100+ datasets found
  1. N

    Kortright, New York annual median income by work experience and sex dataset:...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Kortright, New York annual median income by work experience and sex dataset: Aged 15+, 2010-2023 (in 2023 inflation-adjusted dollars) // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/kortright-ny-income-by-gender/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    New York, Kortright
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates. The dataset covers the years 2010 to 2023, representing 14 years of data. To analyze income differences between genders (male and female), we conducted an initial data analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series (R-CPI-U-RS) based on current methodologies. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Kortright town. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.

    Key observations: Insights from 2023

    Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Kortright town, the median income for all workers aged 15 years and older, regardless of work hours, was $34,063 for males and $33,750 for females.

    Based on these incomes, we observe a gender gap percentage of approximately 1%, indicating a significant disparity between the median incomes of males and females in Kortright town. Women, regardless of work hours, still earn 99 cents to each dollar earned by men, highlighting an ongoing gender-based wage gap.

    - Full-time workers, aged 15 years and older: In Kortright town, among full-time, year-round workers aged 15 years and older, males earned a median income of $64,605, while females earned $50,513, leading to a 22% gender pay gap among full-time workers. This illustrates that women earn 78 cents for each dollar earned by men in full-time roles. This analysis indicates a widening gender pay gap, showing a substantial income disparity where women, despite working full-time, face a more significant wage discrepancy compared to men in the same roles.

    Remarkably, across all roles, including non-full-time employment, women displayed a lower gender pay gap percentage. This indicates that Kortright town offers better opportunities for women in non-full-time positions.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.

    Gender classifications include:

    • Male
    • Female

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Variables / Data Columns

    • Year: This column presents the data year. Expected values are 2010 to 2023
    • Male Total Income: Annual median income, for males regardless of work hours
    • Male FT Income: Annual median income, for males working full time, year-round
    • Male PT Income: Annual median income, for males working part time
    • Female Total Income: Annual median income, for females regardless of work hours
    • Female FT Income: Annual median income, for females working full time, year-round
    • Female PT Income: Annual median income, for females working part time

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Kortright town median household income by race. You can refer the same here

  2. Income of individuals by age group, sex and income source, Canada, provinces...

    • www150.statcan.gc.ca
    • open.canada.ca
    • +2more
    Updated Apr 26, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2024). Income of individuals by age group, sex and income source, Canada, provinces and selected census metropolitan areas [Dataset]. http://doi.org/10.25318/1110023901-eng
    Explore at:
    Dataset updated
    Apr 26, 2024
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Income of individuals by age group, sex and income source, Canada, provinces and selected census metropolitan areas, annual.

  3. c

    Housing Affordability

    • data.ccrpc.org
    csv
    Updated Oct 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Housing Affordability [Dataset]. https://data.ccrpc.org/dataset/housing-affordability
    Explore at:
    csv(2343)Available download formats
    Dataset updated
    Oct 17, 2024
    Dataset provided by
    Champaign County Regional Planning Commission
    Description

    The housing affordability measure illustrates the relationship between income and housing costs. A household that spends 30% or more of its collective monthly income to cover housing costs is considered to be “housing cost-burden[ed].”[1] Those spending between 30% and 49.9% of their monthly income are categorized as “moderately housing cost-burden[ed],” while those spending more than 50% are categorized as “severely housing cost-burden[ed].”[2]

    How much a household spends on housing costs affects the household’s overall financial situation. More money spent on housing leaves less in the household budget for other needs, such as food, clothing, transportation, and medical care, as well as for incidental purchases and saving for the future.

    The estimated housing costs as a percentage of household income are categorized by tenure: all households, those that own their housing unit, and those that rent their housing unit.

    Throughout the period of analysis, the percentage of housing cost-burdened renter households in Champaign County was higher than the percentage of housing cost-burdened homeowner households in Champaign County. All three categories saw year-to-year fluctuations between 2005 and 2023, and none of the three show a consistent trend. However, all three categories were estimated to have a lower percentage of housing cost-burdened households in 2023 than in 2005.

    Data on estimated housing costs as a percentage of monthly income was sourced from the U.S. Census Bureau’s American Community Survey (ACS) 1-Year Estimates, which are released annually.

    As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.

    Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.

    For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Housing Tenure.

    [1] Schwarz, M. and E. Watson. (2008). Who can afford to live in a home?: A look at data from the 2006 American Community Survey. U.S. Census Bureau.

    [2] Ibid.

    Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (17 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (22 September 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (30 September 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (10 June 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (10 June 2021).;U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (14 September 2017).; U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (19 September 2016).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; 16 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).

  4. N

    Clarksdale, MO annual median income by work experience and sex dataset: Aged...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Clarksdale, MO annual median income by work experience and sex dataset: Aged 15+, 2010-2023 (in 2023 inflation-adjusted dollars) // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/clarksdale-mo-income-by-gender/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Missouri, Clarksdale
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates. The dataset covers the years 2010 to 2023, representing 14 years of data. To analyze income differences between genders (male and female), we conducted an initial data analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series (R-CPI-U-RS) based on current methodologies. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Clarksdale. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.

