Facebook
TwitterAs of February 2025, the average daily social media usage of internet users worldwide amounted to 141 minutes per day, down from 143 minutes in the previous year. Currently, the country with the most time spent on social media per day is Brazil, with online users spending an average of 3 hours and 49 minutes on social media each day. In comparison, the daily time spent with social media in the U.S. was just 2 hours and 16 minutes. Global social media usage Currently, the global social network penetration rate is 62.3 percent. Northern Europe had an 81.7 percent social media penetration rate, topping the ranking of global social media usage by region. Eastern and Middle Africa closed the ranking with 10.1 and 9.6 percent usage reach, respectively. People access social media for a variety of reasons. Users like to find funny or entertaining content and enjoy sharing photos and videos with friends, but mainly use social media to stay in touch with current events and friends. Global impact of social media Social media has a wide-reaching and significant impact on not only online activities but also offline behavior and life in general. During a global online user survey in February 2019, a significant share of respondents stated that social media had increased their access to information, ease of communication, and freedom of expression. On the flip side, respondents also felt that social media had worsened their personal privacy, increased polarization in politics, and heightened everyday distractions.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Description:
The "Daily Social Media Active Users" dataset provides a comprehensive and dynamic look into the digital presence and activity of global users across major social media platforms. The data was generated to simulate real-world usage patterns for 13 popular platforms, including Facebook, YouTube, WhatsApp, Instagram, WeChat, TikTok, Telegram, Snapchat, X (formerly Twitter), Pinterest, Reddit, Threads, LinkedIn, and Quora. This dataset contains 10,000 rows and includes several key fields that offer insights into user demographics, engagement, and usage habits.
Dataset Breakdown:
Platform: The name of the social media platform where the user activity is tracked. It includes globally recognized platforms, such as Facebook, YouTube, and TikTok, that are known for their large, active user bases.
Owner: The company or entity that owns and operates the platform. Examples include Meta for Facebook, Instagram, and WhatsApp, Google for YouTube, and ByteDance for TikTok.
Primary Usage: This category identifies the primary function of each platform. Social media platforms differ in their primary usage, whether it's for social networking, messaging, multimedia sharing, professional networking, or more.
Country: The geographical region where the user is located. The dataset simulates global coverage, showcasing users from diverse locations and regions. It helps in understanding how user behavior varies across different countries.
Daily Time Spent (min): This field tracks how much time a user spends on a given platform on a daily basis, expressed in minutes. Time spent data is critical for understanding user engagement levels and the popularity of specific platforms.
Verified Account: Indicates whether the user has a verified account. This feature mimics real-world patterns where verified users (often public figures, businesses, or influencers) have enhanced status on social media platforms.
Date Joined: The date when the user registered or started using the platform. This data simulates user account history and can provide insights into user retention trends or platform growth over time.
Context and Use Cases:
Researchers, data scientists, and developers can use this dataset to:
Model User Behavior: By analyzing patterns in daily time spent, verified status, and country of origin, users can model and predict social media engagement behavior.
Test Analytics Tools: Social media monitoring and analytics platforms can use this dataset to simulate user activity and optimize their tools for engagement tracking, reporting, and visualization.
Train Machine Learning Algorithms: The dataset can be used to train models for various tasks like user segmentation, recommendation systems, or churn prediction based on engagement metrics.
Create Dashboards: This dataset can serve as the foundation for creating user-friendly dashboards that visualize user trends, platform comparisons, and engagement patterns across the globe.
Conduct Market Research: Business intelligence teams can use the data to understand how various demographics use social media, offering valuable insights into the most engaged regions, platform preferences, and usage behaviors.
Sources of Inspiration: This dataset is inspired by public data from industry reports, such as those from Statista, DataReportal, and other market research platforms. These sources provide insights into the global user base and usage statistics of popular social media platforms. The synthetic nature of this dataset allows for the use of realistic engagement metrics without violating any privacy concerns, making it an ideal tool for educational, analytical, and research purposes.
The structure and design of the dataset are based on real-world usage patterns and aim to represent a variety of users from different backgrounds, countries, and activity levels. This diversity makes it an ideal candidate for testing data-driven solutions and exploring social media trends.
Future Considerations:
As the social media landscape continues to evolve, this dataset can be updated or extended to include new platforms, engagement metrics, or user behaviors. Future iterations may incorporate features like post frequency, follower counts, engagement rates (likes, comments, shares), or even sentiment analysis from user-generated content.
