This table presents income shares, thresholds, tax shares, and total counts of individual Canadian tax filers, with a focus on high income individuals (95% income threshold, 99% threshold, etc.). Income thresholds are geography-specific; for example, the number of Nova Scotians in the top 1% will be calculated as the number of taxfiling Nova Scotians whose total income exceeded the 99% income threshold of Nova Scotian tax filers. Different definitions of income are available in the table namely market, total, and after-tax income, both with and without capital gains.
The Distributional Financial Accounts (DFAs) provide a quarterly measure of the distribution of U.S. household wealth since 1989, based on a comprehensive integration of disaggregated household-level wealth data with official aggregate wealth measures. The data set contains the level and share of each balance sheet item on the Financial Accounts' household wealth table (Table B.101.h), for various sub-populations in the United States. In our core data set, aggregate household wealth is allocated to each of four percentile groups of wealth: the top 1 percent, the next 9 percent (i.e., 90th to 99th percentile), the next 40 percent (50th to 90th percentile), and the bottom half (below the 50th percentile). Additionally, the data set contains the level and share of aggregate household wealth by income, age, generation, education, and race. The quarterly frequency makes the data useful for studying the business cycle dynamics of wealth concentration--which are typically difficult to observe in lower-frequency data because peaks and troughs often fall between times of measurement. These data will be updated about 10 or 11 weeks after the end of each quarter, making them a timely measure of the distribution of wealth.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the mean household income for each of the five quintiles in Florence, SC, as reported by the U.S. Census Bureau. The dataset highlights the variation in mean household income across quintiles, offering valuable insights into income distribution and inequality.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Income Levels:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Florence median household income. You can refer the same here
The Top One Percent Wild Areas Dataset of the Last of the Wild Project, Version 1, 2002 (LWP-1) is derived from the LWP-1 Human Footprint Dataset. The gridded data are classified according to their raster value (wild = 0-1; not wild >1). The top 1% of the wild areas within each biome by realm are selected and identified. The dataset in Clarke 1866 Geographic Coordinate System is produced by the Wildlife Conservation Society (WCS) and the Columbia University Center for International Earth Science Information Network (CIESIN).
The Top One Percent Wild Areas Dataset of the Last of the Wild Project, Version 1, 2002 (LWP-1) is derived from the LWP-1 Human Footprint Dataset. The gridded data are classified according to their raster value (wild = 0-1; not wild >1). The top 1% of the wild areas within each biome by realm are selected and identified. The dataset in Interrupted Goode Homolosine Projection (IGHP) is produced by the Wildlife Conservation Society (WCS) and Columbia University Center for International Earth Science Information Network (CIESIN).
How sensitive to business cycles are the earnings of top earners? And, how does the business cycle sensitivity of top earners vary by industry? We use a confidential dataset on earnings histories of US males from the Social Security Administration. On average, individuals in the top 1 percent of the earnings distribution are slightly more cyclical than the population average. But there are large differences across sectors; top earners in Finance, Insurance, and Real Estate (FIRE) and Construction face substantial business cycle volatility, whereas those in Services (who make up 40 percent of individuals in the top 1 percent) have earnings that are less cyclical than the average worker.
Income of individuals by age group, sex and income source, Canada, provinces and selected census metropolitan areas, annual.