    Key observations: Insights from 2023

    Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Clarksdale, the median income for all workers aged 15 years and older, regardless of work hours, was $28,056 for males and $27,679 for females.

    Based on these incomes, we observe a gender gap percentage of approximately 1%, indicating a significant disparity between the median incomes of males and females in Clarksdale. Women, regardless of work hours, still earn 99 cents to each dollar earned by men, highlighting an ongoing gender-based wage gap.

    - Full-time workers, aged 15 years and older: In Clarksdale, among full-time, year-round workers aged 15 years and older, males earned a median income of $60,625, while females earned $43,500, leading to a 28% gender pay gap among full-time workers. This illustrates that women earn 72 cents for each dollar earned by men in full-time roles. This analysis indicates a widening gender pay gap, showing a substantial income disparity where women, despite working full-time, face a more significant wage discrepancy compared to men in the same roles.

    Remarkably, across all roles, including non-full-time employment, women displayed a lower gender pay gap percentage. This indicates that Clarksdale offers better opportunities for women in non-full-time positions.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.

    Gender classifications include:

    • Male
    • Female

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Variables / Data Columns

    • Year: This column presents the data year. Expected values are 2010 to 2023
    • Male Total Income: Annual median income, for males regardless of work hours
    • Male FT Income: Annual median income, for males working full time, year-round
    • Male PT Income: Annual median income, for males working part time
    • Female Total Income: Annual median income, for females regardless of work hours
    • Female FT Income: Annual median income, for females working full time, year-round
    • Female PT Income: Annual median income, for females working part time

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Clarksdale median household income by race. You can refer the same here

  5. T

    United States Personal Savings Rate

    • tradingeconomics.com
    • tr.tradingeconomics.com
    • +16more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, United States Personal Savings Rate [Dataset]. https://tradingeconomics.com/united-states/personal-savings
    Explore at:
    xml, excel, json, csvAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1959 - Jan 31, 2025
    Area covered
    United States
    Description

    Household Saving Rate in the United States increased to 4.60 percent in January from 3.50 percent in December of 2024. This dataset provides - United States Personal Savings Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  6. Percentage of Adults Who Report Driving After Drinking Too Much (in the past...

    • catalog.data.gov
    • healthdata.gov
    • +6more
    Updated Apr 25, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2021). Percentage of Adults Who Report Driving After Drinking Too Much (in the past 30 days), 2012 & 2014, Region 1 - Boston [Dataset]. https://catalog.data.gov/dataset/percentage-of-adults-who-report-driving-after-drinking-too-much-in-the-past-30-days-2012-2
    Explore at:
    Dataset updated
    Apr 25, 2021
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    Source: Behavioral Risk Factor Surveillance System (BRFSS), 2012, 2014.

  7. U

    Focus on London - Income and Spending

    • data.ubdc.ac.uk
    • data.europa.eu
    • +1more
    pdf, xls
    Updated Nov 8, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Greater London Authority (2023). Focus on London - Income and Spending [Dataset]. https://data.ubdc.ac.uk/dataset/focus-on-london-income-and-spending
    Explore at:
    xls, pdfAvailable download formats
    Dataset updated
    Nov 8, 2023
    Dataset provided by
    Greater London Authority
    Area covered
    London
    Description

    FOCUSON**LONDON**2010:**INCOME**AND**SPENDING**AT**HOME**

    Household income in London far exceeds that of any other region in the UK. At £900 per week, London’s gross weekly household income is 15 per cent higher than the next highest region. Despite this, the costs to each household are also higher in the capital. Londoners pay a greater amount of their income in tax and national insurance than the UK average as well as footing a higher bill for housing and everyday necessities. All of which leaves London households less well off than the headline figures suggest.

    This chapter, authored by Richard Walker in the GLA Intelligence Unit, begins with an analysis of income at both individual and household level, before discussing the distribution and sources of income. This is followed by a look at wealth and borrowing and finally, focuses on expenditure including an insight to the cost of housing in London, compared with other regions in the UK.

    See other reports from this Focus on London series.

    REPORT:

    To view the report online click on the image below. Income and Spending Report PDF

    https://londondatastore-upload.s3.amazonaws.com/fol/fol10-income-cover-thumb1.png" alt="Alt text">

    PRESENTATION:

    This interactive presentation finds the answer to the question, who really is better off, an average London or UK household? This analysis takes into account available data from all types of income and expenditure. Click on the link to access.

    PREZI

    The Prezi in plain text version

    RANKINGS: https://londondatastore-upload.s3.amazonaws.com/fol/fol10-income-tableau-chart-thumb.jpg" alt="Alt text">

    This interactive chart shows some key borough level income and expenditure data. This chart helps show the relationships between five datasets. Users can rank each of the indicators in turn.

    Borough rankings Tableau Chart

    MAP:

    These interactive borough maps help to geographically present a range of income and expenditure data within London.

    Interactive Maps - Instant Atlas

    DATA:

    All the data contained within the Income and Spending at Home report as well as the data used to create the charts and maps can be accessed in this spreadsheet.

