97 datasets found
  1. Daily time spent on mobile phones in the U.S. 2019-2024

    • statista.com
    Updated Jun 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Daily time spent on mobile phones in the U.S. 2019-2024 [Dataset]. https://www.statista.com/statistics/1045353/mobile-device-daily-usage-time-in-the-us/
    Explore at:
    Dataset updated
    Jun 26, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The average time spent daily on a phone, not counting talking on the phone, has increased in recent years, reaching a total of * hours and ** minutes as of April 2022. This figure was expected to reach around * hours and ** minutes by 2024.

  2. Average daily time spent on social media worldwide 2012-2025

    • statista.com
    Updated Jun 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Average daily time spent on social media worldwide 2012-2025 [Dataset]. https://www.statista.com/statistics/433871/daily-social-media-usage-worldwide/
    Explore at:
    Dataset updated
    Jun 19, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    How much time do people spend on social media? As of 2025, the average daily social media usage of internet users worldwide amounted to 141 minutes per day, down from 143 minutes in the previous year. Currently, the country with the most time spent on social media per day is Brazil, with online users spending an average of 3 hours and 49 minutes on social media each day. In comparison, the daily time spent with social media in the U.S. was just 2 hours and 16 minutes. Global social media usageCurrently, the global social network penetration rate is 62.3 percent. Northern Europe had an 81.7 percent social media penetration rate, topping the ranking of global social media usage by region. Eastern and Middle Africa closed the ranking with 10.1 and 9.6 percent usage reach, respectively. People access social media for a variety of reasons. Users like to find funny or entertaining content and enjoy sharing photos and videos with friends, but mainly use social media to stay in touch with current events friends. Global impact of social mediaSocial media has a wide-reaching and significant impact on not only online activities but also offline behavior and life in general. During a global online user survey in February 2019, a significant share of respondents stated that social media had increased their access to information, ease of communication, and freedom of expression. On the flip side, respondents also felt that social media had worsened their personal privacy, increased a polarization in politics and heightened everyday distractions.

  3. H

    Consumer Expenditure Survey (CE)

    • dataverse.harvard.edu
    Updated May 30, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anthony Damico (2013). Consumer Expenditure Survey (CE) [Dataset]. http://doi.org/10.7910/DVN/UTNJAH
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 30, 2013
    Dataset provided by
    Harvard Dataverse
    Authors
    Anthony Damico
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    analyze the consumer expenditure survey (ce) with r the consumer expenditure survey (ce) is the primo data source to understand how americans spend money. participating households keep a running diary about every little purchase over the year. those diaries are then summed up into precise expenditure categories. how else are you gonna know that the average american household spent $34 (±2) on bacon, $826 (±17) on cellular phones, and $13 (±2) on digital e-readers in 2011? an integral component of the market basket calculation in the consumer price index, this survey recently became available as public-use microdata and they're slowly releasing historical files back to 1996. hooray! for a t aste of what's possible with ce data, look at the quick tables listed on their main page - these tables contain approximately a bazillion different expenditure categories broken down by demographic groups. guess what? i just learned that americans living in households with $5,000 to $9,999 of annual income spent an average of $283 (±90) on pets, toys, hobbies, and playground equipment (pdf page 3). you can often get close to your statistic of interest from these web tables. but say you wanted to look at domestic pet expenditure among only households with children between 12 and 17 years old. another one of the thirteen web tables - the consumer unit composition table - shows a few different breakouts of households with kids, but none matching that exact population of interest. the bureau of labor statistics (bls) (the survey's designers) and the census bureau (the survey's administrators) have provided plenty of the major statistics and breakouts for you, but they're not psychic. if you want to comb through this data for specific expenditure categories broken out by a you-defined segment of the united states' population, then let a little r into your life. fun starts now. fair warning: only analyze t he consumer expenditure survey if you are nerd to the core. the microdata ship with two different survey types (interview and diary), each containing five or six quarterly table formats that need to be stacked, merged, and manipulated prior to a methodologically-correct analysis. the scripts in this repository contain examples to prepare 'em all, just be advised that magnificent data like this will never be no-assembly-required. the folks at bls have posted an excellent summary of what's av ailable - read it before anything else. after that, read the getting started guide. don't skim. a few of the descriptions below refer to sas programs provided by the bureau of labor statistics. you'll find these in the C:\My Directory\CES\2011\docs directory after you run the download program. this new github repository contains three scripts: 2010-2011 - download all microdata.R lo op through every year and download every file hosted on the bls's ce ftp site import each of the comma-separated value files into r with read.csv depending on user-settings, save each table as an r data file (.rda) or stat a-readable file (.dta) 2011 fmly intrvw - analysis examples.R load the r data files (.rda) necessary to create the 'fmly' table shown in the ce macros program documentation.doc file construct that 'fmly' table, using five quarters of interviews (q1 2011 thru q1 2012) initiate a replicate-weighted survey design object perform some lovely li'l analysis examples replicate the %mean_variance() macro found in "ce macros.sas" and provide some examples of calculating descriptive statistics using unimputed variables replicate the %compare_groups() macro found in "ce macros.sas" and provide some examples of performing t -tests using unimputed variables create an rsqlite database (to minimize ram usage) containing the five imputed variable files, after identifying which variables were imputed based on pdf page 3 of the user's guide to income imputation initiate a replicate-weighted, database-backed, multiply-imputed survey design object perform a few additional analyses that highlight the modified syntax required for multiply-imputed survey designs replicate the %mean_variance() macro found in "ce macros.sas" and provide some examples of calculating descriptive statistics using imputed variables repl icate the %compare_groups() macro found in "ce macros.sas" and provide some examples of performing t-tests using imputed variables replicate the %proc_reg() and %proc_logistic() macros found in "ce macros.sas" and provide some examples of regressions and logistic regressions using both unimputed and imputed variables replicate integrated mean and se.R match each step in the bls-provided sas program "integr ated mean and se.sas" but with r instead of sas create an rsqlite database when the expenditure table gets too large for older computers to handle in ram export a table "2011 integrated mean and se.csv" that exactly matches the contents of the sas-produced "2011 integrated mean and se.lst" text file click here to view these three scripts for...