By leveraging this dataset, analysts and data scientists can create better, more effective strategies ...
Facebook
TwitterHow much time do people spend on social media?
As of 2024, the average daily social media usage of internet users worldwide amounted to 143 minutes per day, down from 151 minutes in the previous year. Currently, the country with the most time spent on social media per day is Brazil, with online users spending an average of three hours and 49 minutes on social media each day. In comparison, the daily time spent with social media in
the U.S. was just two hours and 16 minutes. Global social media usageCurrently, the global social network penetration rate is 62.3 percent. Northern Europe had an 81.7 percent social media penetration rate, topping the ranking of global social media usage by region. Eastern and Middle Africa closed the ranking with 10.1 and 9.6 percent usage reach, respectively.
People access social media for a variety of reasons. Users like to find funny or entertaining content and enjoy sharing photos and videos with friends, but mainly use social media to stay in touch with current events friends. Global impact of social mediaSocial media has a wide-reaching and significant impact on not only online activities but also offline behavior and life in general.
During a global online user survey in February 2019, a significant share of respondents stated that social media had increased their access to information, ease of communication, and freedom of expression. On the flip side, respondents also felt that social media had worsened their personal privacy, increased a polarization in politics and heightened everyday distractions.
Facebook
TwitterAttribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
This is dummy data, that I have generated by using the 'NumPy' Library of Python. This data shows how much a user spends time on their devices using Social Media.
I generated this data to train an AI model for myself for practice purposes only.
The description for each column is as follows:
Facebook
TwitterOpen Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
This dataset was originally collected for a data science and machine learning project that aimed at investigating the potential correlation between the amount of time an individual spends on social media and the impact it has on their mental health.
The project involves conducting a survey to collect data, organizing the data, and using machine learning techniques to create a predictive model that can determine whether a person should seek professional help based on their answers to the survey questions.
This project was completed as part of a Statistics course at a university, and the team is currently in the process of writing a report and completing a paper that summarizes and discusses the findings in relation to other research on the topic.
The following is the Google Colab link to the project, done on Jupyter Notebook -
https://colab.research.google.com/drive/1p7P6lL1QUw1TtyUD1odNR4M6TVJK7IYN
The following is the GitHub Repository of the project -
https://github.com/daerkns/social-media-and-mental-health
Libraries used for the Project -
Pandas
Numpy
Matplotlib
Seaborn
Sci-kit Learn
Facebook
TwitterAttribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Time-Wasters on Social Media Dataset Overview The "Time-Wasters on Social Media" dataset offers a detailed look into user behavior and engagement with social media platforms. It captures various attributes that can help analyze the impact of social media on users' time and productivity. This dataset is valuable for researchers, marketers, and social scientists aiming to understand the nuances of social media consumption.
This dataset was generated using synthetic data techniques with the help of NumPy and pandas. The data is artificially created to simulate real-world social media usage patterns for research and analysis purposes.
Columns Description UserID: A unique identifier assigned to each user. Age: The age of the user. Gender: The gender of the user. Location: The geographical location of the user. Income: The annual income of the user. Debt: Tells If the is in Debt or Not. Owns Property: Indicates whether the user owns any property (Yes/No). Profession: The profession or job title of the user. Demographics: Additional demographic information about the user (Rural or Urban Life). Platform: The social media platform used by the user (e.g., Facebook, Instagram, TikTok). Total Time Spent: The total time the user has spent on the platform. Number of Sessions: The number of sessions the user has had on the platform. Video ID: A unique identifier for each video watched. Video Category: The category of the video watched (e.g., Entertainment, Gaming, Pranks, Vlog). Video Length: The length of the video watched. Engagement: The engagement level of the user with the video (e.g., Likes, Comments). Importance Score: A score representing the perceived importance of the video to the user. Time Spent On Video: The amount of time the user spent watching the video. Number of Videos Watched: The total number of videos watched by the user. Scroll Rate: The rate at which the user scrolls through content. Frequency: How frequently the user logs into the platform. Productivity Loss: The amount of productivity lost due to time spent on social media. Satisfaction: The satisfaction level of the user with the content consumed. Watch Reason: The reason why the user watched the video (e.g., Entertainment, Information). DeviceType: The type of device used to access the platform (e.g., Mobile, Desktop). OS: The operating system of the device used. Watch Time: The specific time of day when the user watched the video. Self Control: The user's self-assessed level of self-control while using the platform. Addiction Level: The user's self-assessed level of addiction to social media. Current Activity: The activity the user was engaged in before using the platform. ConnectionType: The type of internet connection used by the user (e.g., Wi-Fi, Mobile Data).