    Report data

    FACTS:

    Some interesting facts from the data…

    ● Five boroughs with the highest median gross weekly pay per person in 2009:

    -1. Kensington & Chelsea - £809

    -2. City of London - £767

    -3. Westminster - £675

    -4. Wandsworth - £636

    -5. Richmond - £623

    -32. Brent - £439

    -33. Newham - £422

    ● Five boroughs with the highest median weekly rent for a 2 bedroom property in October 2010:

    -1. Kensington & Chelsea - £550

    -2. Westminster - £500

    -3. City of London - £450

    -4. Camden - £375

    -5. Islington - £360

    -32. Havering - £183

    -33. Bexley - £173

    ● Five boroughs with the highest percentage of households that own their home outright in 2009:

    -1. Bexley – 38 per cent

    -2. Havering – 36 per cent

    -3. Richmond – 32 per cent

    -4. Bromley – 31 per cent

    -5. Barnet – 28 per cent

    -31. Tower Hamlets – 9 per cent

    -32. Southwark – 9 per cent

  8. N

    Gibson, GA annual median income by work experience and sex dataset: Aged...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Gibson, GA annual median income by work experience and sex dataset: Aged 15+, 2010-2023 (in 2023 inflation-adjusted dollars) // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/gibson-ga-income-by-gender/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Georgia, Gibson
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates. The dataset covers the years 2010 to 2023, representing 14 years of data. To analyze income differences between genders (male and female), we conducted an initial data analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series (R-CPI-U-RS) based on current methodologies. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Gibson. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.

    Key observations: Insights from 2023

    Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Gibson, the median income for all workers aged 15 years and older, regardless of work hours, was $28,295 for males and $28,125 for females.

    Based on these incomes, we observe a gender gap percentage of approximately 1%, indicating a significant disparity between the median incomes of males and females in Gibson. Women, regardless of work hours, still earn 99 cents to each dollar earned by men, highlighting an ongoing gender-based wage gap.

    - Full-time workers, aged 15 years and older: In Gibson, among full-time, year-round workers aged 15 years and older, males earned a median income of $71,875, while females earned $61,875, resulting in a 14% gender pay gap among full-time workers. This illustrates that women earn 86 cents for each dollar earned by men in full-time positions. While this gap shows a trend where women are inching closer to wage parity with men, it also exhibits a noticeable income difference for women working full-time in the city of Gibson.

    Remarkably, across all roles, including non-full-time employment, women displayed a similar gender pay gap percentage. This indicates a consistent gender pay gap scenario across various employment types in Gibson, showcasing a consistent income pattern irrespective of employment status.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.

    Gender classifications include:

    • Male
    • Female

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Variables / Data Columns

    • Year: This column presents the data year. Expected values are 2010 to 2023
    • Male Total Income: Annual median income, for males regardless of work hours
    • Male FT Income: Annual median income, for males working full time, year-round
    • Male PT Income: Annual median income, for males working part time
    • Female Total Income: Annual median income, for females regardless of work hours
    • Female FT Income: Annual median income, for females working full time, year-round
    • Female PT Income: Annual median income, for females working part time

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Gibson median household income by race. You can refer the same here

  9. P

    Percentage of Population within 1 5 & 10km Coastal Buffers

    • pacificdata.org
    • data.humdata.org
    csv, gpkg +1
    Updated Aug 12, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SPC Statistics for Development Division (SDD) (2019). Percentage of Population within 1 5 & 10km Coastal Buffers [Dataset]. https://pacificdata.org/data/dataset/percentage-of-population-within-1-5-10km-coastal-buffers
    Explore at:
    gpkg(278528), zipped shapefile(146506), csv(846)Available download formats
    Dataset updated
    Aug 12, 2019
    Dataset provided by
    SPC Statistics for Development Division (SDD)
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    A collaborative project between SPC, the World Fish Centre and the University of Wollongong has produced the first detailed population estimates of people living close to the coast in the 22 Pacific Island Countries and Territories (PICTs). These estimates are stratified into 1, 5, and 10km zones. More information about this dataset: https://sdd.spc.int/mapping-coastal

  10. Socio-economic impact of COVID-19 on refugees - Panel Study - Kenya

    • microdata.unhcr.org
    Updated Feb 26, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UNHCR (2021). Socio-economic impact of COVID-19 on refugees - Panel Study - Kenya [Dataset]. https://microdata.unhcr.org/index.php/catalog/296
    Explore at:
    Dataset updated
    Feb 26, 2021
    Dataset provided by
    United Nations High Commissioner for Refugeeshttp://www.unhcr.org/
    Authors
    UNHCR
    Time period covered
    2020 - 2022
    Area covered
    Kenya
    Description

