15.22%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in Black Earth Town, Wisconsin was the 85 years and over years with a population of 6 (1.45%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Black Earth town Population by Age. You can refer the same here
Description
This dataset is the "development dataset" for the DCASE 2023 Challenge Task 2 "First-Shot Unsupervised Anomalous Sound Detection for Machine Condition Monitoring".
The data consists of the normal/anomalous operating sounds of seven types of real/toy machines. Each recording is a single-channel 10-second audio that includes both a machine's operating sound and environmental noise. The following seven types of real/toy machines are used in this task:
ToyCar
ToyTrain
Fan
Gearbox
Bearing
Slide rail
Valve
Overview of the task
Anomalous sound detection (ASD) is the task of identifying whether the sound emitted from a target machine is normal or anomalous. Automatic detection of mechanical failure is an essential technology in the fourth industrial revolution, which involves artificial-intelligence-based factory automation. Prompt detection of machine anomalies by observing sounds is useful for monitoring the condition of machines.
This task is the follow-up from DCASE 2020 Task 2 to DCASE 2022 Task 2. The task this year is to develop an ASD system that meets the following four requirements.
Because anomalies rarely occur and are highly diverse in real-world factories, it can be difficult to collect exhaustive patterns of anomalous sounds. Therefore, the system must detect unknown types of anomalous sounds that are not provided in the training data. This is the same requirement as in the previous tasks.
In real-world cases, the operational states of a machine or the environmental noise can change to cause domain shifts. Domain-generalization techniques can be useful for handling domain shifts that occur frequently or are hard-to-notice. In this task, the system is required to use domain-generalization techniques for handling these domain shifts. This requirement is the same as in DCASE 2022 Task 2.
For a completely new machine type, hyperparameters of the trained model cannot be tuned. Therefore, the system should have the ability to train models without additional hyperparameter tuning.
While sounds from multiple machines of the same machine type can be used to enhance detection performance, it is often the case that sound data from only one machine are available for a machine type. In such a case, the system should be able to train models using only one machine from a machine type.
The last two requirements are newly introduced in DCASE 2023 Task2 as the "first-shot problem".
Definition
We first define key terms in this task: "machine type," "section," "source domain," "target domain," and "attributes.".
"Machine type" indicates the type of machine, which in the development dataset is one of seven: fan, gearbox, bearing, slide rail, valve, ToyCar, and ToyTrain.
A section is defined as a subset of the dataset for calculating performance metrics.
The source domain is the domain under which most of the training data and some of the test data were recorded, and the target domain is a different set of domains under which some of the training data and some of the test data were recorded. There are differences between the source and target domains in terms of operating speed, machine load, viscosity, heating temperature, type of environmental noise, signal-to-noise ratio, etc.
Attributes are parameters that define states of machines or types of noise.
Dataset
This dataset consists of seven machine types. For each machine type, one section is provided, and the section is a complete set of training and test data. For each section, this dataset provides (i) 990 clips of normal sounds in the source domain for training, (ii) ten clips of normal sounds in the target domain for training, and (iii) 100 clips each of normal and anomalous sounds for the test. The source/target domain of each sample is provided. Additionally, the attributes of each sample in the training and test data are provided in the file names and attribute csv files.
File names and attribute csv files
File names and attribute csv files provide reference labels for each clip. The given reference labels for each training/test clip include machine type, section index, normal/anomaly information, and attributes regarding the condition other than normal/anomaly. The machine type is given by the directory name. The section index is given by their respective file names. For the datasets other than the evaluation dataset, the normal/anomaly information and the attributes are given by their respective file names. Attribute csv files are for easy access to attributes that cause domain shifts. In these files, the file names, name of parameters that cause domain shifts (domain shift parameter, dp), and the value or type of these parameters (domain shift value, dv) are listed. Each row takes the following format:
[filename (string)], [d1p (string)], [d1v (int | float | string)], [d2p], [d2v]...
Recording procedure
Normal/anomalous operating sounds of machines and its related equipment are recorded. Anomalous sounds were collected by deliberately damaging target machines. For simplifying the task, we use only the first channel of multi-channel recordings; all recordings are regarded as single-channel recordings of a fixed microphone. We mixed a target machine sound with environmental noise, and only noisy recordings are provided as training/test data. The environmental noise samples were recorded in several real factory environments. We will publish papers on the dataset to explain the details of the recording procedure by the submission deadline.