  4. T

    United States Consumer Spending

    • tradingeconomics.com
    • tr.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, United States Consumer Spending [Dataset]. https://tradingeconomics.com/united-states/consumer-spending
    Explore at:
    xml, json, excel, csvAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 31, 1947 - Jun 30, 2025
    Area covered
    United States
    Description

    Consumer Spending in the United States increased to 16445.70 USD Billion in the second quarter of 2025 from 16345.80 USD Billion in the first quarter of 2025. This dataset provides the latest reported value for - United States Consumer Spending - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  5. Family food datasets

    • gov.uk
    Updated Oct 17, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department for Environment, Food & Rural Affairs (2024). Family food datasets [Dataset]. https://www.gov.uk/government/statistical-data-sets/family-food-datasets
    Explore at:
    Dataset updated
    Oct 17, 2024
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Department for Environment, Food & Rural Affairs
    Description

    These family food datasets contain more detailed information than the ‘Family Food’ report and mainly provide statistics from 2001 onwards. The UK household purchases and the UK household expenditure spreadsheets include statistics from 1974 onwards. These spreadsheets are updated annually when a new edition of the ‘Family Food’ report is published.

    The ‘purchases’ spreadsheets give the average quantity of food and drink purchased per person per week for each food and drink category. The ‘nutrient intake’ spreadsheets give the average nutrient intake (eg energy, carbohydrates, protein, fat, fibre, minerals and vitamins) from food and drink per person per day. The ‘expenditure’ spreadsheets give the average amount spent in pence per person per week on each type of food and drink. Several different breakdowns are provided in addition to the UK averages including figures by region, income, household composition and characteristics of the household reference person.

    UK (updated with new FYE 2023 data)

    countries and regions (CR) (updated with FYE 2022 data)

    equivalised income decile group (EID) (updated with FYE 2022 data)

  6. Vital Signs: Commute Time (by Place of Residence) – Bay Area

    • data.bayareametro.gov
    csv, xlsx, xml
    Updated Apr 23, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Census Bureau (2020). Vital Signs: Commute Time (by Place of Residence) – Bay Area [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Commute-Time-by-Place-of-Residence-Bay/adi5-wz5j
    Explore at:
    csv, xml, xlsxAvailable download formats
    Dataset updated
    Apr 23, 2020
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    U.S. Census Bureau
    Area covered
    San Francisco Bay Area
    Description

    VITAL SIGNS INDICATOR Commute Time (T3)

    FULL MEASURE NAME Commute time by residential location

    LAST UPDATED April 2020

    DESCRIPTION Commute time refers to the average number of minutes a commuter spends traveling to work on a typical day. The dataset includes metropolitan area, county, city, and census tract tables by place of residence.

    DATA SOURCE U.S. Census Bureau: Decennial Census (1980-2000) - via MTC/ABAG Bay Area Census http://www.bayareacensus.ca.gov/transportation.htm

    U.S. Census Bureau: American Community Survey Form B08013 (2006-2018; place of residence; overall time) Form C08136 (2006-2018; place of residence; time by mode) Form B08301 (2006-2018; place of residence) www.api.census.gov

    CONTACT INFORMATION vitalsigns.info@bayareametro.gov

    METHODOLOGY NOTES (across all datasets for this indicator) For the decennial Census datasets, breakdown of commute times was unavailable by mode; only overall data could be provided on a historical basis.