This dataset and map service provides information on the U.S. Housing and Urban Development's (HUD) low to moderate income areas. The term Low to Moderate Income, often referred to as low-mod, has a specific programmatic context within the Community Development Block Grant (CDBG) program. Over a 1, 2, or 3-year period, as selected by the grantee, not less than 70 percent of CDBG funds must be used for activities that benefit low- and moderate-income persons. HUD uses special tabulations of Census data to determine areas where at least 51% of households have incomes at or below 80% of the area median income (AMI). This dataset and map service contains the following layer.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Round Top population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Round Top across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2022, the population of Round Top was 91, a 1.11% increase year-by-year from 2021. Previously, in 2021, Round Top population was 90, an increase of 2.27% compared to a population of 88 in 2020. Over the last 20 plus years, between 2000 and 2022, population of Round Top increased by 1. In this period, the peak population was 102 in the year 2009. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Round Top Population by Year. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Wages in the United States increased 4.78 percent in June of 2025 over the same month in the previous year. This dataset provides the latest reported value for - United States Wages and Salaries Growth - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Broad Top township population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Broad Top township across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2022, the population of Broad Top township was 1,447, a 0.70% increase year-by-year from 2021. Previously, in 2021, Broad Top township population was 1,437, a decline of 0.21% compared to a population of 1,440 in 2020. Over the last 20 plus years, between 2000 and 2022, population of Broad Top township decreased by 345. In this period, the peak population was 1,802 in the year 2004. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Broad Top township Population by Year. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the mean household income for each of the five quintiles in Winchester, VA, as reported by the U.S. Census Bureau. The dataset highlights the variation in mean household income across quintiles, offering valuable insights into income distribution and inequality.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Income Levels:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Winchester median household income. You can refer the same here
The Behavioral Risk Factor Surveillance System (BRFSS) is a telephone survey conducted annually by Texas Department of State Health Services to assess a variety of health measures within the state. The survey data assesses whether participants have health insurance coverage and uses that data to provide an estimate of insurance coverage across Travis County residents. The measure used refers to residents who are between 18-64 years of age. View more details and insights related to this data set on the story page: https://data.austintexas.gov/stories/s/HE-B-1-Percentage-of-residents-younger-than-65-wit/tw9i-pdx2/
The Kingshill aquifer resides under St. Croix, an Island in the U.S. Virgin Islands. The Island of St. Croix is mountainous in the northwestern and eastern regions of the island and the central and southwest regions contain rolling hills and plains. The Kingshill aquifer underlies the plains of St. Croix. The aquifer is composed primarily of limestone and marl and has a maximum saturated thickness of 200 feet. The aquifer doesn't produce large quantities of water and much of the groundwater is suboptimal for human consumption, but it is the primary source of water in the Virgin Islands (HA 730-N). This product provides source data for the U.S. Virgin Islands, Island of St. Croix, Kingshill aquifer framework including: Georeferenced image: 1. i_56KNGSHL_bot.tif: Digitized figure of altitude contour lines representing the bottom of the Kingshill aquifer. This figure also includes the Kingshill aquifer extent. The original figure was from the Groundwater Atlas (HA 730-N) figure 114. Extent shapefiles: 1. p_56KNGSHL.shp: Polygon shapefile containing the areal extent of the Kingshill aquifer (HA 730-N). The original figure was from the Groundwater Atlas (HA 730-N) figure 114. Contour line shapefile: 1. c_56KNGSHL_bot.shp: Contour line dataset containing altitude values, in feet reference to National Geodetic Vertical Datum of 1929 (NGVD29), across the bottom of the Kingshill aquifer. These data were sourced from HA 730-N and were used to create the ra_56KNGSHL_bot.tif raster dataset. Altitude raster files: 1. ra_56KNGSHL_top.tif: Altitude raster dataset of the top of the Kingshill aquifer. Top of aquifer was assumed to be equal with land surface, but it should be noted that HA 730-N indicates about 25 percent of aquifer is overlain with a blanket of alluvium, alluvial fan, debris flow, and slope wash deposits as much as 80 feet thick. This raster was created using the Digital Elevation model (DEM) dataset (NED, 100-meter) and the altitude values are in meters reference to North American Vertical Datum of 1988 (NAVD88). 2. ra_56KNGSHL_bot.tif: Altitude raster dataset of the bottom of the Kingshill aquifer. This raster was interpolated from the c_56KNGSHL_bot.shp file and the altitude values are in meters reference to NAVD88. Depth raster files: 1. rd_56KNGSHL_top.tif: Depth raster dataset of the top of the Kingshill aquifer. The depth values are in meters below land surface (NED, 100-meter). All values in this raster are “0” because it was assumed the top of the aquifer was equal with land surface, but it should be noted that HA 730-N indicates about 25 percent of aquifer is overlain with a blanket of alluvium, alluvial fan, debris flow, and slope wash deposits as much as 80 feet thick. 2. rd_56KNGSHL_bot.tif: Depth raster dataset of the bottom of the Kingshill aquifer. The depth values are in meters below land surface (NED, 100-meter).