Directory structure
/dev_data
slider
means "slide rail")Baseline system
The baseline system is available on the Github repository dcase2023_task2_baseline_ae.The baseline systems provide a simple entry-level approach that gives a reasonable performance in the dataset of Task 2. They are good starting points, especially for entry-level researchers who want to get familiar with the anomalous-sound-detection task.
Condition of use
This dataset was created jointly by Hitachi, Ltd. and NTT Corporation and is available under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) license.
Citation
If you use this dataset, please cite all the following papers. We will publish a paper on the description of the DCASE 2023 Task 2, so pleasure make sure to cite the paper, too.
Noboru Harada, Daisuke Niizumi, Yasunori Ohishi, Daiki Takeuchi, and Masahiro Yasuda. First-shot anomaly detection for machine condition monitoring: A domain generalization baseline. In arXiv e-prints: 2303.00455, 2023. [URL]
Kota Dohi, Tomoya Nishida, Harsh Purohit, Ryo Tanabe, Takashi Endo, Masaaki Yamamoto, Yuki Nikaido, and Yohei Kawaguchi. MIMII DG: sound dataset for malfunctioning industrial machine investigation and inspection for domain generalization task. In Proceedings of the 7th Detection and Classification of Acoustic Scenes and Events 2022 Workshop (DCASE2022), 31-35. Nancy, France, November 2022, . [URL]
Noboru Harada, Daisuke Niizumi, Daiki Takeuchi, Yasunori Ohishi, Masahiro Yasuda, and Shoichiro Saito. ToyADMOS2: another dataset of miniature-machine operating sounds for anomalous sound detection under domain shift conditions. In Proceedings of the 6th Detection and Classification of Acoustic Scenes and Events 2021 Workshop (DCASE2021), 1–5. Barcelona, Spain, November 2021. [URL]
Contact
If there is any problem, please contact us:
Kota Dohi, kota.dohi.gr@hitachi.com
Keisuke Imoto, keisuke.imoto@ieee.org
Noboru Harada, noboru@ieee.org
Daisuke Niizumi, daisuke.niizumi.dt@hco.ntt.co.jp
Yohei Kawaguchi, yohei.kawaguchi.xk@hitachi.com
As of April 2024, almost 32 percent of global Instagram audiences were aged between 18 and 24 years, and 30.6 percent of users were aged between 25 and 34 years. Overall, 16 percent of users belonged to the 35 to 44 year age group.
Instagram users
With roughly one billion monthly active users, Instagram belongs to the most popular social networks worldwide. The social photo sharing app is especially popular in India and in the United States, which have respectively 362.9 million and 169.7 million Instagram users each.
Instagram features
One of the most popular features of Instagram is Stories. Users can post photos and videos to their Stories stream and the content is live for others to view for 24 hours before it disappears. In January 2019, the company reported that there were 500 million daily active Instagram Stories users. Instagram Stories directly competes with Snapchat, another photo sharing app that initially became famous due to it’s “vanishing photos” feature.
As of the second quarter of 2021, Snapchat had 293 million daily active users.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The RRING Work Package 3 (WP3) objective was to clarify how Research Funding Organisations (RFOs) and Research Performing Organisations (RPOs) operated within region-specific research and innovation environments. It explored how they navigated the governance and regulatory frameworks for Responsible Research and Innovation (RRI), as well as offering their perspectives on the entities responsible for RRI-related policy and action in their locales.
This data set covers the global survey research part, which was designed to contextualise how RPOs and RFOs interacted within the research environment and with non-academic stakeholders. Countries were grouped according to the UNESCO regions of the world and key results per region are listed below. For a detailed analysis and further findings of the work completed under WP3 of the RRING project, please refer to the full deliverable document "State of the Art of RRI in the Five UNESCO World Regions" [link to be inserted].
European and North American States
‘Diverse and inclusive': Respondents were most attitudinally supportive of the importance of ensuring ethical principles were applied in R&I (92%), followed by diverse perspectives (88%), and gender equality (79%). Including ethnic minorities was the area which garnered the least attitudinal support (71%). Respondents took the most practical steps towards engaging with diverse perspectives (63%), and the least towards inclusion of ethnic minorities (24%).
‘Anticipative and reflective’: Respondents widely agreed (82%) with the importance of ensuring R&I work does not cause concerns for society, but only 37% confirmed they had taken practical steps to ensure this.