    For the American Community Survey datasets, 1-year rolling average data was used for all metros, region, and county geographic levels, while 5-year rolling average data was used for cities and tracts. This is due to the fact that more localized data is not included in the 1-year dataset across all Bay Area cities. Similarly, modal data is not available for every Bay Area city or census tract, even when the 5-year data is used for those localized geographies.

    Regional commute times were calculated by summing aggregate county travel times and dividing by the relevant population; similarly, modal commute time were calculated using aggregate times and dividing by the number of communities choosing that mode for the given geography. Census tract data is not available for tracts with insufficient numbers of residents.

    The metropolitan area comparison was performed for the nine-county San Francisco Bay Area in addition to the primary MSAs for the nine other major metropolitan areas.

  7. Vital Signs: Commute Time (by Place of Employment) – by county

    • data.bayareametro.gov
    csv, xlsx, xml
    Updated Apr 13, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Census Bureau (2020). Vital Signs: Commute Time (by Place of Employment) – by county [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Commute-Time-by-Place-of-Employment-by/myjg-apsn
    Explore at:
    csv, xlsx, xmlAvailable download formats
    Dataset updated
    Apr 13, 2020
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    U.S. Census Bureau
    Description

    VITAL SIGNS INDICATOR Commute Time (T4)

    FULL MEASURE NAME Commute time by employment location

    LAST UPDATED April 2020

    DESCRIPTION Commute time refers to the average number of minutes a commuter spends traveling to work on a typical day. The dataset includes metropolitan area, county, city, and census tract tables by place of residence.

    DATA SOURCE U.S. Census Bureau: Decennial Census (1980-2000) - via MTC/ABAG Bay Area Census http://www.bayareacensus.ca.gov/transportation.htm

    U.S. Census Bureau: American Community Survey Table B08536 (2018 only; by place of employment) Table B08601 (2018 only; by place of employment) www.api.census.gov

    CONTACT INFORMATION vitalsigns.info@bayareametro.gov

    METHODOLOGY NOTES (across all datasets for this indicator) For the decennial Census datasets, breakdown of commute times was unavailable by mode; only overall data could be provided on a historical basis.

    For the American Community Survey datasets, 1-year rolling average data was used for all metros, region, and county geographic levels, while 5-year rolling average data was used for cities and tracts. This is due to the fact that more localized data is not included in the 1-year dataset across all Bay Area cities. Similarly, modal data is not available for every Bay Area city or census tract, even when the 5-year data is used for those localized geographies.

    Regional commute times were calculated by summing aggregate county travel times and dividing by the relevant population; similarly, modal commute time were calculated using aggregate times and dividing by the number of communities choosing that mode for the given geography. Census tract data is not available for tracts with insufficient numbers of residents.

    The metropolitan area comparison was performed for the nine-county San Francisco Bay Area in addition to the primary MSAs for the nine other major metropolitan areas.

  8. e

    Diffusion of cultures of consumption: a comparative analysis 1971-2000 -...

    • b2find.eudat.eu
    Updated May 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Diffusion of cultures of consumption: a comparative analysis 1971-2000 - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/40966390-d0bd-5adc-94d3-abda41e73860
    Explore at:
    Dataset updated
    May 3, 2023
    Description

    Time use data derived from the Multinational Time Use Study (MTUS) for France, Netherlands, Norway, UK and USA with 11 timepoints in a pooled format for the period 1971 - 2000. This dataset was composed to analyse time use and family expenditure to understanding consumption practices and the dynamics of change across time and space. The data derive from national time use surveys, which record how people allocate their time during the day. This dataset allows detailed decomposition of activities and identification of the behaviour of different groups and categories of people. The dataset contains records for 55,496 individuals. The countries and time points included are France 1974, 1998; Netherlands 1975, 1985, 1995; Norway 1971, 2000; UK 1975, 2000; USA 1975, 1985, 1998.This project examined trends in patterns of consumption since the 1970s in five countries: USA, UK, France, Italy and Norway. This comparative analysis was designed to examine systematically whether there was an overall tendency in developed consumer societies towards international convergence in consumption behaviour. This general overarching question allows the exploration of many controversial issues in the understanding of consumer culture, for example, globalization, national differences, social divisions, commodification, formation of demand, diversity of taste, individualization, changing lifestyles and classifications of the consumer. Mapping of patterns and trends in consumption were accomplished by reconstructing and transforming existing national data sets on household expenditure and aligning them with the time use surveys which have been conducted intermittently since the 1960s. Investigation involved identifying trends within each country separately in terms of expenditure and time use, comparing the five cases for signs of convergence and difference and, finally, contrasting the evidence of time-use with that of spending. The project also analysed changes in the categories used by different states statistical offices when classifying expenditures. Dataset derived from the Multinational Time Use Study, which in turn compiles data from a range of national time use surveys. Please refer to the MTUS surveys website (reference in Related resources) for details of the time-use diary methods used in each country. The survey sources used are France 1974, 1998; Netherlands 1975, 1985, 1995; Norway 1971, 2000; UK 1975, 2000; and USA 1975, 1985, 1998. The persons in the sample are part of households which are identifiable in the original MTUS data for some countries. The unit of analysis of this dataset however is the person. Each person’s time-use diaries for between 2 and 7 days have been averaged into the ‘average daily minutes’ figures which appear in the data as AV numbers.