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
This poverty rate data shows what percentage of the measured population* falls below the poverty line. Poverty is closely related to income: different “poverty thresholds” are in place for different sizes and types of household. A family or individual is considered to be below the poverty line if that family or individual’s income falls below their relevant poverty threshold. For more information on how poverty is measured by the U.S. Census Bureau (the source for this indicator’s data), visit the U.S. Census Bureau’s poverty webpage.
The poverty rate is an important piece of information when evaluating an area’s economic health and well-being. The poverty rate can also be illustrative when considered in the contexts of other indicators and categories. As a piece of data, it is too important and too useful to omit from any indicator set.
The poverty rate for all individuals in the measured population in Champaign County has hovered around roughly 20% since 2005. However, it reached its lowest rate in 2021 at 14.9%, and its second lowest rate in 2023 at 16.3%. Although the American Community Survey (ACS) data shows fluctuations between years, given their margins of error, none of the differences between consecutive years’ estimates are statistically significant, making it impossible to identify a trend.
Poverty rate data was sourced from the U.S. Census Bureau’s American Community Survey 1-Year Estimates, which are released annually.
As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.
Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.
For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Poverty Status in the Past 12 Months by Age.
*According to the U.S. Census Bureau document “How Poverty is Calculated in the ACS," poverty status is calculated for everyone but those in the following groups: “people living in institutional group quarters (such as prisons or nursing homes), people in military barracks, people in college dormitories, living situations without conventional housing, and unrelated individuals under 15 years old."
Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (17 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (25 September 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (16 September 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (8 June 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (8 June 2021).; U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (14 September 2017).; U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (19 September 2016).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Unemployment Rate in the United States increased to 4.20 percent in July from 4.10 percent in June of 2025. This dataset provides the latest reported value for - United States Unemployment Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
This study was undertaken to enable cross-community analysis of gang trends in all areas of the United States. It was also designed to provide a comparative analysis of social, economic, and demographic differences among non-metropolitan jurisdictions in which gangs were reported to have been persistent problems, those in which gangs had been more transitory, and those that reported no gang problems. Data were collected from four separate sources and then merged into a single dataset using the county Federal Information Processing Standards (FIPS) code as the attribute of common identification. The data sources included: (1) local police agency responses to three waves (1996, 1997, and 1998) of the National Youth Gang Survey (NYGS), (2) rural-urban classification and county-level measures of primary economic activity from the Economic Research Service (ERS) of the United States Department of Agriculture, (3) county-level economic and demographic data from the County and City Data Book, 1994, and from USA Counties, 1998, produced by the United States Department of Commerce, and (4) county-level data on access to interstate highways provided by Tom Ricketts and Randy Randolph of the University of North Carolina at Chapel Hill. Variables include the FIPS codes for state, county, county subdivision, and sub-county, population in the agency jurisdiction, type of jurisdiction, and whether the county was dependent on farming, mining, manufacturing, or government. Other variables categorizing counties include retirement destination, federal lands, commuting, persistent poverty, and transfer payments. The year gang problems began in that jurisdiction, number of youth groups, number of active gangs, number of active gang members, percent of gang members who migrated, and the number of gangs in 1996, 1997, and 1998 are also available. Rounding out the variables are unemployment rates, median household income, percent of persons in county below poverty level, percent of family households that were one-parent households, percent of housing units in the county that were vacant, had no telephone, or were renter-occupied, resident population of the county in 1990 and 1997, change in unemployment rates, land area of county, percent of persons in the county speaking Spanish at home, and whether an interstate highway intersected the county.