‘Open and transparent’: Vast majorities of respondents agreed on the importance of keeping R&I methods open and transparent (94%), with 65% also confirming they take practical steps to do this. An equally high number agreed on the importance of making the results of R&I work accessible to as wide a public as possible (94%), and 68% confirmed this through their reported actions. This indicated the smallest value-action gap of all RRI measures for respondents from European and North American countries. Attitudinal agreement on the importance of making data freely available to the public was lower (83%), as was the practical action aspect for this measure (45%).
‘Responsive and adaptive to change’: Most respondents agreed (89%) that it was important to ensure their work addresses societal needs, and 62% confirmed that they take practical steps towards this aim.
Latin American and Caribbean States
‘Diverse and inclusive': Respondents were most attitudinally supportive of the importance of gender equality in R&I (86%), followed by ensuring ethical principles are applied (85%), and diverse perspectives incorporated (83%). Including ethnic minorities was the area which garnered the least attitudinal support (77%). Respondents took the most practical steps towards ensuring ethical principles guide their work (50%), and the least towards including ethnic minorities (25%), but the smallest value action gap was found for gender equality.
‘Anticipative and reflective’: Respondents agreed (79%) that it is important to ensure R&I work does not cause concerns for society, but only 29% confirmed they had taken practical steps to ensure this.
‘Open and transparent’: The majority of respondents agreed on the importance of keeping R&I methods open and transparent (89%), with 45% indicating they had taken practical action. A majority also agreed on the importance of making the results of R&I work accessible to as wide a public as possible (88%), and 44% backed this up with practical action. Attitudinal agreement on the importance of making data freely available to the public was slightly lower (81%), as was the practical action aspect for this measure (35%).
‘Responsive and adaptive to change’: Most respondents agreed (84%) that it was important to ensure their work addresses societal needs, and 49% confirmed that they take practical steps towards this aim.
Asian and Pacific States
‘Diverse and inclusive': Respondents were most attitudinally supportive of the importance of ensuring ethical principles were applied in R&I (90%), followed by diverse perspectives (89%), and gender equality (86%). Including ethnic minorities was the area which garnered the least attitudinal support (76%). Respondents took the most practical steps towards engaging with diverse perspectives (65%), and the least towards including ethnic minorities (30%).
‘Anticipative and reflective’: Respondents widely agreed (78%) with the importance of ensuring R&I work does not cause concerns for society, and 42% confirmed they had taken practical steps to ensure this.
‘Open and transparent’: The majority of respondents agreed on the importance of keeping R&I methods open and transparent (91%), with 58% indicating they take practical steps to do this. A majority also agreed on the importance of making the results of R&I work accessible to as wide a public as possible (89%), and 64% backed this up with practical action. Attitudinal agreement on the importance of making data freely available to the public was lower (79%), as was the practical action aspect for this measure (40%).
‘Responsive and adaptive to change’: Most respondents agreed (92%) that it was important to ensure their work addresses societal needs, and 69% confirmed that they take practical steps towards this aim. This was the RRI measure with the smallest valueaction gap for respondents from the Asian and Pacific region.
Arab States
‘Diverse and inclusive': Respondents were most attitudinally supportive of the importance of ensuring ethical principles were applied in R&I (93%), followed by diverse perspectives (81%), and gender equality (85%). Including ethnic minorities was the area which garnered the least attitudinal support (74%). Respondents took the most practical steps towards engaging with diverse perspectives (66%), which equated to one of two equally small value-action gaps for respondents from Arab states, and the least practical steps towards inclusion of ethnic minorities (22%).
‘Anticipative and reflective’: A high proportion of respondents (85%) agreed that it is important to ensure R&I work does not cause concerns for society. However, only 38% confirmed they had taken practical steps to ensure this.
‘Open and transparent’: The majority of respondents agreed on the importance of keeping R&I methods open and transparent (89%), with 59% also confirming they take practical steps to do this. A majority also agreed on the importance of making the results of R&I work accessible to as wide a public as possible (90%), and 66% backed this up with practical action. Ensuring public accessibility of research results was the second of two measures with equally small value-action gaps. Attitudinal agreement on the importance of making data freely available to the public was much lower (78%), which also reflected the practical action aspect for this measure (49%).
‘Responsive and adaptive to change’: Most respondents agreed (96%) that it was important to ensure their work addresses societal needs, and 68% confirmed that they take practical steps to achieve this.