Usage This dataset can be utilized to:
Analyze patterns in social media usage. Understand demographic differences in platform engagement. Examine the impact of social media on productivity. Develop strategies to improve user engagement and satisfaction. Study the correlation between social media usage and various demographic factors.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset captures the relationship between social media usage, screen-time behavior, and daily lifestyle factors such as sleep duration and interaction quality. It is useful for analyzing patterns that may influence mental well-being, digital habits, and behavioral trends among users.
The data contains individual-level entries with details like daily screen time, social media time, positive vs. negative interactions, demographic information, and sleep hours. It is ideal for:
| Column Name | Description |
|---|---|
| person_name | Name or identifier of the person. |
| age | Age of the individual in years. |
| date | The date on which the data was recorded. |
| gender | Gender of the user (Male, Female, Other). |
| platform | Primary social media platform the person uses. |
| daily_screen_time_min | Total daily device screen time in minutes. |
| social_media_time_min | Total time spent on social media in minutes per day. |
| negative_interactions_count | Number of negative or harmful interactions experienced online. |
| positive_interactions_count | Number of positive or supportive interactions experienced online. |
| sleep_hours | Total number of hours the person sleeps per day. |
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
hello everyone. I wanted to share here my data set, which is completely my own product of imagination and has no connection with the real data that I wrote for my own data analysis training, for analysts working on data analysis. have fun:))))))
UserId: Unique identifier for each user in the data set
UsageDuration: Total time spent by the user on social media in hours
Age: Age of the user in years
Country: Country of residence of the user
TotalLikes: Total number of likes giving by the user in a day
Facebook
TwitterIn 2024, children in the United Kingdom spent an average of *** minutes per day on TikTok. This was followed by Instagram, as children in the UK reported using the app for an average of ** minutes daily. Children in the UK aged between four and 18 years also used Facebook for ** minutes a day on average in the measured period. Mobile ownership and usage among UK children In 2021, around ** percent of kids aged between eight and 11 years in the UK owned a smartphone, while children aged between five and seven having access to their own device were approximately ** percent. Mobile phones were also the second most popular devices used to access the web by children aged between eight and 11 years, as tablet computers were still the most popular option for users aged between three and 11 years. Children were not immune to the popularity acquired by short video format content in 2020 and 2021, spending an average of ** minutes per day engaging with TikTok, as well as over ** minutes on the YouTube app in 2021. Children data protection In 2021, ** percent of U.S. parents and ** percent of UK parents reported being slightly concerned with their children’s device usage habits. While the share of parents reporting to be very or extremely concerned was considerably smaller, children are considered among the most vulnerable digital audiences and need additional attention when it comes to data and privacy protection. According to a study conducted during the first quarter of 2022, ** percent of children’s apps hosted in the Google Play Store and ** percent of apps hosted in the Apple App Store transmitted users’ locations to advertisers. Additionally, ** percent of kids’ apps were found to collect persistent identifiers, such as users’ IP addresses, which could potentially lead to Children’s Online Privacy Protection Act (COPPA) violations in the United States. In the United Kingdom, companies have to take into account several obligations when considering online environments for children, including an age-appropriate design and avoiding sharing children’s data.
Facebook
Twitter
This database is comprised of 951 participants who provided self-report data online in their school classrooms. The data was collected in 2016 and 2017. The dataset is comprised of 509 males (54%) and 442 females (46%). Their ages ranged from 12 to 16 years (M = 13.69, SD = 0.72). Seven participants did not report their age. The majority were born in Australia (N = 849, 89%). The next most common countries of birth were China (N = 24, 2.5%), the UK (N = 23, 2.4%), and the USA (N = 9, 0.9%). Data were drawn from students at five Australian independent secondary schools.
The data contains item responses for the Spence Children’s Anxiety Scale (SCAS; Spence, 1998) which is comprised of 44 items. The Social media question asked about frequency of use with the question “How often do you use social media?”. The response options ranged from constantly to once a week or less. Items measuring Fear of Missing Out were included and incorporated the following five questions based on the APS Stress and Wellbeing in Australia Survey (APS, 2015). These were “When I have a good time it is important for me to share the details online; I am afraid that I will miss out on something if I don’t stay connected to my online social networks; I feel worried and uncomfortable when I can’t access my social media accounts; I find it difficult to relax or sleep after spending time on social networking sites; I feel my brain burnout with the constant connectivity of social media. Internal consistency for this measure was α = .81. Self compassion was measured using the 12-item short-form of the Self-Compassion Scale (SCS-SF; Raes et al., 2011).