  9. a

    Avg Spending per Patron

    • aurora-public-arts-cityofaurora.hub.arcgis.com
    • downtown-revitalization-cityofaurora.hub.arcgis.com
    • +1more
    Updated Apr 16, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Aurora GIS Online (2025). Avg Spending per Patron [Dataset]. https://aurora-public-arts-cityofaurora.hub.arcgis.com/datasets/avg-spending-per-patron
    Explore at:
    Dataset updated
    Apr 16, 2025
    Dataset authored and provided by
    City of Aurora GIS Online
    Description

    The Arts & Economic Prosperity 6 (AEP6) study is an economic and social impact study of the nation’s nonprofit arts and culture industry. AEP6 is the largest and most inclusive study of its kind. It documents the economic and social contributions of arts and culture in 373 diverse communities and regions representing all 50 states and Puerto Rico.The Americans for the Arts Prosperity Study concluded that arts and culture audiences spend $38.46 per person per event in addition to the cost of event admission. Patrons who attend an event from outside of their county had event-related spending more than twice of their local counterpoint at $60.57 (compared to a “local” patron at $29.77 per person per event), from Americans For The Arts (AFTA).

  10. D

    Congestion

    • catalog.dvrpc.org
    csv
    Updated Sep 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DVRPC (2025). Congestion [Dataset]. https://catalog.dvrpc.org/dataset/congestion
    Explore at:
    csv(6943), csv(1411), csv(2869), csv(1559), csv(26008), csv(547), csv(16700), csv(4441), csv(1086), csv(455), csv(2073), csv(642)Available download formats
    Dataset updated
    Sep 10, 2025
    Dataset authored and provided by
    DVRPC
    License

    https://catalog.dvrpc.org/dvrpc_data_license.htmlhttps://catalog.dvrpc.org/dvrpc_data_license.html

    Description

    One measure used to analyze roadway reliability is the Planning Time Index (PTI). It is the ratio of the 95th percentile travel time relative to the free-flow (uncongested) travel time. PTI helps in understanding the impacts of nonrecurring congestion from crashes, weather, and special events. It approximates the extent to which a traveler should add extra time to their trip to ensure on-time arrival at their destination. A value of 1.0 indicates a person can expect free-flow speeds along their route. A 2.0 index value indicates a traveler should expect that the trip could be twice as long as free-flow conditions. PTI values from 2.0 to 3.0 indicate moderate unreliability, and ones greater than 3.0 are highly unreliable.

    The data comes from aggregated Global Positioning System probe data—anonymized data from mobile apps, connected vehicles, and commercial fleets—provided to the Probe Data Analytics (PDA) Suite by INRIX, a travel data technology company. The PDA Suite was created by a consortium of sponsors, including the Eastern Transportation Coalition and the University of Maryland.

    PTI values by region, subregion, and county are grouped either as highway facilities or local roads. Highways are roadway segments classified as interstates, turnpikes, and expressways in the PDA Suite. Local roads are segments classified as U.S. routes, state routes, parkways, frontages, and others. The PDA Suite reports weekday hourly averages by facility type and direction. Average weekday values are reported by facility type and direction, within the following time periods:

    • Morning (AM): 6:00 AM–9:59 AM;
    • Midday (MD): 10:00 AM–2:59 PM;
    • Evening (PM): 3:00 PM–6:59 PM;
    • Nighttime (NT): 7:00 PM–5:59 AM; and
    • Daily: 12:00 AM–11:59 PM.

    Although INRIX data collection precedes years reported in Tracking Progress, early years of reporting are highly variable based on a lack of facility coverage. The years from 2011 onward show higher stability for highway facilities for most counties and for the region. For local facilities, 2014 and beyond is where values seem most stable due to more widespread facility coverage.