    Abstract

    The World Bank and UNHCR in collaboration with the Kenya National Bureau of Statistics and the University of California, Berkeley are conducting the Kenya COVID-19 Rapid Response Phone Survey to track the socioeconomic impacts of the COVID-19 pandemic, the recovery from it as well as other shocks to provide timely data to inform a targeted response. This dataset contains information from eight waves of the COVID-19 RRPS, which is part of a panel survey that targets refugee household and started in May 2020. The same households were interviewed every two months for five survey rounds, in the first year of data collection, and every four months thereafter, with interviews conducted using Computer Assisted Telephone Interviewing (CATI) techniques. The sample aims to be representative of the refugee and stateless population in Kenya. It comprises five strata: Kakuma refugee camp, Kalobeyei settlement, Dadaab refugee camp, urban refugees, and Shona stateless. Waves 1-7 of this survey include information on household background, service access, employment, food security, income loss, transfers, health, and COVID-19 knowledge. Wave 8 focused on how households were exposed to shocks, in particular adverse weather shocks and the increase in the price of food and fuel, but also included parts of the previous modules on household background, service access, employment, food security, income loss, and subjective wellbeing. The data is uploaded in three files. The first is the hh file, which contains household level information. The 'hhid', uniquely identifies all household. The second is the adult level file, which contains data at the level of adult household members. Each adult in a household is uniquely identified by the 'adult_id'. The third file is the child level file, available only for waves 3-7, which contains information for every child in the household. Each child in a household is uniquely identified by the 'child_id'. The duration of data collection and sample size for each completed wave was: Wave 1: May 14 to July 7, 2020; 1,328 refugee households Wave 2: July 16 to September 18, 2020; 1,699 refugee households Wave 3: September 28 to December 2, 2020; 1,487 refugee households Wave 4: January 15 to March 25, 2021; 1,376 refugee households Wave 5: March 29 to June 13, 2021; 1,562 refugee households Wave 6: July 14 to November 3, 2021; 1,407 refugee households Wave 7: November 15, 2021, to March 31, 2022; 1,281 refugee households Wave 8: May 31 to July 8, 2022: 1,355 refugee households The same questionnaire is also administered to nationals in Kenya, with the data available in the WB microdata library: https://microdata.worldbank.org/index.php/catalog/3774

    Geographic coverage

    National coverage covering rural and urban areas

    Analysis unit

    Individual and Household

    Universe

    All persons of concern for UNHCR

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sample aims to be representative of the refugee and stateless population in Kenya. It comprises five strata: Kakuma refugee camp, Kalobeyei settlement, Dadaab refugee camp, urban refugees, and Shona stateless, where sampling approaches differ across strata. For refugees in Kakuma and Kalobeyei, as well as for stateless people, recently conducted Socioeconomic Surveys (SES), were used as sampling frames. For the refugee population living in urban areas and the Dadaab camp, no such household survey data existed, and sampling frames were based on UNHCR's registration records (proGres), which include phone numbers. For Kakuma, Kalobeyei, Dadaab and urban refugees, a two-step sampling process was used. First, 1,000 individuals from each stratum were selected from the corresponding sampling frames. Each of these individuals received a text message to confirm that the registered phone was still active. In the second stage, implicitly stratifying by sex and age, the verified phone number lists were used to select the sample. Until wave 7 sampled households that were not reached in earlier waves were also contacted along with households that were interviewed before. In wave 8 only households that had previously participated in the survey were contacted for interview. The “wave” variable represents in which wave the households were interviewed in. For the stateless population, all the participants of the Shona socioeconomic survey (n=400) were included in the RRPS, because of limited sample size. The sampling frames for the refugee and Shona stateless communities are thus representative of households with active phone numbers registered with UNHCR.

    Mode of data collection

    Computer Assisted Telephone Interview [cati]

    Research instrument

    The questionnaire included 12 sections Section 1: Introduction Section 2: Household background Section 3: Travel patterns and interactions Section 4: Employment Section 5: Food security Section 6: Income Loss Section 7: Transfers Section 8: Subjective welfare (50% of sample) Section 9: Health Section 10: COVID Knowledge Section 11: Household and Social Relations (50% of sample) Section 12: Conclusion

    Cleaning operations

    Variable names were kept constant across survey waves. For questions that remained exactly the same across survey waves, data points for all waves can be found under one variable name. For questions where the phrasing changed (even in a minimal way) across waves, variable names were also changed to reflect the change in phrasing. Extended missing values are used to indicate why a value is missing for all variables. The following extended missing values are used in the dataset: · .a for 'Don't know' · .b for 'Refused to respond' · .c for 'Outliers set to missing' · .d for 'Inconsistency set to missing' (used for employment data as explained below) · .e for 'Field Skipped' (where an error in the survey tool caused the question to be missed) · .z for 'Not administered' (as the variable was not relevant to the observation) More detailed data on children was collected between waves 3 and 7, compared to waves 1, 2 and 8. In waves 1 and 2, data on children, e.g. on their learning activities, was collected for all children in a household with one question. Therefore, variables related to children are part of the 'hh' data for waves 1 and 2. Between waves 3 and 7, questions on children in the household were asked for specific children. Some questions covered all children, while others were only administered to one randomly selected child in the household. This approach allows to disaggregate data at the level of the child household members, and the data can be found in the 'child' data set. The household level weights can be used for analysis of the children's data. In wave 8, detailed information on children was dropped, as the questionnaire focused on other topics. The education status of household members, except for the respondent, was imputed for rounds 1 and 2. For rounds 1 and 2, only the education status of the respondent was elicited, while for later rounds the education status for each household member was asked. In order to evaluate outcomes by the household member's education status, information on education was imputed for waves 1 and 2, using the information provided for all household members in waves 3, 4, and 5. This resulted in additional information on the education status for household members in round 1 and 2, which was not yet available for earlier versions of this data. Some questions are not asked repeatedly across waves such that their values were imputed. For some questions, answers are not possible or unlikely to change within two months between survey waves such that households were not asked about them in all waves. The questions on assets owned before March 2020 were only asked to households when they are interviewed for the first time. The questions on the dwelling's wall and floor material as well as the household's connection to the power grid was not asked for all households in wave 2 and 3, where only new households and those who moved were covered by these questions. Questions on the main source of electricity in the households and types of assets owned were not asked in wave 8. The missing values those variables have when they were not asked, are imputed from the answers given in earlier waves. Improved quality insurance algorithms lead to minor revisions to wave 1 to 5 data. Based on additional data checks, the team has made minor refinements to wave 1 to 5 data. The identification of the household members that were the respondent or the household head was refined in the rare cases where it was not possible to interview the same respondent as in previous waves for a given household such that another adult was interviewed. For this reason, for about 2 percent of observations the household head status was assigned to an incorrect household member, which was corrected. For <1 percent of households the respondent did not appear in adult level dataset. For about 1 percent of observations in wave 5 the respondent appeared twice in the adult level dataset. Data from questions on COVID-19 vaccinations from wave 7 was dropped from the dataset. Due to significantly higher self-reported vaccination rates compared to official administrative records, data on vaccinations was deemed unreliable, most likely due to social desirability bias. Consequently, questions on vaccination status and questions using the vaccination data as a validation criterion were dropped from the datasets.