African States
‘Diverse and inclusive': Respondents were most attitudinally supportive of the importance of ensuring engagement with diverse perspectives and expertise in R&I (91%), followed by ensuring ethical principles are applied (90%), and gender equality (89%). Including ethnic minorities was the area which garnered the least attitudinal support (74%). Respondents took the most practical steps towards ensuring ethical principles guide their work (57%), and the least towards including ethnic minorities (32%).
‘Anticipative and reflective’: The majority of respondents (85%) agreed that it is important to ensure R&I work does not cause concerns for society, with 59% confirming that they take practical steps to ensure this.
‘Open and transparent’: A high proportion of respondents agreed on the importance of keeping R&I methods open and transparent (90%), with 54% also confirming they take practical steps to do this. A majority also agreed on the importance of making the results of R&I work accessible to as wide a public as possible (86%), and 56% backed this up with practical action. Attitudinal agreement on the importance of making data freely available to the public was significantly lower (73%), as was the practical action aspect for this measure (38%).
‘Responsive and adaptive to change’: Respondents mostly agreed (92%) that it was important to ensure their work addresses societal needs, and 64% confirmed that they take practical steps towards this aim. This was the RRI measure with the smallest valueaction gap for respondents from African states.
Note: Please refer to the "RRING WP3 - Survey Data Documentation" document for detailed instructions on how to use this dataset.
Retirement Notice: This item is in mature support as of April 2024 and will be retired in December 2026. Please use the following layers at replacements: World Soils 250m Percent Sand, World Soils 250m Percent Silt, World Soils 250m Percent Clay. Esri recommends updating your maps and apps to use the new version.Soil is a key natural resource that provides the foundation of basic ecosystem services. Soil determines the types of farms and forests that can grow on a landscape. Soil filters water. Soil helps regulate the Earth's climate by storing large amounts of carbon. Activities that degrade soils reduce the value of the ecosystem services that soil provides. For example, since 1850 35% of human caused green house gas emissions are linked to land use change. The Soil Science Society of America is a good source of of additional information. Soil texture is an important factor determining which kinds of plants can be grown in a particular location. Texture determines a soil's susceptibility to erosion or compaction and how well a soil holds nutrients and water. For example sandy soils tend to be well drained and dry quickly often holding few nutrients while clay soils may hold much more water and many more plant nutrients. Dataset SummaryThis layer provides access to a 30 arc-second (roughly 1 km) cell-sized raster with attributes related to soil texture derived from the Harmonized World Soil Database v 1.2. The values in this layer are for the dominant soil in each mapping unit (sequence field = 1). Fields for topsoil (0-30 cm) and subsoil (30-100 cm) are available for each of these attributes related to soil texture:USDA Texture ClassGravel - % volumeSand - % weightSilt - % weightClay - % weight The layer is symbolized with the topsoil texture class. The document Harmonized World Soil Database Version 1.2 provides more detail on the soil texture attributes contained in this layer. Other attributes contained in this layer include:Soil Mapping Unit Name - the name of the spatially dominant major soil groupSoil Mapping Unit Symbol - a two letter code for labeling the spatially dominant major soil group in thematic mapsData Source - the HWSD is an aggregation of datasets. The data sources are the European Soil Database (ESDB), the 1:1 million soil map of China (CHINA), the Soil and Terrain Database Program (SOTWIS), and the Digital Soil Map of the World (DSMW).Percentage of Mapping Unit covered by dominant component More information on the Harmonized World Soil Database is available here.
The World Flux Data Set contains a total of 49 variables (14 categorical and 35 numeric) including sediment-water fluxes of oxygen, ammonium, nitrite, nitrate plus nitrite, nitrate, dissolved inorganic phosphorus and dissolved silica (DSi) as well as sample location, date of measurement, measurement techniques, and a variety of water column and sediment characteristics (see Metadata Table 2 for full description). There were very few studies that contained data for all of these variables; most had 30 to 70% of all variables available. In addition to the general criteria indicated above, we only included data sets in our analysis that reported sampling location, literature source, date of measurement, light conditions at the sediment surface, description of the measurement technique (i.e., intact cores or in-situ chambers), stirring method, core or chamber area, and at least one sediment-water flux measurement for one of the analytes of interest. Most studies reported fluxes of several analytes for multiple time periods during a year and additional values for water column and sediment conditions. In a limited number of cases, the minimum data needed for inclusion in the data set were not reported in the paper containing the sediment flux data. In these cases we were able to obtain the required data by contacting authors or we were able to find other papers containing the needed data. The current data set contains 2879 lines of data and is also made available on the web (www.gonzo.cbl.umces.edu).