    Historic data for the federal Transportation Performance Management (TPM) system performance reporting requirements is shown. These are Level of Travel Time Reliability (LOTTR), Level of Truck Travel Time Reliability (TTTR), and Annual Hours of Peak-Hour Excessive Delay (AHPHED). The entire states of Pennsylvania and New Jersey are included for LOTTR and TTTR, so the region’s figures can be compared with statewide data.

    LOTTR is used to calculate the percentage of roadway segments that are considered reliable. A road segment with an LOTTR of less than 1.5 is considered reliable. Reliable segment lengths in miles are multiplied by their Annual average daily traffic (AADT) values times the average number of people in a vehicle. Then, this sum is then divided by the exact same product for all road segments, to get the resulting percentage of roadway that is reliable for the geography.

    TTTR measures how consistent travel times are for trucks on interstates. This can be helpful with analyzing goods movement along the region’s interstates. TTTR is calculated by dividing the 95th percentile of travel times by the 50th percentile of travel times, using the highest value over the Morning (AM), Midday (MD), Evening (PM), Nighttime (NT), and weekend. Each interstate segment multiplies its length by the travel time ratio, the results are summed and then divided by total Interstate length in the geography to determine the area’s TTTR value.

    AHPHED is the average number of hours per year spent by motorists driving in congestion during peak periods. This can be useful for analyzing the impact of congestion from an individual’s perspective, since it analyzes how many hours the average person spends stuck in congestion. The figures used are based on the 2010 urbanized area boundaries in the Census. In 2020, they were renamed to urban areas. There are only Mercer County PHED values from 2021 onward, because they only apply to the second four-year TPM performance period, when the Trenton, NJ Urban Area was required to track metrics and set performance targets. AHPHED per capita is that figure divided by the urban area’s population during that year.

    It is also important to measure PTIs along the roads buses travel, to measure how reliable the roads are that commuters travel on. To calculate the agency and division type combination PTIs, for each route, all their segments’ planning times from 7-8 AM, 8-9 AM, 4-5 PM, and 5-6 PM are first summed. Then, those are divided by the sums of those segments' free-flow travel times for those same time periods, to get one PTI per time period for each route. Then, the highest of those four PTIs is taken to get one maximum peak hour PTI per route. Then, for each agency and division type combination, all of their routes’ maximum peak hour PTIs are averaged for each year to get the PTIs. Since all NJ Transit routes in the DVRPC region are part of their Southern Division, NJ Transit only has one agency and division mode combination. SEPTA has two: “City” and “Suburban”. SEPTA splits their bus routes into their urban routes, all within their City Transit Division, and their suburban routes, which are in their Victory and Frontier divisions. The Victory and Frontier divisions have been grouped into their own “Suburban” division type.

    Congestion is susceptible to external forces like the economy. A downturn can reduce congestion, but this reflects fewer and shorter trips for households and businesses during lean times and may not represent an improvement. Therefore, it may be useful to correlate these results with the Miles Driven indicator.

  11. g

    National Association of State Budget Officers, State Corrections Spending by...

    • geocommons.com
    Updated May 7, 2008
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data (2008). National Association of State Budget Officers, State Corrections Spending by state, USA, FY 1987-2007 [Dataset]. http://geocommons.com/search.html
    Explore at:
    Dataset updated
    May 7, 2008
    Dataset provided by
    National Association of State Budget Officers (NASBO)
    data
    Description

    This dataset shows the amount of money that each state spent on their Corrections program both in percentage of the Overall amount of money spent in the State and as a total amount of money. This data was brought to our attention by the Pew Charitable Trusts in their report titled, One in 100: Behind Bars in America 2008. The main emphasis of the article emphasizes the point that in 2007 1 in every 100 Americans were in prison. To note: The District of Columbia is not included. D.C. prisoners were transferred to federal custody in 2001.

  12. 2016 Economic Surveys: SE1600CSCBO04 | Statistics for Owners of Respondent...

    • data.census.gov
    Updated Aug 16, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECN (2018). 2016 Economic Surveys: SE1600CSCBO04 | Statistics for Owners of Respondent Employer Firms by Owner's Average Number of Hours Per Week Spent Managing or Working in the Business by Sector, Gender, Ethnicity, Race, Veteran Status, and Years in Business for the U.S., States, and Top 50 MSAs: 2016 (ECNSVY Annual Survey of Entrepreneurs Annual Survey of Entrepreneurs Characteristics of Business Owners) [Dataset]. https://data.census.gov/table/ASECBO2016.SE1600CSCBO04
    Explore at:
    Dataset updated
    Aug 16, 2018
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ECN
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2016
    Description