  11. IPCC-DDC FAR UKTR 1 percent data: variable(s) not specified

    • wdc-climate.de
    Updated Oct 15, 2008
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Met Office Hadley Centre (MOHC) (2008). IPCC-DDC FAR UKTR 1 percent data: variable(s) not specified [Dataset]. https://www.wdc-climate.de/ui/entry?acronym=IPCC_DDC_FAR_UKTR_1P_D
    Explore at:
    Dataset updated
    Oct 15, 2008
    Dataset provided by
    World Data Centerhttp://www.icsu-wds.org/
    Authors
    Met Office Hadley Centre (MOHC)
    Area covered
    North Atlantic Ocean, Atlantic Ocean
    Variables measured
    multiple variables
    Description

    This dataset contains 10-year climatologies of soil moisture, precipitation, surface temperature, and surface solar radiation for decades 1, 6, and 8. For more information see summary of corresponding experiment.

  12. T

    United States Corporate Profits

    • tradingeconomics.com
    • jp.tradingeconomics.com
    • +17more
    csv, excel, json, xml
    Updated Mar 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Corporate Profits [Dataset]. https://tradingeconomics.com/united-states/corporate-profits
    Explore at:
    excel, xml, json, csvAvailable download formats
    Dataset updated
    Mar 27, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 31, 1947 - Sep 30, 2024
    Area covered
    United States
    Description

    Corporate Profits in the United States decreased to 3128.50 USD Billion in the third quarter of 2024 from 3141.56 USD Billion in the second quarter of 2024. This dataset provides the latest reported value for - United States Corporate Profits - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  13. California and Justice40 Disadvantaged or Low-income Communities

    • data.cnra.ca.gov
    • data.ca.gov
    • +5more
    Updated Mar 13, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Energy Commission (2024). California and Justice40 Disadvantaged or Low-income Communities [Dataset]. https://data.cnra.ca.gov/dataset/california-and-justice40-disadvantaged-or-low-income-communities
    Explore at:
    arcgis geoservices rest api, zip, html, kml, geojson, csvAvailable download formats
    Dataset updated
    Mar 13, 2024
    Dataset authored and provided by
    California Energy Commissionhttp://www.energy.ca.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    California
    Description

    Locations of disadvantaged and/or low-income communities designated by both California and Justice40.


    Definitions:
    • California-designated Disadvantaged Communities – The California Environmental Protection Agency (CalEPA) identifies four types of geographic areas as disadvantaged: (1) census tracts receiving the highest 25 percent of overall scores in CalEnviroScreen 4.0; (2) census tracts lacking overall scores in CalEnviroScreen 4.0 due to data gaps, but receiving the highest 5 percent of CalEnviroScreen 4.0 cumulative pollution burden scores; (3) census tracts identified in the 2017 DAC designation as disadvantaged, regardless of their scores in CalEnviroScreen 4.0; (4) and areas under the control of federally recognized Tribes.
    • California-designated Low-income Communities – Census tracts with median household incomes at or below 80 percent of the statewide median income or with median household incomes at or below the threshold designated as low income by the California Department of Housing and Community Development’s list of state income limits adopted under Health and Safety Code Section 50093.
    • Justice40-designated disadvantaged communities - Consistent with the Justice40 Interim Guidance, U.S. Department of Transportation (DOT) and U.S. Department of Energy (DOE) developed a joint interim definition of disadvantaged communities for the National Electric Vehicle Infrastructure (NEVI) Formula Program. The joint interim definition uses publicly available data sets that capture vulnerable populations, health, transportation access and burden, energy burden, fossil dependence, resilience, and environmental and climate hazards.