The global number of Facebook users was forecast to continuously increase between 2023 and 2027 by in total 391 million users (+14.36 percent). After the fourth consecutive increasing year, the Facebook user base is estimated to reach 3.1 billion users and therefore a new peak in 2027. Notably, the number of Facebook users was continuously increasing over the past years. User figures, shown here regarding the platform Facebook, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period and count multiple accounts by persons only once.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).
Soil information, from the global to the local scale, has often been the one missing biophysical information layer, the absence of which has added to the uncertainties of predicting potentials and constraints for food and fiber production. The lack of reliable and harmonized soil data has considerably hampered land degradation assessments, environmental impact studies and adapted sustainable land management interventions.
Recognizing the urgent need for improved soil information worldwide, particularly in the context of the Climate Change Convention and the Kyoto Protocol for soil carbon measurements and the immediate requirement for the FAO/IIASA Global Agro-ecological Assessment study (GAEZ v3.0), the Food and Agriculture Organization of the United Nations (FAO) and the International Institute for Applied Systems Analysis (IIASA) took the initiativeof combining the recently collected vast volumes of regional and national updates of soil information with the information already contained within the 1:5,000,000 scale FAOUNESCO Digital Soil Map of the World, into a new comprehensive Harmonized World Soil Database (HWSD).
This database was achieved in partnership with: • ISRIC-World Soil Information together with FAO, which were responsible for the development of regional soil and terrain databases and the WISE soil profile database; • the European Soil Bureau Network, which had recently completed a major update of soil information for Europe and northern Eurasia, and • the Institute of Soil Science, Chinese Academy of Sciences which provided the recent 1:1,000,000 scale Soil Map of China.
This dataset provides information about 2007 Endowment figures across Colleges and Universities in the World (mainly in the United States). The Study was conducted by NACUBO. Results are also listed for 2006 and percentage change has also been listed between the two years. Locations are mapped by the lat/lon coordinates of the institution. More information on the study can be found at http://www.nacubo.org/ The National Endowment Study is the largest and longest running annual survey studying the endowment holdings of higher education institutions and their foundations. Information is collected and calculated on behalf of NACUBO by TIAA-CREF. Seven hundred and eighty-five (785) institutions in the United States and Canada participated in the 2007 NES, which is the largest number in the 35-year history of the study and the seventh consecutive year of record-breaking participation since NACUBO began its partnership with TIAA-CREF in 2000. NACUBO, (National Association of College and University Business Officers) founded in 1962, is a nonprofit professional organization representing chief administrative and financial officers at more than 2,100 colleges and universities across the country. NACUBOs mission is to promote sound management and financial practices at colleges and universities. Data was accessed on 1/23/2008 http://www.nacubo.org/Images/All%20Institutions%20Listed%20by%20FY%202007%20Market%20Value%20of%20Endowment%20Assets_2007%20NES.pdf
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
This dataset summarises 35 years of seagrass data collection (1984-2018) within the Great Barrier Reef World Heritage Area into one GIS shapefile containing seagrass presence and absence survey data for 81,387 sites. This dataset is dominated by 1,010,826 'absent' compared to 47,049 'present' records.
Managing seagrass resources in the GBRWHA requires adequate baseline information on where seagrass is (presence/absence), what species are present, and date of collection. This baseline is particularly important as a reference point against which to compare seagrass loss or change through time. The scale of the GBRWHA (1000s of kilometres) and the remoteness of many seagrass meadows from human populations present a challenge for research and management agencies reporting on the state of seagrass ecological indicators. Broad-scale and repeated surveys/studies of areas this large are logistically and financially impracticable. However seagrass data is being collected through various projects which, although designed for specific reasons, are amenable to collating a picture of the extent and state of the seagrass resource.
The data used here along with additional references and descriptions of the data is at https://eatlas.org.au/data/uuid/18386963-6960-4eb9-889b-d0964069ce13
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the United States population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for United States. The dataset can be utilized to understand the population distribution of United States by age. For example, using this dataset, we can identify the largest age group in United States.
Key observations
The largest age group in United States was for the group of age 25-29 years with a population of 22,854,328 (6.93%), according to the 2021 American Community Survey. At the same time, the smallest age group in United States was the 80-84 years with a population of 5,932,196 (1.80%). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for United States Population by Age. You can refer the same here