    Release Date: 2018-08-10.[NOTE: Includes firms with payroll at any time during 2016. Employment reflects the number of paid employees during the March 12 pay period. Data are based on Census administrative records, and the estimates of business ownership by gender, ethnicity, race, and veteran status are from the 2016 Annual Survey of Entrepreneurs. Detail may not add to total due to rounding or because a Hispanic firm may be of any race. Moreover, each owner had the option of selecting more than one race and therefore is included in each race selected. Respondent firms include all firms that responded to the characteristic(s) tabulated in this dataset and reported gender, ethnicity, race, or veteran status for at least one owner and were not publicly held or not classifiable by gender, ethnicity, race, and veteran status. The 2016 Annual Survey of Entrepreneurs asked for information for up to four persons owning the largest percentage(s) of the business. Percentages are for owners of respondent firms only and are not recalculated when the dataset is resorted. Percentages are always based on total reporting (defined above) within a gender, ethnicity, race, veteran status, and/or industry group for the characteristics tabulated in this dataset. Firms with more than one domestic establishment are counted in each geographic area and industry in which they operate, but only once in the U.S. and state totals for all sectors. For information on confidentiality protection, sampling error, nonsampling error, and definitions, see Survey Methodology.]..Table Name. . Statistics for Owners of Respondent Employer Firms by Owner's Average Number of Hours Per Week Spent Managing or Working in the Business by Sector, Gender, Ethnicity, Race, Veteran Status, and Years in Business for the U.S., States, and Top 50 MSAs: 2016. ..Release Schedule. . This file was released in August 2018.. ..Key Table Information. . These data are related to all other 2016 ASE files.. Refer to the Methodology section of the Annual Survey of Entrepreneurs website for additional information.. ..Universe. . The universe for the 2016 Annual Survey of Entrepreneurs (ASE) includes all U.S. firms with paid employees operating during 2016 with receipts of $1,000 or more which are classified in the North American Industry Classification System (NAICS) sectors 11 through 99, except for NAICS 111, 112, 482, 491, 521, 525, 813, 814, and 92 which are not covered. Firms with more than one domestic establishment are counted in each geographic area and industry in which they operate, but only once in the U.S. total.. For Characteristics of Business Owners (CBO) data, all estimates are of owners of firms responding to the ASE. That is, estimates are based only on firms providing gender, ethnicity, race, or veteran status; or firms not classifiable by gender, ethnicity, race, and veteran status that returned an ASE online questionnaire with at least one question answered. The ASE online questionnaire provided space for up to four owners to report their characteristics.. CBO data are not representative of all owners of all firms operating in the United States. The data do not represent all business owners in the United States.. ..Geographic Coverage. . The data are shown for:. . United States. States and the District of Columbia. The fifty most populous metropolitan areas. . ..Industry Coverage. . The data are shown for the total of all sectors (00) and the 2-digit NAICS code level.. ..Data Items and Other Identifying Records. . Statistics for Owners of Respondent Employer Firms by Owner's Average Number of Hours Per Week Spent Managing or Working in the Business by Sector, Gender, Ethnicity, Race, Veteran Status, and Years in Business for the U.S., States, and Top 50 MSAs: 2016 contains data on:. . Number of owners of respondent firms with paid employees. Percent of number of owners of respondent firms with paid employees. . The data are shown for:. . Gender, ethnicity, race and veteran status of owners of respondent firms. . All owners of respondent firms. Female. Male. Hispanic. Non-Hispanic. White. Black or African American. American Indian and Alaska Native. Asian. Native Hawaiian and Other Pacific Islander. Some other race. Minority. Nonminority. Veteran. Nonveteran. . . Years in business. . All firms. Firms less than 2 years in business. Firms with 2 to 3 years in business. Firms with 4 to 5 years in business. Firms with 6 to 10 years in business. Firms with 11 to 15 years in business. Firms with 16 or more years in business. . . Owner...

  13. g

    U.S. Geological Survey, North American Atlas - Populated Places, North...