The data set has the option of downloading an excel file (composed of two worksheet tabs) or CSV files 1) Data and 2) Variable labels.
References:
Australian Psychological Society. (2015). Stress and wellbeing in Australia survey. https://www.headsup.org.au/docs/default-source/default-document-library/stress-and-wellbeing-in-australia-report.pdf?sfvrsn=7f08274d_4
Raes, F., Pommier, E., Neff, K. D., & Van Gucht, D. (2011). Construction and factorial validation of a short form of the self-compassion scale. Clinical Psychology and Psychotherapy, 18(3), 250-255. https://doi.org/10.1002/cpp.702
Spence, S. H. (1998). A measure of anxiety symptoms among children. Behaviour Research and Therapy, 36(5), 545-566. https://doi.org/10.1016/S0005-7967(98)00034-5
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset explores the relationship between digital behavior and mental well-being among 100,000 individuals. It records how much time people spend on screens, use of social media (including TikTok), and how these habits may influence their sleep, stress, and mood levels.
It includes six numerical features, all clean and ready for analysis, making it ideal for machine learning tasks like regression or classification. The data enables researchers and analysts to investigate how modern digital lifestyles may impact mental health indicators in measurable ways.
Facebook
TwitterThis dataset was created by wojteekkk
Facebook
Twitterhttps://data.gov.sg/open-data-licencehttps://data.gov.sg/open-data-licence
Dataset from Info-communications Media Development Authority. For more information, visit https://data.gov.sg/datasets/d_5ead501e7ac28f12c1655499bfd4b223/view
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
this graph was create in Power Bi:
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2F13cc72b2c805991d7af10ea6aa396cd0%2FSem%20ttulo_page-0001.jpg?generation=1710364280999487&alt=media" alt="">
Introduction
Work, an integral part of human life, has undergone significant transformations over the past century and a half. The amount of time individuals dedicate to work has shifted, reflecting changes in societal norms, economic structures, and technological advancements. This exploration delves into the intricate dynamics of working hours worldwide, shedding light on disparities across countries and within societies. By examining historical trends and contemporary data, we gain insights into the evolving nature of work and its profound impact on individuals' lives.
Historical Context
The Industrial Revolution marked a pivotal moment in human history, fundamentally altering the nature of work. With the mechanization of industries, the concept of the traditional workday emerged, characterized by long hours and minimal breaks. Throughout the 19th and early 20th centuries, workers endured grueling schedules, often exceeding 12 hours per day, six days a week. This relentless pursuit of productivity came at the expense of worker well-being and family life, prompting calls for labor reforms.
Labor Movements and Reform
The rise of labor movements in the late 19th and early 20th centuries sparked a wave of social change, advocating for shorter workdays and improved working conditions. The landmark achievements, such as the eight-hour workday and weekends off, marked significant milestones in the fight for workers' rights. Countries worldwide implemented labor laws to regulate working hours, aiming to strike a balance between economic productivity and human welfare. These reforms laid the foundation for the modern workweek and paved the way for further advancements in labor standards.
Contemporary Work Patterns
In the 21st century, the landscape of work continues to evolve, shaped by globalization, technological innovation, and shifting societal values. While many industrialized nations have embraced shorter workweeks and increased leisure time, disparities persist on a global scale. Developed countries typically exhibit lower average working hours, accompanied by robust social welfare systems and flexible labor policies. In contrast, developing economies often grapple with longer work hours, driven by economic necessity and informal employment practices.
Regional Disparities
Regional variations in working hours highlight the complex interplay of cultural, economic, and political factors. In Europe, countries like France and Germany have embraced a culture of work-life balance, with statutory limits on working hours and generous vacation entitlements. Scandinavian nations, renowned for their progressive social policies, prioritize employee well-being through initiatives such as flexible work arrangements and parental leave. In contrast, regions like Asia and the Middle East experience longer work hours, influenced by cultural norms emphasizing diligence and dedication.