  14. a

    Goal 10: Reduce inequality within and among countries - Mobile

    • chile-1-sdg.hub.arcgis.com
    • tonga1-sdg.hub.arcgis.com
    • +12more
    Updated Jun 25, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    arobby1971 (2022). Goal 10: Reduce inequality within and among countries - Mobile [Dataset]. https://chile-1-sdg.hub.arcgis.com/datasets/68c37e87265a4ff9a6e68b5f55c39378
    Explore at:
    Dataset updated
    Jun 25, 2022
    Dataset authored and provided by
    arobby1971
    Description

    Goal 10Reduce inequality within and among countriesTarget 10.1: By 2030, progressively achieve and sustain income growth of the bottom 40 per cent of the population at a rate higher than the national averageIndicator 10.1.1: Growth rates of household expenditure or income per capita among the bottom 40 per cent of the population and the total populationSI_HEI_TOTL: Growth rates of household expenditure or income per capita (%)Target 10.2: By 2030, empower and promote the social, economic and political inclusion of all, irrespective of age, sex, disability, race, ethnicity, origin, religion or economic or other statusIndicator 10.2.1: Proportion of people living below 50 per cent of median income, by sex, age and persons with disabilitiesSI_POV_50MI: Proportion of people living below 50 percent of median income (%)Target 10.3: Ensure equal opportunity and reduce inequalities of outcome, including by eliminating discriminatory laws, policies and practices and promoting appropriate legislation, policies and action in this regardIndicator 10.3.1: Proportion of population reporting having personally felt discriminated against or harassed in the previous 12 months on the basis of a ground of discrimination prohibited under international human rights lawVC_VOV_GDSD: Proportion of population reporting having felt discriminated against, by grounds of discrimination, sex and disability (%)Target 10.4: Adopt policies, especially fiscal, wage and social protection policies, and progressively achieve greater equalityIndicator 10.4.1: Labour share of GDPSL_EMP_GTOTL: Labour share of GDP (%)Indicator 10.4.2: Redistributive impact of fiscal policySI_DST_FISP: Redistributive impact of fiscal policy, Gini index (%)Target 10.5: Improve the regulation and monitoring of global financial markets and institutions and strengthen the implementation of such regulationsIndicator 10.5.1: Financial Soundness IndicatorsFI_FSI_FSANL: Non-performing loans to total gross loans (%)FI_FSI_FSERA: Return on assets (%)FI_FSI_FSKA: Regulatory capital to assets (%)FI_FSI_FSKNL: Non-performing loans net of provisions to capital (%)FI_FSI_FSKRTC: Regulatory Tier 1 capital to risk-weighted assets (%)FI_FSI_FSLS: Liquid assets to short term liabilities (%)FI_FSI_FSSNO: Net open position in foreign exchange to capital (%)Target 10.6: Ensure enhanced representation and voice for developing countries in decision-making in global international economic and financial institutions in order to deliver more effective, credible, accountable and legitimate institutionsIndicator 10.6.1: Proportion of members and voting rights of developing countries in international organizationsSG_INT_MBRDEV: Proportion of members of developing countries in international organizations, by organization (%)SG_INT_VRTDEV: Proportion of voting rights of developing countries in international organizations, by organization (%)Target 10.7: Facilitate orderly, safe, regular and responsible migration and mobility of people, including through the implementation of planned and well-managed migration policiesIndicator 10.7.1: Recruitment cost borne by employee as a proportion of monthly income earned in country of destinationIndicator 10.7.2: Number of countries with migration policies that facilitate orderly, safe, regular and responsible migration and mobility of peopleSG_CPA_MIGRP: Proportion of countries with migration policies to facilitate orderly, safe, regular and responsible migration and mobility of people, by policy domain (%)SG_CPA_MIGRS: Countries with migration policies to facilitate orderly, safe, regular and responsible migration and mobility of people, by policy domain (1 = Requires further progress; 2 = Partially meets; 3 = Meets; 4 = Fully meets)Indicator 10.7.3: Number of people who died or disappeared in the process of migration towards an international destinationiSM_DTH_MIGR: Total deaths and disappearances recorded during migration (number)Indicator 10.7.4: Proportion of the population who are refugees, by country of originSM_POP_REFG_OR: Number of refugees per 100,000 population, by country of origin (per 100,000 population)Target 10.a: Implement the principle of special and differential treatment for developing countries, in particular least developed countries, in accordance with World Trade Organization agreementsIndicator 10.a.1: Proportion of tariff lines applied to imports from least developed countries and developing countries with zero-tariffTM_TRF_ZERO: Proportion of tariff lines applied to imports with zero-tariff (%)Target 10.b: Encourage official development assistance and financial flows, including foreign direct investment, to States where the need is greatest, in particular least developed countries, African countries, small island developing States and landlocked developing countries, in accordance with their national plans and programmesIndicator 10.b.1: Total resource flows for development, by recipient and donor countries and type of flow (e.g. official development assistance, foreign direct investment and other flows)DC_TRF_TOTDL: Total assistance for development, by donor countries (millions of current United States dollars)DC_TRF_TOTL: Total assistance for development, by recipient countries (millions of current United States dollars)DC_TRF_TFDV: Total resource flows for development, by recipient and donor countries (millions of current United States dollars)Target 10.c: By 2030, reduce to less than 3 per cent the transaction costs of migrant remittances and eliminate remittance corridors with costs higher than 5 per centIndicator 10.c.1: Remittance costs as a proportion of the amount remittedSI_RMT_COST: Remittance costs as a proportion of the amount remitted (%)SI_RMT_COST_BC: Corridor remittance costs as a proportion of the amount remitted (%)SI_RMT_COST_SC: SmaRT corridor remittance costs as a proportion of the amount remitted (%)