    • geocommons.com
    Updated Jun 26, 2008
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Atlas of Canada Client Services (2008). U.S. Geological Survey, North American Atlas - Populated Places, North America, 2004 [Dataset]. http://geocommons.com/search.html
    Explore at:
    Dataset updated
    Jun 26, 2008
    Dataset provided by
    Brendan
    U.S. Geological Survey
    Authors
    Atlas of Canada Client Services
    Description

    A joint venture involving the National Atlas programs in Canada (Natural Resources Canada), Mexico (Instituto Nacional de Estadstica Geografa e Informtica), and the United States (U.S. Geological Survey), as well as the North American Commission for Environmental Co-operation, has led to the release (June 2004) of several new products: an updated paper map of North America, and its associated geospatial data sets and their metadata. These data sets are available online from each of the partner countries both for visualization and download. The North American Atlas data are standardized geospatial data sets at 1:10,000,000 scale. A variety of basic data layers (e.g. roads, railroads, populated places, political boundaries, hydrography, bathymetry, sea ice and glaciers) have been integrated so that their relative positions are correct. This collection of data sets forms a base with which other North American thematic data may be integrated. Any data outside of Canada, Mexico, and the United States of America included in the North American Atlas data sets is strictly to complete the context of the data. The North American Atlas - Populated Places data set shows a selection of named populated places suitable for use at a scale of 1:10,000,000. Places, which refer to individual municipalities, are always shown using point symbols. These symbols have been fitted to the North American Atlas roads, railroads, and hydrography layers, so that the points represent the approximate locations of places relative to data in these other layers.

  14. T

    United States Average Weekly Hours

    • tradingeconomics.com
    • pl.tradingeconomics.com
    • +11more
    csv, excel, json, xml
    Updated Feb 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Average Weekly Hours [Dataset]. https://tradingeconomics.com/united-states/average-weekly-hours
    Explore at:
    csv, excel, xml, jsonAvailable download formats
    Dataset updated
    Feb 8, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 31, 2006 - Aug 31, 2025
    Area covered
    United States
    Description

    Average Weekly Hours in the United States remained unchanged at 34.20 Hours in August. This dataset provides - United States Average Weekly Hours - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  15. Number of global social network users 2017-2028

    • statista.com
    • es.statista.com
    • +1more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon, Number of global social network users 2017-2028 [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    How many people use social media?

                  Social media usage is one of the most popular online activities. In 2024, over five billion people were using social media worldwide, a number projected to increase to over six billion in 2028.
    
                  Who uses social media?
                  Social networking is one of the most popular digital activities worldwide and it is no surprise that social networking penetration across all regions is constantly increasing. As of January 2023, the global social media usage rate stood at 59 percent. This figure is anticipated to grow as lesser developed digital markets catch up with other regions
                  when it comes to infrastructure development and the availability of cheap mobile devices. In fact, most of social media’s global growth is driven by the increasing usage of mobile devices. Mobile-first market Eastern Asia topped the global ranking of mobile social networking penetration, followed by established digital powerhouses such as the Americas and Northern Europe.
    
                  How much time do people spend on social media?
                  Social media is an integral part of daily internet usage. On average, internet users spend 151 minutes per day on social media and messaging apps, an increase of 40 minutes since 2015. On average, internet users in Latin America had the highest average time spent per day on social media.
    
                  What are the most popular social media platforms?
                  Market leader Facebook was the first social network to surpass one billion registered accounts and currently boasts approximately 2.9 billion monthly active users, making it the most popular social network worldwide. In June 2023, the top social media apps in the Apple App Store included mobile messaging apps WhatsApp and Telegram Messenger, as well as the ever-popular app version of Facebook.
    
  16. G

    Household spending by age of reference person

    • open.canada.ca
    • www150.statcan.gc.ca
    • +2more
    csv, html, xml
    Updated May 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2025). Household spending by age of reference person [Dataset]. https://open.canada.ca/data/en/dataset/2d131015-0acd-47f9-91bc-2f699fb7ac9f
    Explore at:
    csv, html, xmlAvailable download formats
    Dataset updated
    May 26, 2025
    Dataset provided by
    Statistics Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    Survey of Household Spending (SHS), average household spending by age of reference person.

  17. Vital Signs: Commute Time (by Place of Residence) – by metro

    • data.bayareametro.gov
    csv, xlsx, xml
    Updated Apr 23, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Census Bureau (2020). Vital Signs: Commute Time (by Place of Residence) – by metro [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Commute-Time-by-Place-of-Residence-by-/pgkf-xrbd
    Explore at:
    csv, xlsx, xmlAvailable download formats
    Dataset updated
    Apr 23, 2020
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    U.S. Census Bureau
    Description

    VITAL SIGNS INDICATOR Commute Time (T3)

    FULL MEASURE NAME Commute time by residential location

    LAST UPDATED April 2020

    DESCRIPTION Commute time refers to the average number of minutes a commuter spends traveling to work on a typical day. The dataset includes metropolitan area, county, city, and census tract tables by place of residence.