Gender Dynamics
Gender disparities in working hours remain a persistent challenge, reflecting entrenched inequalities in the workplace. Women often shoulder disproportionate caregiving responsibilities, leading to reduced participation in the labor force and truncated career trajectories. The gender pay gap further exacerbates these disparities, perpetuating a cycle of economic disadvantage for women. Addressing gender inequities in working hours requires multifaceted interventions, including affordable childcare, parental leave policies, and workplace diversity initiatives.
The Gig Economy and Flexible Work The rise of the gig economy and remote work arrangements has reshaped traditional notions of employment and working hours. Freelancers and independent contractors enjoy greater flexibility in scheduling, blurring the boundaries between work and personal life. Digital platforms have facilitated the emergence of remote work opportunities, enabling individuals to customize their work hours and locations. However, concerns persist regarding job security, benefits coverage, and the erosion of traditional labor protections in the gig economy.
Impact on Well-being
The relationship between working hours and well-being is complex, influenced by factors such as job satisfaction, socioeconomic status, and work-life balance. While longer work hours may boost productivity in the short term, they can lead to burnout, stress, and diminished quality of life over time. Conversely, shorter workweeks and increased leisure time have been linked to improved mental health, greater h...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This ai-generated dataset provides detailed information on how individuals allocate their time across various social media platforms, including Facebook, Twitter, Instagram, YouTube, Snapchat, TikTok, LinkedIn, WhatsApp, and Pinterest. Each entry represents the number of hours spent on each platform and includes location data to explore geographic trends in social media consumption.
The dataset is ideal for analyzing:
Perfect for social behavior analysis and data-driven marketing insights!
Facebook
TwitterAttribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
This database is comprised of 603 participants who provided self-report data online in their school classrooms. The data was collected in 2016 and 2017. The dataset is comprised of 208 males (34%) and 395 females (66%). Their ages ranged from 12 to 15 years. Their age in years at baseline is provided. The majority were born in Australia. Data were drawn from students at two Australian independent secondary schools. The data contains total responses for the following scales:
The Intolerance of Uncertainty Scale (IUS-12; Short form; Carleton et al, 2007) is a 12-item scale measuring two dimensions of Prospective and Inhibitory intolerance of uncertainty.
Two subscales of the Children’s Automatic Thoughts Scale (CATS; Schniering & Rapee, 2002) were administered. The Peronalising and Social Threat were each composed of 10 items.
UPPS Impulsive Behaviour Scale (Whiteside & Lynam, 2001) which is comprised of 12 items.
Dispositional Envy Scale (DES; Smith et al, 1999) which is comprised of 8 items.
Spence Children’s Anxiety Scale (SCAS; Spence, 1998) which is comprised of 44 items. Three subscales totals included were the GAD subscale (labelled SCAS_GAD), the OCD subscale (labelled SCAS_OCD) and the Social Anxiety subscale (labelled SCAS_SA). Each subscale was comprised of 6 items.
Avoidance and Fusion Questionnaire for Youth (AFQ-Y; Greco et al., 2008) which is comprised of 17 items.
Distress Disclosure Index (DDI; Kahn & Hessling, 2001) which is comprised of 12 items.
Repetitive Thinking Questionnaire-10 (RTQ-10; McEvoy et al., 2014) which is comprised of 10 items.
The Brief Fear of Negative Evaluation Scale, Straightforward Items (BFNE-S; Rodebaugh et al., 2004) which is comprised of 8 items.
Short Mood and Feelings Questionnaire (SMFQ; Angold et al., 1995) which is comprised by 13 items.
The Self-Compassion Scale Short Form (SCS-SF; Raes et al., 2011) which is comprised by 12 items. The subscales include Self Kindness, Self Judgment, Social Media subscales - These subscale scores were based on social media questions composed for this project and also drawn from three separate scales as indicated in the table below. The original scales assessed whether participants experience discomfort and a fear of missing out when disconnected from social media (taken from the Australian Psychological Society Stress and Wellbeing Survey; Australian Psychological Society, 2015a), style of social media use (Tandoc et al., 2015b) and Fear of Missing Out (Przybylski et al., 2013c). The items in each subscale are listed below.
Pub_Share Public Sharing When I have a good time it is important for me to share the details onlinec
On social media how often do you write a status updateb
On social media how often do you post photosb
Surveillance_SM On social media how often do you read the newsfeed
On social media how often do you read a friend’s status updateb
On social media how often do you view a friend’s photob
On social media how often do you browse a friend’s timelineb
Upset Share On social media how often do you go online to share things that have upset you?