  15. T

    United States Employment Cost Index QoQ

    • tradingeconomics.com
    • de.tradingeconomics.com
    • +16more
    csv, excel, json, xml
    Updated Jan 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Employment Cost Index QoQ [Dataset]. https://tradingeconomics.com/united-states/employment-cost-index
    Explore at:
    csv, excel, json, xmlAvailable download formats
    Dataset updated
    Jan 31, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jun 30, 1982 - Dec 31, 2024
    Area covered
    United States
    Description

    Employment Cost Index in the United States increased to 0.90 percent in the fourth quarter of 2024 from 0.80 percent in the third quarter of 2024. This dataset provides - United States Employment Cost Index- actual values, historical data, forecast, chart, statistics, economic calendar and news.

  16. California Inpatient Severe Sepsis

    • data.chhs.ca.gov
    • data.ca.gov
    • +2more
    csv, pdf, zip
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Health Care Access and Information (2025). California Inpatient Severe Sepsis [Dataset]. https://data.chhs.ca.gov/dataset/california-inpatient-severe-sepsis
    Explore at:
    pdf(1365749), csv(3642), pdf(381176), zip, pdf(117079), pdf(567345), pdf(1008444)Available download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Department of Health Care Access and Information
    Area covered
    California
    Description

    The datasets include severe sepsis information on 1) the number of severe sepsis cases, percent of hospital-acquired and non-hospital-acquired severe sepsis cases, and the percent of in-hospital severe sepsis deaths; 2) the average length of stay for severe sepsis hospitalizations, the respective median charge per day, and the expected payer for severe sepsis hospitalizations; 3) the severe sepsis patients who were alive at discharge and died within 30 days of discharge; and 4) the hospital-acquired severe sepsis in different type of hospitals (hospital size, location, teaching, and ownership). ICD-9-CM codes were used for data before October 1, 2015, and ICD-10-CM codes were used for data on or after October 1, 2015.

  17. N

    Fairmount, IN Population Dataset: Yearly Figures, Population Change, and...

    • neilsberg.com
    csv, json
    Updated Sep 18, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). Fairmount, IN Population Dataset: Yearly Figures, Population Change, and Percent Change Analysis [Dataset]. https://www.neilsberg.com/research/datasets/6e70b2c3-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Sep 18, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Fairmount
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2022, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2022. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2022. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Fairmount population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Fairmount across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2022, the population of Fairmount was 2,649, a 0.34% decrease year-by-year from 2021. Previously, in 2021, Fairmount population was 2,658, a decline of 0.45% compared to a population of 2,670 in 2020. Over the last 20 plus years, between 2000 and 2022, population of Fairmount decreased by 412. In this period, the peak population was 3,061 in the year 2000. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2022

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2022)
    • Population: The population for the specific year for the Fairmount is shown in this column.
    • Year on Year Change: This column displays the change in Fairmount population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Fairmount Population by Year. You can refer the same here

  18. N

    Henry, IL Population Dataset: Yearly Figures, Population Change, and Percent...

    • neilsberg.com
    csv, json
    Updated Sep 18, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). Henry, IL Population Dataset: Yearly Figures, Population Change, and Percent Change Analysis [Dataset]. https://www.neilsberg.com/research/datasets/6e9be02c-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Sep 18, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Illinois, Henry
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2022, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2022. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2022. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Henry population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Henry across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2022, the population of Henry was 2,313, a 0.17% decrease year-by-year from 2021. Previously, in 2021, Henry population was 2,317, a decline of 0.26% compared to a population of 2,323 in 2020. Over the last 20 plus years, between 2000 and 2022, population of Henry decreased by 212. In this period, the peak population was 2,525 in the year 2000. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2022

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2022)
    • Population: The population for the specific year for the Henry is shown in this column.
    • Year on Year Change: This column displays the change in Henry population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Henry Population by Year. You can refer the same here

  19. N

    Price, UT Non-Hispanic Population Breakdown by Race

    • neilsberg.com
    csv, json
    Updated Aug 18, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). Price, UT Non-Hispanic Population Breakdown by Race [Dataset]. https://www.neilsberg.com/research/datasets/6bb5ecdc-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Aug 18, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Utah
    Variables measured
    Non-Hispanic Asian Population, Non-Hispanic Black Population, Non-Hispanic White Population, Non-Hispanic Some other race Population, Non-Hispanic Two or more races Population, Non-Hispanic American Indian and Alaska Native Population, Non-Hispanic Native Hawaiian and Other Pacific Islander Population, Non-Hispanic Asian Population as Percent of Total Non-Hispanic Population, Non-Hispanic Black Population as Percent of Total Non-Hispanic Population, Non-Hispanic White Population as Percent of Total Non-Hispanic Population, and 4 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. To measure the two variables, namely (a) Non-Hispanic population and (b) population as a percentage of the total Non-Hispanic population, we initially analyzed and categorized the data for each of the racial categories idetified by the US Census Bureau. It is ensured that the population estimates used in this dataset pertain exclusively to the identified racial categories, and are part of Non-Hispanic classification. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Non-Hispanic population of Price by race. It includes the distribution of the Non-Hispanic population of Price across various race categories as identified by the Census Bureau. The dataset can be utilized to understand the Non-Hispanic population distribution of Price across relevant racial categories.