    DATA SOURCE U.S. Census Bureau: Decennial Census (1980-2000) - via MTC/ABAG Bay Area Census http://www.bayareacensus.ca.gov/transportation.htm

    U.S. Census Bureau: American Community Survey Form B08013 (2006-2018; place of residence; overall time) Form C08136 (2006-2018; place of residence; time by mode) Form B08301 (2006-2018; place of residence) www.api.census.gov

    CONTACT INFORMATION vitalsigns.info@bayareametro.gov

    METHODOLOGY NOTES (across all datasets for this indicator) For the decennial Census datasets, breakdown of commute times was unavailable by mode; only overall data could be provided on a historical basis.

    For the American Community Survey datasets, 1-year rolling average data was used for all metros, region, and county geographic levels, while 5-year rolling average data was used for cities and tracts. This is due to the fact that more localized data is not included in the 1-year dataset across all Bay Area cities. Similarly, modal data is not available for every Bay Area city or census tract, even when the 5-year data is used for those localized geographies.

    Regional commute times were calculated by summing aggregate county travel times and dividing by the relevant population; similarly, modal commute time were calculated using aggregate times and dividing by the number of communities choosing that mode for the given geography. Census tract data is not available for tracts with insufficient numbers of residents.

    The metropolitan area comparison was performed for the nine-county San Francisco Bay Area in addition to the primary MSAs for the nine other major metropolitan areas.

  18. g

    CARMA, United States Power Plant Emissions, United States, 2000/2007/Future

    • geocommons.com
    Updated May 2, 2008
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data (2008). CARMA, United States Power Plant Emissions, United States, 2000/2007/Future [Dataset]. http://geocommons.com/search.html
    Explore at:
    Dataset updated
    May 2, 2008
    Dataset provided by
    data
    CARMA
    Description

    All the data for this dataset is provided from CARMA: Data from CARMA (www.carma.org) This dataset provides information about Power Plant emissions in the USA. Power Plant emissions from all power plants in the United Staes were obtained by CARMA for the past (2000 Annual Report), the present (2007 data), and the future. CARMA determine data presented for the future to reflect planned plant construction, expansion, and retirement. The dataset provides the name, company, parent company, city, state, zip, county, metro area, lat/lon, and plant id for each individual power plant. The dataset reports for the three time periods: Intensity: Pounds of CO2 emitted per megawatt-hour of electricity produced. Energy: Annual megawatt-hours of electricity produced. Carbon: Annual carbon dioxide (CO2) emissions. The units are short or U.S. tons. Multiply by 0.907 to get metric tons. Carbon Monitoring for Action (CARMA) is a massive database containing information on the carbon emissions of over 50,000 power plants and 4,000 power companies worldwide. Power generation accounts for 40% of all carbon emissions in the United States and about one-quarter of global emissions. CARMA is the first global inventory of a major, sector of the economy. The objective of CARMA.org is to equip individuals with the information they need to forge a cleaner, low-carbon future. By providing complete information for both clean and dirty power producers, CARMA hopes to influence the opinions and decisions of consumers, investors, shareholders, managers, workers, activists, and policymakers. CARMA builds on experience with public information disclosure techniques that have proven successful in reducing traditional pollutants. Please see carma.org for more information http://carma.org/region/detail/202

  19. Household spending, Canada, regions and provinces

    • www150.statcan.gc.ca
    • open.canada.ca
    • +1more
    Updated May 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Household spending, Canada, regions and provinces [Dataset]. http://doi.org/10.25318/1110022201-eng
    Explore at:
    Dataset updated
    May 21, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Government of Canadahttp://www.gg.ca/
    Area covered
    Canada
    Description

    Survey of Household Spending (SHS), average household spending, Canada, regions and provinces.

  20. Survey of Consumer Finances

    • federalreserve.gov
    Updated Oct 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Board of Governors of the Federal Reserve Board (2023). Survey of Consumer Finances [Dataset]. http://doi.org/10.17016/8799
    Explore at:
    Dataset updated
    Oct 18, 2023
    Dataset provided by
    Federal Reserve Board of Governors
    Federal Reserve Systemhttp://www.federalreserve.gov/
    Authors
    Board of Governors of the Federal Reserve Board
    Time period covered
    1962 - 2023
    Description

    The Survey of Consumer Finances (SCF) is normally a triennial cross-sectional survey of U.S. families. The survey data include information on families' balance sheets, pensions, income, and demographic characteristics.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Daily time spent on mobile phones in the U.S. 2019-2024 [Dataset]. https://www.statista.com/statistics/1045353/mobile-device-daily-usage-time-in-the-us/
Organization logo

Daily time spent on mobile phones in the U.S. 2019-2024

Explore at:
41 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jun 26, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
United States
Description

The average time spent daily on a phone, not counting talking on the phone, has increased in recent years, reaching a total of * hours and ** minutes as of April 2022. This figure was expected to reach around * hours and ** minutes by 2024.

Search
Clear search
Close search
Google apps
Main menu