Text private On social media how often do you Text friends privately to share things that have upset you?
Insight_SM Social Media Reduction I use social media less now because it often made me feel inadequate
FOMO I am afraid that I will miss out on something if I don’t stay connected to my online social networksa.
I feel worried and uncomfortable when I can’t access my social media accountsa.
Neg Eff of SM I find it difficult to relax or sleep after spending time on social networking sitesa.
I feel my brain ‘burnout’ with the constant connectivity of social mediaa.
I notice I feel envy when I use social media.
I can easily detach from the envy that appears following the use of social media (reverse scored)
DES_SM Envy Mean acts online Feeling envious about another person has led me to post a comment online about another person to make them laugh
Feeling envious has led me to post a photo online without someone’s permission to make them angry or to make fun of them
Feeling envious has prompted me to keep another student out of things on purpose, excluding her from my group of friends or ignoring them.
Substance Use: Two items measuring peer influence on alcohol consumption were adapted from the SHAHRP “Patterns of Alcohol Use” measure (McBride, Farringdon & Midford, 2000). These items were “When I am with friends I am quite likely to drink too much alcohol” and “Substances (alcohol, drugs, medication) are the immediate way I respond to my thoughts about a situation when I feel distressed or upset.
Angold, A., Costello, E. J., Messer, S. C., & Pickles, A. (1995). Development of a short questionnaire for use in epidemiological studies of depression in children and adolescents. International Journal of Methods in Psychiatric Research, 5(4), 237–249.
Australian Psychological Society. (2015). Stress and wellbeing in Australia survey. https://www.headsup.org.au/docs/default-source/default-document-library/stress-and-wellbeing-in-australia-report.pdf?sfvrsn=7f08274d_4
Greco, L.A., Lambert, W. & Baer., R.A. (2008) Psychological inflexibility in childhood and adolescence: Development and evaluation of the Avoidance and Fusion Questionnaire for Youth. Psychological Assessment, 20, 93-102. https://doi.org/10.1037/1040-3590.20.2.9
Kahn, J. H., & Hessling, R. M. (2001). Measuring the tendency to conceal versus disclose psychological distress. Journal of Social and Clinical Psychology, 20(1), 41–65. https://doi.org/10.1521/jscp.20.1.41.22254
McBride, N., Farringdon, F. & Midford, R. (2000) What harms do young Australians experience in alcohol use situations. Australian and New Zealand Journal of Public Health, 24, 54–60 https://doi.org/10.1111/j.1467-842x.2000.tb00723.x
McEvoy, P.M., Thibodeau, M.A., Asmundson, G.J.G. (2014) Trait Repetitive Negative Thinking: A brief transdiagnostic assessment. Journal of Experimental Psychopathology, 5, 1-17. Doi. 10.5127/jep.037813
Przybylski, A. K., Murayama, K., DeHaan, C. R., & Gladwell, V. (2013). Motivational, emotional, and behavioral correlates of fear of missing out. Computers in human behavior, 29(4), 1841-1848. https://doi.org/10.1016/j.chb.2013.02.014
Raes, F., Pommier, E., Neff, K. D., & Van Gucht, D. (2011). Construction and factorial validation of a short form of the self-compassion scale. Clinical Psychology and Psychotherapy, 18(3), 250-255. https://doi.org/10.1002/cpp.702
Rodebaugh, T. L., Woods, C. M., Thissen, D. M., Heimberg, R. G., Chambless, D. L., & Rapee, R. M. (2004). More information from fewer questions: the factor structure and item properties of the original and brief fear of negative evaluation scale. Psychological assessment, 16(2), 169. https://doi.org/10.1037/10403590.16.2.169
Schniering, C. A., & Rapee, R. M. (2002). Development and validation of a measure of children’s automatic thoughts: the children’s automatic thoughts scale. Behaviour Research and Therapy, 40(9), 1091-1109. . https://doi.org/10.1016/S0005-7967(02)00022-0
Smith, R. H., Parrott, W. G., Diener, E. F., Hoyle, R. H., & Kim, S. H. (1999). Dispositional envy. Personality and Social Psychology Bulletin, 25(8), 1007-1020. https://doi.org/10.1177/01461672992511008
Spence, S. H. (1998). A measure of anxiety symptoms among children. Behaviour Research and Therapy, 36(5), 545-566. https://doi.org/10.1016/S0005-7967(98)00034-5
Tandoc, E. C., Ferrucci, P., & Duffy, M. (2015). Facebook use, envy, and depression among college students: Is facebooking depressing? Computers in Human Behavior, 43, 139–146. https://doi.org/10.1016/j.chb.2014.10.053
Whiteside, S.P. & Lynam, D.R. (2001) The five factor model and impulsivity: using a structural model of personality to understand impulsivity. Personality and Individual Differences 30,669-689. https://doi.org/10.1016/S0191-8869(00)00064-7
The data was collected by Dr Danielle A Einstein, Dr Madeleine Fraser, Dr Anne McMaugh, Prof Peter McEvoy, Prof Ron Rapee, Assoc/Prof Maree Abbott, Prof Warren Mansell and Dr Eyal Karin as part of the Insights Project.