    Key observations

    Of the Non-Hispanic population in Price, the largest racial group is White alone with a population of 6,159 (93.94% of the total Non-Hispanic population).

    https://i.neilsberg.com/ch/price-ut-population-by-race-and-ethnicity.jpeg" alt="Price Non-Hispanic population by race">

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Racial categories include:

    • White
    • Black or African American
    • American Indian and Alaska Native
    • Asian
    • Native Hawaiian and Other Pacific Islander
    • Some other race
    • Two or more races (multiracial)

    Variables / Data Columns

    • Race: This column displays the racial categories (for Non-Hispanic) for the Price
    • Population: The population of the racial category (for Non-Hispanic) in the Price is shown in this column.
    • % of Total Population: This column displays the percentage distribution of each race as a proportion of Price total Non-Hispanic population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Price Population by Race & Ethnicity. You can refer the same here

  20. N

    Florida Population Dataset: Yearly Figures, Population Change, and Percent...

    • neilsberg.com
    csv, json
    Updated Sep 18, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). Florida Population Dataset: Yearly Figures, Population Change, and Percent Change Analysis [Dataset]. https://www.neilsberg.com/research/datasets/6e75f194-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Sep 18, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Florida
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2022, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2022. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2022. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Florida population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Florida across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2022, the population of Florida was 22,244,823, a 1.91% increase year-by-year from 2021. Previously, in 2021, Florida population was 21,828,069, an increase of 1.10% compared to a population of 21,589,602 in 2020. Over the last 20 plus years, between 2000 and 2022, population of Florida increased by 6,198,675. In this period, the peak population was 22,244,823 in the year 2022. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2022

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2022)
    • Population: The population for the specific year for the Florida is shown in this column.
    • Year on Year Change: This column displays the change in Florida population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Florida Population by Year. You can refer the same here

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Neilsberg Research (2025). Kortright, New York annual median income by work experience and sex dataset: Aged 15+, 2010-2023 (in 2023 inflation-adjusted dollars) // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/kortright-ny-income-by-gender/

Kortright, New York annual median income by work experience and sex dataset: Aged 15+, 2010-2023 (in 2023 inflation-adjusted dollars) // 2025 Edition

Explore at:
csv, jsonAvailable download formats
Dataset updated
Feb 27, 2025
Dataset authored and provided by
Neilsberg Research
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Area covered
New York, Kortright
Variables measured
Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time
Measurement technique
The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates. The dataset covers the years 2010 to 2023, representing 14 years of data. To analyze income differences between genders (male and female), we conducted an initial data analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series (R-CPI-U-RS) based on current methodologies. For additional information about these estimations, please contact us via email at research@neilsberg.com
Dataset funded by
Neilsberg Research
Description
About this dataset

Context

The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Kortright town. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.

Key observations: Insights from 2023

Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Kortright town, the median income for all workers aged 15 years and older, regardless of work hours, was $34,063 for males and $33,750 for females.

Based on these incomes, we observe a gender gap percentage of approximately 1%, indicating a significant disparity between the median incomes of males and females in Kortright town. Women, regardless of work hours, still earn 99 cents to each dollar earned by men, highlighting an ongoing gender-based wage gap.

- Full-time workers, aged 15 years and older: In Kortright town, among full-time, year-round workers aged 15 years and older, males earned a median income of $64,605, while females earned $50,513, leading to a 22% gender pay gap among full-time workers. This illustrates that women earn 78 cents for each dollar earned by men in full-time roles. This analysis indicates a widening gender pay gap, showing a substantial income disparity where women, despite working full-time, face a more significant wage discrepancy compared to men in the same roles.

Remarkably, across all roles, including non-full-time employment, women displayed a lower gender pay gap percentage. This indicates that Kortright town offers better opportunities for women in non-full-time positions.

Content

When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.

Gender classifications include:

  • Male
  • Female

Employment type classifications include:

  • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
  • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

Variables / Data Columns

  • Year: This column presents the data year. Expected values are 2010 to 2023
  • Male Total Income: Annual median income, for males regardless of work hours
  • Male FT Income: Annual median income, for males working full time, year-round
  • Male PT Income: Annual median income, for males working part time
  • Female Total Income: Annual median income, for females regardless of work hours
  • Female FT Income: Annual median income, for females working full time, year-round
  • Female PT Income: Annual median income, for females working part time

Good to know

Margin of Error

Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

Custom data

If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

Inspiration

Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

Recommended for further research

This dataset is a part of the main dataset for Kortright town median household income by race. You can refer the same here

Search
Clear search
Close search
Google apps
Main menu