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Broad Top City population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Broad Top City across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Broad Top City was 360, a 0.55% decrease year-by-year from 2022. Previously, in 2022, Broad Top City population was 362, a decline of 1.09% compared to a population of 366 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Broad Top City decreased by 26. In this period, the peak population was 454 in the year 2010. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Broad Top City Population by Year. You can refer the same here
This data set represents estimated soil variables compiled for every catchment of NHDPlus for the conterminous United States. The variables included are cation exchange capacity, percent calcium carbonate, slope, water-table depth, soil thickness, hydrologic soil group, soil erodibility (k-factor), permeability, average water capacity, bulk density, percent organic material, percent clay, percent sand, and percent silt. The source data set is the State Soil ( STATSGO ) Geographic Database (Wolock, 1997). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
John Ioannidis and co-authors [1] created a publicly available database of top-cited scientists in the world. This database, intended to address the misuse of citation metrics, has generated a lot of interest among the scientific community, institutions, and media. Many institutions used this as a yardstick to assess the quality of researchers. At the same time, some people look at this list with skepticism citing problems with the methodology used. Two separate databases are created based on career-long and, single recent year impact. This database is created using Scopus data from Elsevier[1-3]. The Scientists included in this database are classified into 22 scientific fields and 174 sub-fields. The parameters considered for this analysis are total citations from 1996 to 2022 (nc9622), h index in 2022 (h22), c-score, and world rank based on c-score (Rank ns). Citations without self-cites are considered in all cases (indicated as ns). In the case of a single-year case, citations during 2022 (nc2222) instead of Nc9622 are considered.
To evaluate the robustness of c-score-based ranking, I have done a detailed analysis of the matrix parameters of the last 25 years (1998-2022) of Nobel laureates of Physics, chemistry, and medicine, and compared them with the top 100 rank holders in the list. The latest career-long and single-year-based databases (2022) were used for this analysis. The details of the analysis are presented below:
Though the article says the selection is based on the top 100,000 scientists by c-score (with and without self-citations) or a percentile rank of 2% or above in the sub-field, the actual career-based ranking list has 204644 names[1]. The single-year database contains 210199 names. So, the list published contains ~ the top 4% of scientists. In the career-based rank list, for the person with the lowest rank of 4809825, the nc9622, h22, and c-score were 41, 3, and 1.3632, respectively. Whereas for the person with the No.1 rank in the list, the nc9622, h22, and c-score were 345061, 264, and 5.5927, respectively. Three people on the list had less than 100 citations during 96-2022, 1155 people had an h22 less than 10, and 6 people had a C-score less than 2.
In the single year-based rank list, for the person with the lowest rank (6547764), the nc2222, h22, and c-score were 1, 1, and 0. 6, respectively. Whereas for the person with the No.1 rank, the nc9622, h22, and c-score were 34582, 68, and 5.3368, respectively. 4463 people on the list had less than 100 citations in 2022, 71512 people had an h22 less than 10, and 313 people had a C-score less than 2. The entry of many authors having single digit H index and a very meager total number of citations indicates serious shortcomings of the c-score-based ranking methodology. These results indicate shortcomings in the ranking methodology.
This table presents income shares, thresholds, tax shares, and total counts of individual Canadian tax filers, with a focus on high income individuals (95% income threshold, 99% threshold, etc.). Income thresholds are geography-specific; for example, the number of Nova Scotians in the top 1% will be calculated as the number of taxfiling Nova Scotians whose total income exceeded the 99% income threshold of Nova Scotian tax filers. Different definitions of income are available in the table namely market, total, and after-tax income, both with and without capital gains.