The data set has the option of downloading an excel file (composed of two worksheet tabs) or CSV files 1) Data and 2) Variable labels.
Facebook
Twitterhttps://www.icpsr.umich.edu/web/ICPSR/studies/3191/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/3191/terms
For this project, data from 24-hour time diaries probing several indicators of social capital and life quality were gathered to update prior time series on how Americans spend time. Data were collected to be consistent with time-diary collections prepared in 1965, 1975, and 1985 (see ICPSR 7254, 7580, and 9875) to allow cross-time comparisons. The survey was conducted by the Survey Research Center at the University of Maryland between March 1998 and December 1999 (effectively covering each season of the year and each day of the week) with a representative sample of 1,151 respondents aged 18 and older. Using established time-diary procedures with Computer Assisted Telephone Interviewing (CATI), respondents were asked to complete "yesterday" time diaries detailing their primary activities from midnight to midnight of the previous day, their secondary activities (e.g., activities that occurred simultaneously with the primary activities), and when, with whom, and where they engaged in the activities. The project focus included the following substantive and methodological areas: (1) time spent in social interaction, particularly parental time with children, (2) measurement problems in time estimates, (3) activity and social interaction patterns of elderly Americans, and (4) time spent on the Internet and effects on social isolation and other media usage. In addition to the estimates of time use obtained from the time diaries, the project elicited information on (1) marital and parental status, education and employment status of the respondent and spouse (if married), age, race/ethnicity, and family income, (2) weekly and previous-day recall estimates of time spent on paid employment, housework, religious activities, and television viewing, (3) feelings of time pressure, and (4) use of the Internet, e-mail, and home computers.
Facebook
TwitterPlease cite the following paper when using this dataset: N. Thakur, “Twitter Big Data as a Resource for Exoskeleton Research: A Large-Scale Dataset of about 140,000 Tweets and 100 Research Questions,” Preprints, 2022, DOI: 10.20944/preprints202206.0383.v1 Abstract The exoskeleton technology has been rapidly advancing in the recent past due to its multitude of applications and use cases in assisted living, military, healthcare, firefighting, and industries. With the projected increase in the diverse uses of exoskeletons in the next few years in these application domains and beyond, it is crucial to study, interpret, and analyze user perspectives, public opinion, reviews, and feedback related to exoskeletons, for which a dataset is necessary. The Internet of Everything era of today's living, characterized by people spending more time on the Internet than ever before, holds the potential for developing such a dataset by mining relevant web behavior data from social media communications, which have increased exponentially in the last few years. Twitter, one such social media platform, is highly popular amongst all age groups, who communicate on diverse topics including but not limited to news, current events, politics, emerging technologies, family, relationships, and career opportunities, via tweets, while sharing their views, opinions, perspectives, and feedback towards the same. Therefore, this work presents a dataset of about 140,000 Tweets related to exoskeletons. that were mined for a period of 5-years from May 21, 2017, to May 21, 2022. The tweets contain diverse forms of communications and conversations which communicate user interests, user perspectives, public opinion, reviews, feedback, suggestions, etc., related to exoskeletons. Instructions: This dataset contains about 140,000 Tweets related to exoskeletons. that were mined for a period of 5-years from May 21, 2017, to May 21, 2022. The tweets contain diverse forms of communications and conversations which communicate user interests, user perspectives, public opinion, reviews, feedback, suggestions, etc., related to exoskeletons. The dataset contains only tweet identifiers (Tweet IDs) due to the terms and conditions of Twitter to re-distribute Twitter data only for research purposes. They need to be hydrated to be used. The process of retrieving a tweet's complete information (such as the text of the tweet, username, user ID, date and time, etc.) using its ID is known as the hydration of a tweet ID. The Hydrator application (link to download the application: https://github.com/DocNow/hydrator/releases and link to a step-by-step tutorial: https://towardsdatascience.com/learn-how-to-easily-hydrate-tweets-a0f393ed340e#:~:text=Hydrating%20Tweets) or any similar application may be used for hydrating this dataset. Data Description This dataset consists of 7 .txt files. The following shows the number of Tweet IDs and the date range (of the associated tweets) in each of these files. Filename: Exoskeleton_TweetIDs_Set1.txt (Number of Tweet IDs – 22945, Date Range of Tweets - July 20, 2021 – May 21, 2022) Filename: Exoskeleton_TweetIDs_Set2.txt (Number of Tweet IDs – 19416, Date Range of Tweets - Dec 1, 2020 – July 19, 2021) Filename: Exoskeleton_TweetIDs_Set3.txt (Number of Tweet IDs – 16673, Date Range of Tweets - April 29, 2020 - Nov 30, 2020) Filename: Exoskeleton_TweetIDs_Set4.txt (Number of Tweet IDs – 16208, Date Range of Tweets - Oct 5, 2019 - Apr 28, 2020) Filename: Exoskeleton_TweetIDs_Set5.txt (Number of Tweet IDs – 17983, Date Range of Tweets - Feb 13, 2019 - Oct 4, 2019) Filename: Exoskeleton_TweetIDs_Set6.txt (Number of Tweet IDs – 34009, Date Range of Tweets - Nov 9, 2017 - Feb 12, 2019) Filename: Exoskeleton_TweetIDs_Set7.txt (Number of Tweet IDs – 11351, Date Range of Tweets - May 21, 2017 - Nov 8, 2017) Here, the last date for May is May 21 as it was the most recent date at the time of data collection. The dataset would be updated soon to incorporate more recent tweets.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset simulates anonymized mobile screen time and app usage data collected from Android/iOS users over a 3-month period (Jan–April 2024). It captures daily usage trends across various app categories including:
Productivity: Google Docs, Notion, Slack
Entertainment: YouTube, Netflix, TikTok
Social Media: Instagram, WhatsApp, Facebook
Utilities: Chrome, Gmail, Maps
For YouTube, additional engagement statistics such as views, likes, and comments are included to analyze video popularity and content consumption behavior.
The dataset enables exploration of:
Productivity vs. entertainment screen time patterns
Daily usage fluctuations
App-specific user engagement
Correlation between time spent and user interactions
YouTube content virality metrics
This is a great resource for:
EDA projects
Behavioral clustering
Dashboard development
Time series and anomaly detection
Building recommendation or focus-assistive apps
Facebook
TwitterThe report provides a snapshot of the social media usage trends amongst online Canadian adults based on an online survey of 1500 participants. Canada continues to be one of the most connected countries in the world. An overwhelming majority of online Canadian adults (94%) have an account on at least one social media platform. However, the 2022 survey results show that the COVID-19 pandemic has ushered in some changes in how and where Canadians are spending their time on social media. Dominant platforms such as Facebook, messaging apps and YouTube are still on top but are losing ground to newer platforms such as TikTok and more niche platforms such as Reddit and Twitch.
Facebook
TwitterAs of February 2025, the average daily social media usage of internet users worldwide amounted to 141 minutes per day, down from 143 minutes in the previous year. Currently, the country with the most time spent on social media per day is Brazil, with online users spending an average of 3 hours and 49 minutes on social media each day. In comparison, the daily time spent with social media in the U.S. was just 2 hours and 16 minutes. Global social media usage Currently, the global social network penetration rate is 62.3 percent. Northern Europe had an 81.7 percent social media penetration rate, topping the ranking of global social media usage by region. Eastern and Middle Africa closed the ranking with 10.1 and 9.6 percent usage reach, respectively. People access social media for a variety of reasons. Users like to find funny or entertaining content and enjoy sharing photos and videos with friends, but mainly use social media to stay in touch with current events and friends. Global impact of social media Social media has a wide-reaching and significant impact on not only online activities but also offline behavior and life in general. During a global online user survey in February 2019, a significant share of respondents stated that social media had increased their access to information, ease of communication, and freedom of expression. On the flip side, respondents also felt that social media had worsened their personal privacy, increased polarization in politics, and heightened everyday distractions.